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The eigenvalue problem for a particular class of "arrow" matrices Z = (~Bt ~), where A is a 
Hermitian N X N matrix, C a real diagonal M X M matrix, B an arbitrary complex N X M matrix, 
and ya real number, is investigated by means ofa partitioning technique. Both Hermitian (y = 1) 
and non-Hermitian (y# 1) arrow matrices Z are studied. The one-dimensional case (dimension N 
of A equal to 1) is briefly reviewed and a detailed treatment of the multidimensional case (N) 1) is 
presented. For Hermitian arrow matrices, the analysis leads to a new algorithm for computing the 
eigenvalues and eigenvectors of Z which is particularly efficient if M>N. 

PACS numbers: 02.1O.Sp, 02.70. + d 

I. INTRODUCTION 

Many physical problems can be described in terms of an 
eigenvalue problem for "arrow" matrices Z which have the 
form 

all alN bll blM 

Z= arN aNN bNI bNM = (;Bt ~). ybrl yb~1 C I 0 

ybrM yb~M 0 CM 
(1.1) 

A diagonal real matrix C is coupled to a Hermitian matrix A 
by N XM, in general complex, matrix elements bij' Without 
loss of generality, one may take the Cm to be ordered such 
that CI <;c2<;",<;CM • The real number y accounts for a special 
class of non-Hermitian arrow matrices. Setting y = 1, one 
obtains a Hermitian matrix of order N + M. Such Hermitian 
arrow matrices are studied, e.g., in perturbation theory for 
determining the changes of the unperturbed energies caused 
by adding additional states to the Hamiltonian matrix. 1,2 

For finite Fermi systems like atoms or molecules, Hermitian 
matrices of the form ofEq. (1.1) are employed for calculating 
ionization energies, electron affinities, and relative intensi
ties via a Green's function approach.3--6 Setting y = - 1, 
one obtains a non-Hermitian arrow matrix which, e.g., has 
to be dealt with when studying the spectral distribution of 
scattered light. 7 Here, the number of complex eigenvalues 
determines the maximum number offrequency-shifted lines 
in the spectrum of light scattered from ordinary fluids. 

A convenient approach for studying the eigenvalue 
problem of such arrow matrices is to employ a partitioning 
technique. To this purpose, one considers as a function of the 
variable OJ the N X N matrix 

G(OJ) = [OJI- L(OJ)]-I, (1.2) 

where the matrix elements L ij (OJ) of the matrix L(OJ) are given 
by 

(1.3) 

G(w) will be referred to as the Green's function associated 

with Z. According to Eq. (1.1), one immediately identifies 
G(OJ) with the principal matrix (i.e., the block corresponding 
to the submatrix A) of [OJ 1- Z]-I, 

G(OJ) = ([OJI - Z] -I)A' (1.4) 

From Eq. (1.4), it is seen that the polesgj ofG(OJ) coincide 
with the eigenvalues of Z. For Hermitian arrow matrices 
(y = 1), the eigenvalue problem is formulated as 

Z = xrxt, (l.5a) 

(l.5b) 

Here, the matrix X denotes the unitary transformation that 
diagonalizes Z; Eq. (l.5a) implies that the residues of a parti
cular polegp are linked to the eigenvector Xp of the corre
sponding eigenvalue of Z via the spectral representation of 
the Green's function 

(1.6) 

where x jp ' 1 <;i<;N, denote the first N components ofXp. 
Note that an eigenvalue ofZ does not occur as a pole ofG(OJ) 
when the first N components of its eigenvector are zero. 

Since Eq. (1.4) holds for all values of y, the connection 
between the poles ofG(OJ) and the eigenvalues ofZ is not 
restricted to the Hermitian case. Equation (1.3) can thus be 
used to show that, for y> 0, the eigenvalue problem can be 
replaced by a Hermitian eigenvalue problem for a matrix Z, 
where the coupling matrix elements bij are replaced by bjj 

= /Ybij' Similarly, the casey < o can be reduced to a special 
non-Hermitian Z where y = - 1. Therefore in the follow
ing, we will consider only the two values of y: y = 1 (Hermi
tian Z) and y = - 1 (non-Hermitian Z). For the non-Hermi
tian case, the eigenvalue problem reads 

ZXR = xRr, 
(1.7) 

XLZ = rxL, 

where XR (XL) denotes the matrix of the right (left) eigenvec
tors. The eigenvalues gp of Z and, hence, the poles of G(OJ) 
may now either be real or complex. Provided that XL XR 

= 1, the spectral representation ofG(OJ) [Eq. (1.6)] still holds 
'f I * b R L lone rep aces XjpXjp y XjpXpj ' 

The partitioning technique has the essential advantage 
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that the eigenvalues of an (N + M I-dimensional matrix can 
be studied by investigating the N XN matrix G(cu). Here, the 
special case of N = 1 is particularly simple. This one-dimen
sional case has been considered by many authors, see, e.g., 
Refs. 1,7, and 8. For Hermitian arrow matrices, all eigenval
ues can be evaluated by a straightforward "graphical" algo
rithm. When y = - 1, a similar procedure may be applied, 
however, restricted to real eigenvalues. In the general case 
where the principal submatrix A is of dimension N> 1, no 
algorithm similar to the one worked out for the one-dimen
sional case seems to be available. For the Hermitian case, a 
rather qualitative discussion of an extension of the graphical 
procedure has been presented,9 and for non-Hermitian 
(y = - 1) arrow matrices, the maximum number of com
plex eigenvalues has been determined. 10 

The special structure of the arrow matrices considered 
here can also be exploited by the conventional technique of 
triangular factorization, see, e.g., Ref. 11. For a Hermitian 
arrow matrix Z, one may start from the partitioned factori
zation of cul- Z: 

cui - Z = H(cu)D(cu)Ht(cu), 

where 

H(cu) = (~ - B(cul- C)-I) 
I ' 

D(cu) = (cu
o 

I - L(cu) 0 ) 
cul- C . 

(1.8a) 

(1.8b) 

Thus the complete factorization for a value of cu#cm re
duces to the factorization of cut - L(cu). Using Sylvester's 
inertia theorem, 11 the number of eigenvalues of Z in a specif
icinterval (a,b), wherea,b #Cm , can be obtained by perform
ing the triangular factorization for cu = a and cu = b. The 
eigenvalues of Z may then be calculated by implementing a 
standard algorithm such as a bisection or secant iteration 
procedure,l1 which requires the above factorization at a set 
of iteration points CU V ' 

The main theoretical drawback of any algorithm based 
on the factorization ofEq. (1.8), however, is the fact that the 
matrix L(cu) is singular for cu = Cm • Thus for cu close to Cm , 

the numerical evaluation of the matrix elements Lij(cu) may 
suffer from severe rounding errors. In this paper, we present 
an alternative approach which circumvents such difficulties. 
By investigating the eigenvalues ofL(cu) as a function of cu, it 
is possible to describe properly the singular behavior at 
cu = cm • This analysis leads to a simple method for counting 
the number of eigenvalues of Hermitian arrow matrices in 
the intervals bounded by two successive matrix elements cm 

and cm + 1 (including ± 00). Moreover, we will introduce an 
efficient algorithm for evaluating all eigenvalues and eigen
vectors of Z which can be considered as the multidimen
sional analog to the "graphical" algorithm for the one-di
mensional case. 

In Sec. II the one-dimensional case is briefly discussed. 
The treatment of the multidimensional case is presented in 
Sec. III. In the last section, the "graphical" algorithm for the 
Hermitian eigenvalue problem is summarized and its feasi
bility for numerical applications is briefly discussed. 
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II. THE ONE-DIMENSIONAL CASE 

As an illustrative example for the general procedure, let 
us first consider the one-dimensional case where the dimen
sion of A is equal to N = 1. In that case, the matrix Z has the 
form 

a bI b2 b3 

ybT C 1 0 0 

Z= yb! 0 C2 0 (2.1) 

ybt 0 0 C3 

and the corresponding one-dimensional Green's function 
reads 

1 
G(cu) = , 

cu-/(cu) 
(2.2a) 

M Ib 12 
l(w) = a + y L m 

m=1W-Cm 

(2.2b) 

The analytical properties of this Green's function G (w) are 
well known for both y = 11

,8 and y = - 1.7 Here, we restrict 
ourselves to a brief summary of the essential results which 
will be supplemented by a few remarks concerning non-Her
mitian arrow matrices. 

The eigenvalues of Z are obtained as the solutions gp' 
p = 1, ... , M + 1 of the implicit equation 

w -I (w) = O. (2.3) 

The real zeros of w - 1 (w) can easily be found by a graphical 
analysis. Let us first consider the Hermitian case y = 1 and 
assume that all Cm are different. In this case, the eigenvalues 
gp are real and distinct; Fig. 1 shows a graph of 1 (w) for a 
specific set of parameters a, bm , and Cm • The poles of 1 (cu) are 
indicated by vertical dotted lines, and the intervals ( - 00, 
cd, (Cl>C2),,,,, (cM , 00) are specified byh = 1,2, ... ,M + 1. As 
can be seen from this graph, the solutionsgp ofEq. (2.3) are 
obtained as the values of w at the intersections of 1 (w) with the 
dashed liney = w. Since 1 (w) is monotonically decreasing in 
each interval h, there is one and only one eigenvalue of Z in 

h - 5 

-2 -2 

-4 -4 

-5 -3 -1 

w 

FIG. 1. Graphical determination of the eigenvalues ofa Hermitian arrow 
matrix Z for the one-dimensional case N = I (M = 4). The full lines repre
sent the function I (w), the poles of I (w) are indicated by vertical dotted lines. 
The eigenvalues of Z are obtained as the values of w at the intersections of 
I (w) with the dashed line y = w. 
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each of these intervals. This property is often referred to as 
the separation theorem. 

For r = - 1, the solutions ofEq.(2.3) are no longer 
restricted to real values of w. However, all the real eigenval
ues may still be obtained by the graphical method described 
above. Due to the sign of r, the function I (w) is now monoton
ically increasing in each interval h. In Fig. 2, the function I (w) 
is plotted for a similar set of parameters as used for Fig. 1. 
Since I (w) has M poles, there are at least (M - 1) intersections 
with the straight liney= w in the interval (c I, CM)' i.e., at 
least (M - 1) roots are real. If the remaining two eigenvalues 
are complex, there is exactly one eigenvalue of Z in each of 
the (M - 1) intervals h = 2, ... , M. Since the trace of Z is real 
and the real eigenvalues are nondegenerate, the complex 
eigenValues are conjugate to each other. It should be noted 
that once the real eigenvalues are known, the complex solu
tions may directly be calculated by determining the determi
nant and the trace ofZ. If, on the other hand, all eigenvalues 
are real, then there is either one interval h = 2, 3, ... , M 
bracketing three roots, which is the case in the example de
picted in Fig. 2, or there are two additional solutions in the 
interval ( - 00, CI) or (cM , 00). In contrast to the Hermitian 
case, these solutions can be threefold degenerate in the for
mer, and twofold degenerate in the latter case. 

Let us now consider the case of a K-fold degeneracy of 
the diagonal matrix elements ofC, say Cm = cm + I 
= ... = Cm + K _ I' From Eq. (2.2b) it follows that this is equi

valent to replacing Z by Z, where the K coupling matrix 
elements bm , ... , bm + K _ I are replaced by modified quanti
ties bm , ... , bm + K _ I : 

- ~ K I 2 bm =1:i =o Ibm+il , 

bm + 1 =bm + 2 = ... =bm + K _ I =0. 
(2.4) 

According to Eq. (2.4), (K - 1) diagonal elements ofZ de
couple, and one immediately sees that Cm is a (K - I)-fold 
degenerate eigenvalue of Z. The residues of the correspond
ing pole of the Green's function vanish and these (K - 1)
fold degenerate eigenvaluesgp = Cm do not occur as poles of 
G(w). 

h - 1 h - 2 h - 5 

I 2 

o 

-2 -2 

Finally, we turn to the problem of detemiining the ei
genvector matrix. For a nondegenerate eigenvaluegp ' the 
corresponding right (left) eigenvector X: (X;) with elements 
x~ (X;i) is obtained as 

xf + I,p = rb rxfp/(gp - ci ), 
I.;;;i.;;;M. (2.5) 

X;'i+ I = bix;I/(gp - ci ), 

The normalizing condition X;X: = 1 fixes the remaining 
first eigenvector component to be 

xfp = X;I = p;, 
where 

(2.6a) 

(2.6b) 

For Hermitian Z, Eq. (2.5) reduces to the usual relation X: 
= (X;f The quantity Rp can easily be identified with the 

residue for G (w) at the first-order pole (l) = gp: 

Rp=[I-~I(w)i ]-1. aw CU=8p 

(2.7) 

Equation (2.7), on the other hand, shows that the residues of 
the Green's function are directly related to the slope of I (w) at 
its intersection points with the straight line y = w. 

If gp is a degenerate eigenvalue of Z, one must distin
guish between two cases. The first case is that gp = Cm is a 
(K - 1 )-fold degenerate eigenvalue resulting from a K-fold 
degeneracy of the matrix elements cm • In this case, there are 
always (K - 1) linearly independent eigenvectors, and the K 
nonvanishing components m + 1, ... , m + K of these eigen
vectors are obtained as the orthogonal complement of the 
vector (bm , ... , bm + K - d. The other possibility is a two- or 
threefold degeneracy of gp ,#cm which only occurs for non
Hermitian arrow matrices (r = - 1). In that case, Eq. (2.5) 
yields only one linearly independent right (left) eigenvector 
X: (X;) and no orthogonal transformation exists which 
brings Z to diagonal form. The spectral representation of 
G(w), Eq. (1.6), must then be modified by introducing a pole 
of second or third order. From Eq. (2.2), it follows that this 
additional term can always be written as 

(2.8) 

if we restrict ourselves to a second-order pole. The constant 
/3 is obtained as 

/3-1 = f 1~12 3 = -.!. a
2
21 (W)i _ , (2.9a) 

m= I (gp cm) 2 aw CU-8p 

-4 and for a, one finds, from the asymptotic behavior of G (w), 
that 

-5 -3 -1 

FIG. 2. Graphical determination of the real eigenvalues of a non-Hermitian 
arrow matrix Z for the one-dimensional case N = 1 (M = 4). For an expla
nation of the symbols, see Fig. 1. Since there are three intersection points in 
the interval h = 3, all eigenvalues of Z are real. 
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a + IRq = 1. (2.9b) 
q#p 

We also have a simple means to tell whether such a doubly 
degenerate eigenvalue will occur. From Eq. (2.7), it follows 
that if gp is twofold degenerate, the two relations 
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~1(w)1 = 1, aw w = gp 
(2.lO) 

::2 I(W)lw=gp #0 

must be satisfied. Note that for a third-order pole, similar 
results hold. 

III. THE MULTIDIMENSIONAL CASE 

A. The Hermitian case for N> 1 

For the general case N > 1, the Hermitian arrow matrix 
Z is of order N + M, and the associated Green's function is a 
matrix of order N. Since the multidimensional analog of Eq. 
(2.3), 

wI - L(w)=O, (3.1) 

is now a matrix equation, the situation is more involved. In 
order to determine the poles ofG(w), one may consider the 
set of N eigenfunctions I q (w) which are defined by diagonaliz
ing L(w) at every value of w. The poles of G(w) are thus ob
tained by the solutions of the set of equations 

w - lq(w) = 0, 1<,q<,N. (3.2) 

In the following, we restrict ourselves to the case that all 
matrix elements C m are different; the general case induding 
degeneracies of the diagonal matrix elements of C will be 
treated in Sec. IIIB. 

By definition, the matrix elements of L(w) are contin
uous for all values of W#Cm , which implies that the eigen
functions lq(w) are also continuous for w#cm • To examine 
the functions lq(w) at the poles ofL(w), let us now consider 
the analytic properties of the eigenfunctions at a particular 
pole, say Ck • For Ck _ 1 < W < Ck + l' we divide L(w) into two 
parts: 

L(w) = t(w) + (l/(w - Ck))Uk , 

(3.3) 

Here, Bk denotes the vector of the coupling matrix elements 
b jk for the pole Ck , and t(w) is defined by Eq. (1.3) with the 
restriction m #k in the summation. This decomposition en
sures that t(w) is continuous at w = Ck • The pole part is given 
as the product of (w - ck ) - 1 and the Hermitian matrix Uk' 

The eigenvalues /3\k I of Uk are easily determined as 

N 

/3 It I = L Ibnk 1

2
, 

n=1 

(3.4) 
/3 ik I = /3 ~k I = ... = /3 ~ I = O. 

The eigenvector components of the nonvanishing eigenvalue 
/3 \k I are given by 

(3.5) 

whereas the remaining (N - 1) eigenvectors corresponding 
to the vanishing eigenvalues /3 ik I, ... , /3 ~ I span the orthogo
nal complement ofS\k I. Transforming L(w) by means of such 
an eigenvector matrix S, one obtains 
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StL(w)S = (QlI(W) + /3 \k I/(w - Ck) F(W)), (3.6a) 
Ft(w) D(w) 

Fjj(w) = Q'j(w), i = 1, j = 2,3, ... ,N, 
(3.6b) 

Djj(w) = Qij(w), i,j = 2,3, ... ,N, 
t-Qjj(w) = [S L(w)SLj , (3.6c) 

where only the (1,1) element of StL(w)S diverges for W---+C k • 

Now, it is easily seen that only one eigenfunction lq(w) has a 
(simple) pole and the analytic form of this particular lq (w) in 
the vicinity of Ck is given as 

/3 ltl 
lq(w) ~ --+ Qll(Ck ), 

w-.c. w - C k 
(3.7) 

Equation (3.6) also shows how the remaining (N - 1) finite 
eigenvalues of L(w) at w = C k can be determined. Since, for 
C k _ 1 < W < C k + 1 , the matrix elements Qjj (w) of the subma
trix D(w) are continuous by construction, we can introduce 
the w-dependent unitary transformation Y(w) which diagon
alizes D(w): 

D(w) = Y(w)A(w)yt(w), 
(3.8) 

In the limit W---+Ck , the diverging matrix element 
[StL(w)S] 11 decouples from D(w) and the (N - 1) finite 
eigenvalues ofL(w) are directly obtained as the eigenvalues 
dj(ck ) ofD(cd. This means that (N - 1) eigenfunctions are 
regular at w = Ck and the corresponding values of lq (ck ) are 
given as the eigenvalues dj(c k ). Moreover, the limit on the 
right and the limit on the left for W---+Ck are equal, i.e., the 
(N - 1) regular functions are continuous at Ck • These analy
tical properties of the functions lq(w) at the poles ofL(w) are 
summarized in the following lemma. 

Lemma 1: Let all poles C m ofL(w) be different. It follows 
that at each pole Ck , one and only one eigenfunction lq (w) has 
a simple pole. The analytic form of this particular lq (w) in the 
vicinity of Ck is given by Eq. (3.7). The remaining (N - 1) 
functions are continuous at w = Ck and the corresponding 
values lq(ck ) are obtained as the eigenvalues ofthe (N - 1)
dimensional submatrix D(ck ) (Eq' 3.6). 

Lemma 1 implies that each function lq(w) haslq poles at 
the positions wp = C j , ••• , C j • In order to study the behavior 

, lq 

of the eigenfunctions in the pole-free domains, we consider 
the explicit form of the function lq(w) for values of w#cm : 

lq(w) = [yt(w)L(w)Y(w)]qq, 

Y(w)ty(w) = 1. 
(3.9) 

Making use of the unitarity ofY(w), if follows that the first 
derivative of lq(w) with respect to w is given by 

~ lq(w) = [Yt(W) (~L(W))Y(W)] . (3.lO) aw aw qq 

Inserting the explicit expression for L(w) [Eq. (1.3)], one ob
tains the quadratic form 
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aMlIN 12 -Iq(w) = - r L 2 L Ynq(w)bnm ,(3.11) 
aw m = I (w - Cm ) n = I 

whereYn (w) denotes the matrix elements ofY(w). Equation 
q • • 

(3.11) shows that for w ;i:cm , the derivative of Iq(w) IS negatIve 
(semi) definite. Since it holds for all values of w #c m and each 
I (w) is continuous at all Cm #c; , ... , C; ,the function Iq(w) is 
q I Iq 

monotonically decreasing in each of the intervals ( - 00, c;, ), 
(c c), ... , (c , (0). This property of the eigenfunctions is 

'.' '2 lIq 

formulated in Lemma 2: 
Lemma 2: Let each eigenfunction Iq (w) have Iq poles at 

C c, ... , C • It follows that each Iq(w) is monotonically 
'1"2 llq 

decreasing in each ofthe intervals ( - 00, c;, ), (c;, ,ci,), ••• , (c\' 

00 ). 

To complete this analysis, let us consider the asympto
tic behavior of the functions Iq(w). From the fact that 
L(w)-+A for W-+ ± 00, one immediately obtains the follow
ing lemma. 

Lemma 3: For w---+ 00 as well as for w---+ - 00, each ei
genfunction lq(w) asymptotically approaches a particular 
eigenvalue of the matrix A. 

Comparing the above results with those of the one-di
mensional case, one finds that the monotonicity and the 
asymptotic behavior of the function I (w) is preserved. How
ever, for N = 1 the number of poles of I (w) isM, whereas for 
N> I the number of poles Iq of a particular function Iq(w) is 
always less than M. Denoting by II (w) the function which has 
a poleatw = CI' the next poles Of/I(W) occur atc i + N' C I + ZN' 

••• , C 1 + (I, _ liN· Similarly, the poles of 12(W) are C2' C2 + N' ••. , 

Cz + (I, _ liN' etc. It thus follows that Iq is given by 

Iq = 1 + [ M;; q], M,N~q. (3.12) 

It should be noted that this formula for the number of poles 
is valid only if all Cm are different. 

The behavior of the functions Iq(w) according to Lem
mas 1-3 is conveniently visualized by a numerical example. 
Figure 3 shows a graph of the functions Iq(w) for the specific 
choice N = 3 and M = 4. (The explicit matrix elements of A, 
B, and C are listed in the Appendix.) The values of the diag
onal matrix elements of C are marked by vertical dotted 
lines. Starting from the asymptotey = - 2.5 the function 
II(w) has a simple pole at w = - 3, whereas it is continuous 
at w = - 1 and w = 1. The second pole of this function is at 
w = 3 and it then approaches the asymptotey = 0.5. The 
remaining two functions 12(w) and 13(w) have only one pole 
each. The numerical values of the three functions Iq(w) at 
w = C m are also given in the Appendix (Table AI). 

As in the one-dimensional case, the N + M eigenvalues 
ofZ are obtained as the values of w at the intersections of the 
straight liney = w with the curvesy = lq(w), 1 <q<N. Now 
let us consider a specific interval [ck , Ck + I 1 bounded by two 
successive poles ofL(w). By evaluating the values of the func
tions Iq (w) numerically at the border points C k and C k + I 

(Lemma 1), and by keeping in mind the monotonicity 
(Lemma 2), one can directly determine the number of inter
sections in the particular interval. The same is achieved for 
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h - 5 

3 0 

-2 

-4 

-3 -I 

w 

FIG. 3. Graphical determination of the eigenvalues ofa Hermitian arrow 
matrix Z for the multidimensional case (N = 3, M = 41. The full lines repre
sent the three functions ll(wl, l2(wl, and l3(wl; the poles ofL(w) are indicated 
by vertical dotted lines. At each pole ofL((z)), exactly one l.(wl has a simple 
pole. There are three intersection points ofl.(w) with the dashed Iiney = w 

in the interval h = 3, two in the interval h = I, but none in the interval 
h = 2. The slope of lq (w) at an intersection determines the residues of the 
Green's function and, thus, the eigenvectors of Z. 

the two intervals ( - 00, cd and [CM' (0) if one takes into 
account the asymptotic behavior of the eigenfunctions 
(Lemma 3). This procedure allows the extension of the eigen
value count to values of w including the points w = C m; it 
also implies that the set of intervals (- 00, cll, [cl' c2l, ... , 
[cm , (0) provides a particular choice for slicing the whole w
range. 

As an illustration let us return to our numerical exam
ple. From Fig. 3 or, equivalently, from Table AI in the Ap
pendix, one sees that there are three eigenvalues of Z in the 
interval h = 3, two in the interval h = I, but none in the 
interval h = 2. Since there are N eigenfunctions Iq(w), the 
upper limit for the number of intersection points in each 
interval h is N, i.e., the total number of eigenvalues may vary 
between 0 and N. Note that this statement, as well as addi
tional conclusions on the eigenvalues of Z, follows directly 
from the interlace theorem of Cauchy. I I 

B. Degenerate poles of L(w) 

We now drop the condition that all matrix elements cm 

are different. From the previous discussion, it is evident that 
the occurrence of degenerate poles ofL(w) does not influence 
the monotonicity nor the asymptotic behavior of the eigen
functions lq{w). However, as will now be shown, Lemma 1 
must be modified. To be more explicit, suppose K matrix 
elements Cm are equal, say Ck = Ck + I = ... = Ck + K _ I. The 
corresponding coupling matrix elements form K vectors B

k
, 

... , Bk + K _ I· As in the last section, L(w) is decomposed ac
cording to Eq. (3.3). This leads to an expression analogous to 
Eq. (3.3), where Uk is given by 

K-I 

Uk = L Bk+;BL;· (3.13) 
i=O 

Now let J be the number of linearly independent vectors in 
the set of vectors B k , ••• , B k + K _ I. Then Uk is ofrankJ, and 
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one finds that it has J nonvanishing eigenvalues /3 \k), ... , /3 ~) 
(note thatJ<N). Transforming L(m) by means ofa unitary 
transformation S which diagonalizes Uk' one arrives at a 
matrix similar to that ofEq. (3.6): 

( 

p(k) 

t Q(m)+--
S L(m)S = m - Ck 

Ft(m) 

p(k) -/3(k)~ " 12 J ij - i Uij' l,j = , , ... , , 

F(m)), 

D(m) 

Dij(m) = Qij(m), i,j = J + 1, ... ,N, 

Fij(m) = Qij(m), i = 1, ... ,J, j = J + 1, ... ,N, 

(3. 14a) 

(3.14b) 

(3.14c) 

(3. 14d) 

where the matrix elements Qij(m) have already been defined 
in Eq. (3.6c). Equation (3.14) shows that for m-ck' the first J 
diagonal elements of StL(m)S decouple from the (N - J )-di
mensional submatrix D(m). By a consideration similar to the 
one given in the previous section, we can thus generalize the 
contents of Lemma 1 to the case of degenerate poles ofL(m): 

Lemma 4: Let Ck be aK-fold degenerate pole ofL(m), Ck 

= Ck+ 1 = ... = Ck+K_I' andJbe the number of linearly 
independent vectors in the set Bk , ••• , Bk + K _ 1 formed by the 
coupling matrix elements bik , ••• , bik + K _ 1 • It follows that J 
functions Iq(m) have a (simple) pole at m = Ck • Provided that 
the non vanishing eigenvalues /3 \k) of the matrix Uk [Eq. 
(3.13)] are nondegenerate, 12 the analytic form ofthese func
tions in the vicinity of Ck is given by 

The remaining (N - J) functions are continuous at m = Ck 

and the corresponding values at Ck are obtained as the eigen
values of the IN - J)-dimensional submatrix D(ck) specified 
in Eq. (3.14). 

To illustrate the significance of this last lemma, we have 
plotted the three functions II(m), 12(m), and 13(m) for the same 
set of parameters used in Fig. 3 with one additional pole at 
m = - 1 which is now twofold degenerate. The coupling 
matrix elements are chosen such that the two vectors B2 and 
B3 are linearly independent. Figure 4 shows that now, at 
m = - 1, both the functions 12(m) and 13(m) have a pole. Since 
the additional pole ofL(m) increases the dimension ofZ by 1, 
there must be one additional eigenvalue of Z. From Fig. 4 it 
follows that this solution lies in the interval h = 2. Lemma 4 
also shows that the case of degenerate poles ofL(m) can easily 
be incorporated into the procedure for the eigenvalue count 
described in the last section. The only modification to be 
made is that one must take into account that, in the general 
case, up to N eigenfunctions Iq(m) may have a simple pole at 
the left or right boundary of h. 

To conclude this analysis of the eigenvaluesg ofa Her-
• • p 

mltian arrow matrix Z, we consider the possibility of degen-
erate eigenvalues. If we exclude the case of degeneracies due 
to linear dependencies of the first N columns of Z - g 1 
[which implies that two or more functions Iq(m) are t~gent 
of one another at m = gp], such degeneracies (as in the one
dimensional case) can only occur for gp = Ck. If Ck is an 
eigenvalue of Z, it must satisfy the relation 
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-2 

-4 

/ 
/ 

h - 5 

5 

FIG. 4. Graphical detennination of the eigenvalues of a Hennitian arrow 
matrix Z for the multidimensional case (N = 3, M = 5). For an explanation 
of the symbols see Fig. 3. The matrix L(/lJ) is the same as in Fig. 3 except that 
an additional pole at /lJ = - I has been added. Therefore, two functions 
Iq(/lJ) have simple poles at this point. The additional eigenvalue of Z lies in 
the interval h = 2. 

-2 

-4 

(3.16) 

Decomposing Z according to Eq. (3.3) and (3.13), one obtains 

A-ck l B Bk 
rB C - ck1 0 = 0, (3.17) 

rBk 0 0 

where Bk is aN XK matrix ofrankJ containing all coupling 
matrix elements which correspond to the K-fold degenerate 
pole Ck. Since J <K, the columns ofZ - ck l are linearly 
dependent. It follows that IZ - Ck 11 is zero and Ck is a 
(K - J I-fold degenerate eigenvalue of Z. As in the one-di
mensional case, this eigenvalue of Z has vanishing residues, 
i.e., it does not occur as a pole ofG/m). To demonstrate this, it 
is sufficient to show that the first eigenvector components of 
the matching eigenvector are zero. Decomposing X k accord
ing to Eq. (3.17) as Xk = (X~), Xij), X~ )), it follows from Eq. 
(3.17) that one can choose X~)· = X,;) = 0 because there are 
(K - J) linearly independent solutions of the equation 

(3.18) 

Let us summarize this result in the following lemma. 
Lemma 5: Let Ck be a K-fold degenerate pole of Lim), C k 

= ck + I = ... = ck + K _ l' Jbe the number of linearly inde
pendent vectors in the set of vectors Bk , ••• , Bk + K _ 1 formed 
by the coupling matrix elements bik , ••• , bik + K - 1 , andJ <K. 
Let further the first N columns of Z - ck 1 be linearly inde
pendent. It follows thatgp = Ck is a (K - J)-fold degenerate 
eigenvalue of Z. Such a degenerate eigenvalue cannot occur 
as a pole of the associated Green's function because its corre
sponding residues are zero. Apart from this case, a particular 
eigenvaluegp is degenerate if and only if the rank of the first 
N columns of Z - gp 1 is smaller than N - 1. 

c. The non-Hermitian case r = - 1 

In this subsection, we briefly discuss the special class of 
non-Hermitian arrow matrices Z corresponding to 
r == - 1. In that case, the matrix L(m) reads 
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(3.19) 

As has been discussed for the one-dimensional case, the sign 
of r changes the features of the Green's function drastically, 

13W' h and complex solutions ofEq. (3.2) may occur. It respect 
to the real eigenvalues of Z, the same graphical analysis can 
be applied as for Hermitian arrow matrices. One then finds 
that the above results concerning the pole structure of the 
eigenfunctions I (liJ) (Lemmas 1 and 4) and the asymptotic 
behavior (Lemrr:a 3) also hold for r = - 1. The derivative of 
each function I (liJ), however, is, according to Eq. (3.11), al
ways positive (s~mi) definite, implying that each lq (liJ) is mon
otonically increasing in each interval h = (Ci, , ci,), ... , (Ci1q " 

c· ) wherethec ... , c· denote the pole positions of lq(liJ). As '/ 'I' II 

a direct consequence, it follows that in each interval h there 
is at least one intersection point of Y = liJ with the particular 
function lq(liJ). The number of eigenvalues in a specific inter
val [c k , Ck + K 1 between two successive (nodegenerate) matrix 
elements C m can no longer be determined by the values of the 
functions I (liJ) at liJ = Ck and liJ = Ck + K because each Iq (liJ) 

q • h may intersect the straight line Y = liJ more than once m t e 
considered interval. This special feature of the eigenfunc
tions may also introduce multiple zeros of the function 
liJ -lq(liJ) leading to higher-order poles ofG(liJ) which de
stroys the simple spectral representation given in Eq. (1.6). 

D. Determination of eigenvectors 

This paragraph contains a summary of how the eigen
vectors of an eigenvalue g p can be obtained by calculating the 
residues of the corresponding poles ofG(liJ). Here, we restrict 
ourselves to eigenvalues of Hermitian arrow matrices and to 
nondegenerate real eigenvalues of non-Hermitian arrow ma
trices (r = - 1). 

In both cases the spectral representation of the Green's 
function, Eq. (1.6), relates the first N components of an eigen
vector Xp to the residues of the Green's function R fj which, 
for first-order poles, are given by 

Rfj =Yiq(gp)[l- :w Iq(liJ)lw~J-lYj~(gp), (3.20) 

where Yq(liJ) is the eigenvector of the particular function 
lq(liJ) which intersects the liney = liJ at liJ =gp' The deriva
tive of Iq(liJ) with respect to liJ is explicitly given by Eq. (3.11). 
Comparing Eq. (3.20) with the spectral representation of 
G(liJ), one obtains 

R [a I ] - 112 XiP=Yiq(gP) 1--1q(liJ) , 
aliJ w ~ gp 

X;i = (X~)*; l<J<,N. (3.21a) 

The remaining components x N + i.p' 1 <,i<,M, are then given 
by (gp #C;). 

(3.21b) 
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If gp = Cit either Eq. (3.18) must be used to obtain the K 
components of X: (X;) different from zero or x~ + i.p 
= XLN+ . = 0, 1 <,i<,M. Note that the eigenvectors are orth-p. I 

onormal and that for Hermitian Z the usual relation X; 
= (X:)t is recovered. 

IV. A POLE SEARCH ALGORITHM FOR SOLVING THE 
EIGENVALUE PROBLEM OF HERMITIAN ARROW 
MATRICES 

The preceding analysis has shown that the eigenvalue 
problem of Hermitian arrow matrices can be treated by im
plementing a pole search algorithm for G(liJ). Such a pole 
search algorithm should be viewed in connection with well
established procedures based on the triangular factorization 
mentioned in Sec. I. The latter methods all suffer from the 
fact that they cannot be applied to eigenvalues ofZ which are 
very close or equal to the diagonal elements Cm ofC because, 
for liJ = Cm , the matrix elements of L(liJ) are singular. How
ever, considering the eigenfunctions Iq (liJ) rather than L(liJ) 
itself shows that (in general) a part of the eigenvalue spec
trum ofL(c m) is regular. The analysis given here constitutes a 
means for obtaining the regular eigenvalues numerically 
owing to the fact that the diverging eigenfunctions are sep
arable by a unitary transformation. Another advantage of 
the new algorithm results from the fact that the derivative of 
each function Iq(liJ) is directly obtainable, thus permitting the 
use of iterative methods of higher order for the pole search. 
In the following, the essential features of this pole search 
algorithm are now summarized. 

(1) As has been discussed in Sec. IlIA, the diagonal ma
trix elements Cm ofC, 1 <,m<,M, provide a distinct set of 
intervals ( - 00, cll, ... , [ck , Ck + K l, ... , [CM' 00). For a particu
lar interval h = [ck , Ck + Kl, whereK denotes the degeneracy 
of Ck , the eigenvalue count is performed in the following 
way. Since the eigenfunctions Iq(liJ) ofL(liJ) are monotonical
ly decreasing in h, there is at most one intersection of a parti
cular lq (liJ) with the straight line Y = liJ. Consequently, the 
values of the functions Iq (liJ) at liJ = Ck and liJ = Ck + K direct
ly allow one to evaluate the number of eigenvalues occuring 
in h. To see how many functions lq (liJ) have a pole at liJ = Ck , 

one determines the number Jk of non vanishing eigenvalues 
of the matrix Uk ofEq. (3.3) or (3.13). The values of the 
remainingN - Jk functions, being continuous atliJ = Ck , are 
then calculated by diagonalizing the (N - J k )-dimensional 
submatrix D(cd defined in Eqs. (3.6) and (3.14). In the same 
way, the behavior of the functions lq (liJ) at liJ = Ck + K is inves
tigated. For the two intervals h = (- 00, cll and h = [CM' 

00), the above procedure can also be applied by taking into 
account the asymptotes of the eigenfunctions which are giv
en as the eigenvalues of the matrix A. 

(2) The eigenvalues gp in the interval h are determined 
by solving the equations liJ -lq(liJ) = O. Due to the fact that 
the derivatives of the functions Iq (liJ) can directly be obtained 
via Eq. (3.11), these zeros can be evaluated by employing 
iterative methods of higher order such as a Newton-Raph
son iteration. The iteration involves the calculation of Iq (liJ) 
at iteration points liJ v , where Ck < liJ v < Ck + K' To obtain 
Iq(liJv ), the matrix elements Ljj(liJv ) are constructed via Eq. 
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(1.3) and the resulting matrix L(my) is diagonalized. The val
ue lq(m y ) is then given as the qth (ordered) eigenvalue of 
L(wy). By determining the corresponding eigenvector 
Yq(my), the derivative of the eigenfunction at m = my is ob
tained via Eq. (3.11). If a particular my is so close to the poles 
ck orck + K that the matrix elements Lij(my ) become numeri
cally singular, the regular eigenvalues ofL(my) are obtained 
by diagonalizing the matrix D(my) [Eq. (3.6) or (3.14)], 
whereas the diverging functions (if needed) may be approxi
mated by their analytic form (see Lemmas 1 and 4). In the 
iterative cycle, only N XN matrices have to be dealt with 
and, consequently, the computing time for a particular 
eigenvalue is (N being fixed) proportional to M. 

(3) The eigenvector Xp of an eigenvalue gp is directly 
obtained from the residues of corresponding polesgp ofG(m). 
The evaluation of the residue involves the derivatives of the 
intersected function lq (m) at m = gp' Having calculated this 
quantity via Eq. (3.11) all eigenvector components ofXp fol
low from Eq. (3.22). For fixed N, the computing time for a 
particular eigenvector is linear in M, i.e., the time for calcu
lating the whole eigenvector matrix is proportional to M2. 

(4) The procedure described above applies to all eigen
values ofZ that correspond to poles of the Green's function. 
To complete the eigenvalue analysis, one must determine the 
remaining eigenvalues which are characterized by the fact 
that the first N components of their eigenvectors are zero. 
Such eigenvalues can only occur if a diagonal matrix element 
cm ofC is degenerate. If a particular Ck is K-fold degenerate, 
and if the K vectors Bk, ... , Bk + K _ 1 formed by the coupling 
matrix elements bik , ... , bik + K _ 1 are linearly dependent, 
then Ck is a (K - Jk )-fold degenerate eigenvalue of Z. Here, 
Jk denotes the number oflinearly independent vectors in the 
set Bk, ... , Bk + K _ l' The (K - Jd nonvanishing components 
of the corresponding eigenvectors are obtained as the solu
tions ofEq. (3.18). 

To illustrate the savings that result from using higher
order iterative methods we return to the numerical example 
depicted in Fig. 3. For the three eigenvalues in the interval 
[ - 1, 1), the progress of a Newton-Raphson iteration is list
ed in Table I, starting from the same initial value gi = 0 for 
all three eigenvalues. After four cycles, the three eigenvalues 
are converged to all seven digits shown in Table I. (The actu
al accuracy after the fourth cycle is even higher.) If, on the 
other hand, one uses a bisection procedure, more than 20 
cycles are needed to obtain the same precision. Note that the 
initial value gi = 0 has been chosen for convenience only. 
For actual computations it is possible to obtain better initial 

TABLE I. Newton iteration for the three eigenvalues gp in the interval 
[- I. I] of the example depicted in Fig. 3. For simplicity. the initial value 
(k = 0) for all three eigenvalues was chosen to be gi = O. 

(j) g, g2 g3 
k 

I - 0.590 849 3 - 0.458 696 5 0.5290517 
2 - 0.6642594 - 0.468363 3 0.7893659 
3 - 0.665360 7 - 0.468 3621 0.803717 0 
4 -0.6653609 - 0.468 3621 0.8037244 
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guesses by taking into account the analytic properties of the 
eigenfunctions lq (m) in the interval [ck , Ck + K), e.g., by ap
proximating a regular function Iq(m) by a straight line or by 
using the explicit form for the diverging functions. 

Comparing the above algorithm to standard diagonali
zation procedures that do not exploit the particular struc
ture of the arrow matrix Z, the features of the pole search 
algorithm suggest that it will be particularly efficient when 
only a certain range of the eigenvalue spectrum is needed. 
The situation is even more promising if, in addition, the 
matching eigenvectors have to be calculated. In both cases, 
the larger the "tail" M of the arrow C compared to the di
mension N of the submatrix A, the better the efficiency. If all 
eigenvalues and eigenvectors are to be calculated, even for 
medium sized matrices (M = 300), we found that for N = 3, 
a factor of 7 in cpu time is gained. For N = 6, this saving is 
reduced to a factor of 3. The drastic reduction of computing 
time is, of course, due to the fact that the time for evaluating 
all eigenvectors is proportional to M 2, whereas standard rou
tines exhibit an M 3 dependence. A further saving is accom
plished if not all eigenvalues are needed. We also would like 
to emphasize that very close or degenerate eigenvalues of Z 
do not pose any additional difficulties within the framework 
of the above algorithm because this problem is reduced to the 
problem of coping with degeneracies of the very small N X N 
matrix L(m). 

For large matrices (M> 1000), the Lanczos algorithm is 
often used. If the Lanczos algorithm (without reorthogonali
zation) is applied to the arrow matrix Z, a comparison shows 
that the cpu times for the two methods are roughly the same 
as long as only eigenvalues are computed. However, the 
great numerical stability of the pole search algorithm is a 
quality which cannot be matched by the Lanczos algorithm. 
With the latter, considerable numerical effort is required to 
eliminate spurious eigenvalues or to calculate eigenvectors. 
It should also be mentioned that, instead of applying the 
Lanczos algorithm to Z, it might be more cost effective to 
apply it to the inverted matrix (£11 - Z) - 1 for a few values of 
a. 14 Once the eigenvalues have been determined via the 
Lanczos algorithm, the eigenvectors can directly be comput
ed by using the explicit formulas given in Sec. IUD. 
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APPENDIX 

The matrices A and B for the numerical example shown 
in Fig. 3 were chosen as 

e21 0 
o ) A= 0 -0.5 o , 

0 0 0.5 

C 
1.5 0.5 06) 

B = 1.0 0.1 0.6 0.7 , 

0.1 1.0 0.35 0.5 
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TABLE AI. Values of the three functions I. (al) depicted in Fig. 3 at the poles Cm • If there is only one entry, the corresponding I. (al) is continuous at al = Cm . If 
there are two entries, the function I. (al) has a simple pole at this particular point. The first number is the residuep \ml of I. (al) at the pole Cm , the second entry re

fers to the quantity Q,,(cm) [see Eq. (3.7)]. 

Xm -3 -I 
I.(cm) 

I,(cm) LOS, - 0.9345 - 0.2258 
12(cm) - 3.6840 3.26, - 1.9074 
I,(cm) 0.1221 - 0.4831 

and the diagonal elements cm ofC are given by 

Cm = I - 3. - 1.1.3J. 

The values of the eigenfunctions ll(w). 12(w). and 13(w) at the 
poles C m ofL(w) are calculated via the procedure described in 
Sec. IlIA and are also listed in Table AI. 

'E. A. Hylleraas and B. Vndheim, Z. Phys. 65, 759 (1930); J. K. L. Mac
Donald, Phys. Rev. A 43,830 (1933). 

2p. LOwdin, J. Mol. Spectrosc. 10, 12 (1963). 
'J. D. Doll and W. P. Reinhardt, J. Chern. Phys. 57, II 69 (1972). 
4J. Simons and W. D. Smith, J. Chern. Phys. 58, 4899 (1973). 
'G. D. Purvis and Y. Ohm, J. Chern. Phys. 60, 4063 (1974). 
6L. S. Cederbaum, W. Domcke, J. Schirmer, W. von Niessen, G. H. F. 

737 J. Math. Phys., Vol. 25, No.4, April 1984 

3 

- 1.3257 1.1, - 0.0426 
0.6274 - 1.5386 
0.7325, - 0.4593 0.3522 

Diercksen, and W. P. Kraemer, J. Chern. Phys. 69, 1591 (1978). 
7H. N. W. Lekkerkerker and W. G. Laidlaw, Phys. Rev. A 5,1604 (1972); 
E. van Oost and H. N. W. Lekkerkerker, J. Math. Phys. 19, 2223 (1978). 

8E. V. Condon and G.H. Shortley, The Theory of Atomic Spectra (Cam
bridge V.P., Cambridge, England, 1967), Sec. II 11. 

9p. Liiwdin, in Perturbation Theory and its Application in Quantum Me
chanics, edited by C. H. Wilcox (Wiley, New York, 1966). 

IOH. N. W. Lekkerkerkerand W. G. Laidlaw, Phys. Rev. A9, 431 (1974); J. 
A. McLennan, Phys. Rev. A 10,1272 (1974). 

"B. N. Parlett, The symmetric eigenvalue problem (Prentice-Hall, Engle
wood Cliffs, NJ, 1980). 

'2Ifthere are degenerate eigenvaluesp~kl, it is straightforward to evaluate 

the additive constant. The expression, however, is somewhat more com
plicated. 

"The maximum number of complex eigenvalues is given as the smaller of 
the two quantities 2N and 2M, see Ref. 10. 

"T. Ericson and A. Ruhe, Math. Compo 35,1251 (1980). 

Walter, Cederbaum, and Schirmer 737 



                                                                                                                                    

The relationship between finite groups and Clifford algebras 
Nikos Salingaros 
Division a/Mathematics, Computer Science, and Systems Design, The University a/Texas at San Antonio, San 
Antonio, Texas 78285 

(Received 17 May 1983; accepted for publication 23 June 1983) 

Clifford algebras are traditionally realized in terms of a specific set of representation matrices. 
This paper provides a more effective alternative by giving the finite group associated with each 
Clifford algebra. All the representation-independent algebraic results, which are really direct 
consequences of the underlying group structure, can thus be derived in an easier and more general 
manner. There are five related but distinct classes of finite groups associated with the Clifford 
algebras. These groups are constructed from the complex, cyclic, quaternion, and dihedral groups 
in a way which is discussed here in detail. Of particular utility is a table which lists the order 
structure of each group: this permits the immediate identification of any Clifford algebra in any 
dimension. 

PACS numbers: 02.1O.Tq, 02.20. + b 

I. INTRODUCTION 

The Clifford algebras are of considerable interest in dis
cussions of space-time symmetries and their extensions to 
unified descriptions of gauge fields. In previous work, we 
showed how the study of Clifford algebras can be facilitated 
considerably, if one studies a finite multiplicative group 
which is uniquely defined by each Clifford algebra. 1,2 Then 
the apparatus of the theory of finite groups can be utilized to 
obtain results for the Clifford algebra of interest. This proce
dure stands in sharp contrast to the more traditional method 
of using a set of representation matrices to derive structural 
results in a particular Clifford algebra. Moreover, in this 
alternate framework, there is no risk of deriving results 
which may turn out to be dependent upon a specific matrix 
representation. 

In this note, we amplify and extend the results of Refs. 1 
and 2. In particular, we identify those finite groups which 
arise via Clifford algebras in the setting of the finite groups of 
dimension 4, 8, and 16 (Sec. II). Even though all these groups 
are well known and classified, this information has been 
usually unavailable in the form which is most useful for our 
present purposes: namely, a listing of all these groups in a 
format which allows a particular group to be directly identi
fied by knowing its center, its order structure, and its sub
group structure. (Just knowing the center and order struc
ture is sufficient to identify all but one pair of groups up to 
order sixteen.) We also relate the different notations used for 
these groups either in group theoretical discussions or crys
tallographic usage. 

In Sec. III of this paper, we construct the five types of 
groups which are defined by Clifford algebras in any dimen
sion. Following this, we review the central product of groups 
in Sec. IV, and utilize the Frobenius-1. Schur theorem in a 
general construction of the groups associated with Clifford 
algebras. A particularly useful feature is Table IV, which 
lists those groups associated with Clifford algebras up to 
order 1024 and gives their order structure. It is possible to 
identify any group which arises from a Clifford algebra di
rectly, so that this table is useful in identifying all the Clifford 
algebras. 

I would like to note that related but distinct discussions 

of the subject matter of this paper appear in Refs. 3 and 4. 

II. REVIEW OF FINITE GROUPS OF ORDER 4, 8, AND 16 

In this section we review the finite groups of order 2n 
, 

where n = 2,3, and 4, and identify which of these groups 
arise as the groups corresponding to a Clifford algebra. We 
discuss the group structure in some detail for comparison 
purposes. In particular, we list all the groups in a way which 
relates the various distinct notations used in the literature. 5-7 

To begin with, there are two groups of order four: The 
cyclic group Z4 is isomorphic to the complex group with 
elements ( 1, - l,i, - i]. The Gauss-Klein four-group 
Z2 ® Z2 is the direct group product of two cyclic groups 
Z2 = ( 1, - 1) and is isomorphic to the dihedral group D2 • 

Both of these groups are abelian. 
There are five groups of order eight. One is cyclic and 

two are direct group products of cyclic groups, hence these 
three are abelian. The remaining two groups are the quater
nion group Q4 with elements ( ± I, ± i, ± j, ± k] where 
i2 = f = k2 = ijk = - 1, and the dihedral group D 4' Both 
of these are nonabelian. The groups of order four and eight 
are displayed in Table I in the ordering of Ref. 6. 

An important property of each finite group is its order 
structure. The order of a particular element a in the group is 
the smallest integer p for which aP = 1. The table lists the 
number of distinct elements in each group which have order 
2, 4, or 8. (The identity 1 is the only element of order 1). 

TABLE I. Groups of order 4 and S. 

Order 4 

I. 4r,(12) = Z2 ® Z2 = D2 
2. 4r,(2) = Z. 

Order S 

I. sr,(13) = Z2 ® Z2 ® Z2 
2. Sr,(2, I) = Z.®Z2 
3. Sr,(3) = Z8 

Type 

abelian 

abelian 

4. sr2Q, = D. = N, Dihedral 
5. Sr2Q 2 = (2, 2, 2) = Q. = N2 Quatemion 

Order structure 
2 4 S 

3 

7 
3 
I 

5 
I 

2 

4 
2 4 

2 
6 
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There are fourteen groups of order sixteen: five of them 
are abelian, and nine are nonabelian. In addition to the order 
structure, we give the center of each nonabelian group, 
which is the subgroup of commuting elements. In the abelian 
case, the center is the entire group. Although this informa
tion is standard, it is not always given in the most practical 
form. There are several common notations in use, but one 
cannot easily find the correspondence between them. A 
more serious matter is the fact that some lists of groups of 
order 16 are incomplete. We list all the groups in Table II in 
the most common notations. 

We have used the ordering of Ref. 6 which introduced 
the nrkdr notation. The other notation involving brackets 
derives from the crystallographic groups and is much older; 
it is extensively employed in Ref. 5. The notation Nk ,Sk' and 
ilk identifies those groups which arise in connection with 
Clifford algebras, and is discussed in detail in the next sec
tion. For completeness, we review the most common nota
tion and structure relations for some of the groups. 

(i) The cyclic groupZn is of order n and is defined by the 
generating relation (note that Zn is frequently denoted by 
en) 

(1 ) 

(ii) The dihedral group D n is of order 2n, and is defined 
by the generating relations 

Dn:(a~ = I,a~ = 1, (a.a2)2= I). (2) 

(iii) The quaternion or dicyclic group Q 2m = (2,2,m) is 
of order 4m, and is defined by the generating relations (Q2m 
is written Qm in Ref. 7) 

(3) 

Many of the groups in Tables I and II are obtained as 
direct group products ofthe above groups. The structure and 
generating relations of the remaining groups are given in 
Refs. 5-7. The Pauli group I6r2b is the group of order six
teen without a name in the earlier editions of Ref. 5. A par
ticularly useful reference which has recently appeared is Ref. 
8. Note, however, that the center of the group I6r2d is given 
there incorrectly. 

TABLE II. Groups of order 16. 

Group 

1. 16r,(1"1 = Z2®Z2 ®Z2 ®Z2 

2.16r.(2,1 21=Z4®Z2®Z2 
3. 16r,(221 = Z4 ® Z4 
4. 16r,(3, 11 = Z8 ® Z2 
5. 16r,(41 = Z'6 

7. 16r2Q 2 = ~®Z2 = il2 

8. 16r2b = (2,2, 2), = S, 
9. 16r,c, = (4, 412, 21 

10. 16r,c, = (2,214; 2) 
II. 16r2d = (2,212) 
12. 16r3Q, = D8 

13. 16r3Q, = ( - 2, 412) 
14. 16r3Q3 = (2, 2,4) = Q8 
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Type 

abelian 

Generalized 
dihedral 

Hamiltonian 
Pauli 

dihedral 

dicyclic 

III. STRUCTURE OF THE FINITE GROUPS 
CORRESPONDING TO CLIFFORD ALGEBRAS 

There are five distinct types of finite groups that arise 
from Clifford algebras. In Refs. 1 and 2 they were called "vee 
groups" and were labelled as 

(4) 

The S-groups are the "spinor" groups: S. is the group of 
the complex Pauli matrices, and S2 is the group of the Dirac 
matrices. The odd N-groups correspond to real spinors; for 
example, N. is related to real 2-spinors, and N3 is the group 
of the real Majorana matrices.·,2 The even N-groups define 
the quaternionic spinors. 

Each Clifford algebra AM in a space of dimension p + q 
and metric signature p - q corresponds to one of the vee 
groups (4). There are isomorphisms between Clifford alge
bras of the same dimension which limit the distinct types of 
Clifford algebras to five, corresponding to the finite groups 
(4). In particular, there are only two N-groups corresponding 
to even-dimensional Clifford algebras; there are two il
groups and one S-group which correspond to odd-dimen
sional Clifford algebras. The precise identification is given in 
Refs. 1 and 2. In Table III, we list the vee groups in terms of 
the dimension of the base space of the corresponding Clif
ford algebra, and also give the order of the finite group. 

In Sec. II we identified the first few vee groups as fol-
lows: 

N. = 8r2a., N2 = 8r2a2 , 

ill = 16r2a., il2 = I6r2az, S. = I6r2b. (5) 

These groups correspond to the Clifford algebras in di-
mensions two and three, respectively. All the groups belong 
to the same family6 r 2 • Furthermore, the il-groups are dou
ble copies of the N-groups and can be written as a direct 
group product of the N-groups with the group of two ele
ments· Z2: 

(6) 

Because of (6), it is easy to see why N.,il. and Nz,il z, 

Order structure 
2 

15 
7 
3 
3 
I 

Center 

D2 11 

D2 3 
Z4 7 
D2 7 
D2 3 
Z4 3 
Z2 9 
Z2 5 
Z2 I 

4 

8 
12 
4 
2 

4 

12 
8 
8 

12 
4 
2 
6 

10 

8 

8 
4 

8 
4 
4 
4 

16 

8 
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TABLE III. Finite groups associated with Clifford algebras. 

Dimension of 
Group Center Order of group algebra 

N 2k _ 1 Z2 22k+ I 2k 
N2k Z2 

!12k _ I D2 22k + 2 2k+ I 
!12k D2 
Sk Z4 

respectively, belong to the same genus a, and az. The spinor 
group S, belongs to the genus b in the classification of Ref. 6. 
This establishes the relationship between the vee groups in 
terms of family and genus. 

A key result on the group structure was given in Ref. 1, 
where we determined the center C (G) of each vee group G, 
and also the factor group G / C (G ), which is abelian. The dif
ferent cases are given by the following theorem. 

Theorem 1: 

~.N2k_,_N2k _fl2k_,_fl2k _~_(Z)®Zk 
. - - - - -z· C(G) Z2 Zz Dz Dz Z4 

(7) 

All the factor groups are equal to the direct product of 
2k copies of the group Z2' This property (7) identifies the vee 
groups as "extra-special-2-groups," and was utilized in Ref. 
2 to investigate the algebraic structure. The identity (7), com
bined with the order structure of the groups, is sufficient to 
identify the larger vee groups. For example, the vee groups of 
order 32 and 64 can be uniquely identified in the classifica
tion of Ref. 6 as follows: 

N3 = 32r5a l , N4 = 32r5a2, 

fl3 = 64r5a l , fl4 = 64r5a2, Sz = 64r5b. (8) 

The algebras corresponding to N 3 and Sz are the alge-
bras ofthe Majorana and Dirac matrices, respectively. 

The N-groups, which are the stem groups of the classifi
cation, can be described as finite groups in the following 
manner. [It is interesting to see that the N-groups can be 
obtained by changing only signs in the multiplication table 
for (ZZ)®2k, as is suggested by Theorem 1.] We can use a 
specific identification for the N-groups in terms of Clifford 
algebras A P.q, in order to obtain a set of generating relations 
for the finite groups. We stress that this identification is not 
unique, but is for the present purpose the most convenient 
one: that is, the following, obtained from Table I of Ref. 2, 

(9) 

From Table III, the dimension of the base space is obvi
ously 2k in both cases. Therefore the Clifford algebra has 2k 
generators a " ... ,aZk which mutually anticommute. There is 
also the volume element (jJ = a 1a Z···a2k which anticom
mutes with all of the a j . The squares of the a j are determined 
by the metric. For instance, in A k.k, k of the a j have square 
equal to 1, while the other k have square equal to - 1. (It is 
important to note that 1 and - 1 are distinct elements of the 
finite group). The square of (jJ can be determined from the 
well-known identity' 

740 J. Math. Phys., Vol. 25, No.4, April 1984 

(jJZ = ( _ 1 t(n - 1)12 det g. (10) 

Here n is the dimension of the base space, and det g is the 
determinant of the diagonal metric which equals the product 
of all the squares of the generators. In the specific case (9), we 
therefore have 

Z {I, for A k.k 

(jJ = _ 1, for A k- '.k+ I. (11) 

By combining all the above information, we obtain a 
realization of the N-groups. Even though we used a specific 
Clifford algebra in each case, the Clifford algebra isomor
phisms guarantee that the following are, in fact, general defi
nitions. The generating relations for the N- groups can there
fore be given as 

NZk _ , : [ a 1> ••• ,aZk'UJ I mutually anticommute. 

{

a/ = .. , = ak 2 = UJ2 = 1, 

a k + 1 2 === ••• == a 2k 2 = - 1, 

UJ = a jaZ···aZk ' 

NZk : [a 1, ... ,aZk'UJ 1 mutuallyanticommute. 

{

a,z= ... =ak _ 12 = 1, 

a k Z = ... = a Zk 2 = UJ2 = - 1, 

UJ = a jaZ···aZk ' 

The simplest cases have already been discussed: 

(12a) 

(I2b) 

N, = D 4 is the dihedral group, and N z = Q4 is the quaternion 
group. One can see how definitions (12) generalize the dihe
dral and quaternion groups in a way that is radically differ
ent from D" and Q 2m defined in Sec. II. 

The S-groups are obtained by complexifying the Clif
ford algebra. What this process does to the group is to add a 
commuting element,8 to the group generators; one addition
ally identifies,8 2 with the element - 1 in the group. One 
possible definition using (12a) is the following: 

Sk : [a " ... ,aZk'UJ 1 mutually anticommute; ,8 commutes. 

{

a,2= ... =ak2 =UJZ= 1, 

a h t 1
2 == •.. =a2k

2
==/32=: -1, 

UJ = a ,az···an . 

(13) 

The smallest S-group is the Pauli group SI' For exam
ple, the realization (a I ,a2'UJ,,8 ) = (7 I JT 2' - 7,,i) can be given 
in terms ofthe Pauli matrices. The next S-group is the group 
of the Dirac matrices Sz, which may be realized in the stan
dard (Bjorken and Orell) representation as 
(a "a Z,a"a4 ,UJ,,8) = Uy',y4,y3,f,Y,i)· 

We stress that the above definition of the group ( 13) is 
not equal to N ® Z4' because of the identification of,8 2EZ4 

with - lEN. Comparing the orders, we see that Sk is of 
order 22k + 2 (Table III), while N2k _ I ® Z4 is of order 
2Zk + , X 4 = 22k + 3, i.e., twice the correct order. By factoring 
out a Z2 from N ® Z4' then one can easily obtain an abelian 
group of the correct order because there are several ways to 
factor Zz from N ® Z4; this is not, however, the group Sk' 
(This error was made in Refs. 1 and 2, so that a formula given 
for the S-groups there is incorrect). A discussion of the prop
er construction of the S-groups from the N-groups is the 
subject of the following section. 
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Finally, the fl-groups are obtained from the N-groups 
via (6). One adds a commuting element y, where r = 1 to 
each N-group (12a) or (12b) to obtain the two distinct groups 

fl odd and fl even' 

IV. THE GROUPS AS CENTRAL PRODUCTS OF THE 
QUATERNION AND DIHEDRAL GROUPS 

The discussion in the preceding section (Theorem 1 and 
Table III) identifies the N-groups to be "extra-special-2-
groups" which are defined as follows. 9 

Definition 1: A finite group G is called an extra-special-
2-groupifGis oforder2n 

, C (G) is of order 2, and G IC (G) is 
the abelian group Zz ® ••• ® Zz(n - 1 times). 

Once this fact is established, the structure of all the vee 
groups can be determined from the body of results on extra
special-2-groups. First, we recall the central product of two 
finite groups and show how it differs from the direct pro
duct. As an illustrative example, consider the direct product 
between a quaternion and a dihedral group Q4 ® D 4' The 
resulting group has order 8 X 8 = 64. Furthermore, its cen
ter is the direct product of the two individual centers and is 
equal to Zz ® Zz. 

The central product of Q4 with D4, denoted as Q48D4 
here, amalgamates the Zz center of Q4 with the Zz center of 
D 4 to give the center of Q48D 4 as Z2' Hence the central 
product of Q4 with D4 is of order 32. In the case where one 
center is a subgroup of the other center, they both amalga
mate into the larger center. 

We now recall the corollary to the Frobenius-Schur 
theorem from Ref. 9, p. 193, Ref. 10, p. 355, and Ref. 11, p. 
277. 

Theorem 2: If G is an extra-special-2-group of order 
22k + I, then 

(i) G-;:::;D48"'8D4 (k times), or 
(ii) G-;:::;Q48D48"'8D4 (k - 1 times); 
(iii) type (i) contains exactly 2Zk + 2k - 1 involutions, 

and type (ii) contains exactly 2Zk 
- 2k - 1 involutions. 

An involution is an element of order two. We can apply 
the above theorem to give the structure of the vee groups as 
follows (the powers mean repeated central products, and 
N 1-;:::;D4, NZ-;:::;Q4): 

Theorem 3: 

NZk _ I -;:::; (Ntl0k, 

NZk -;:::;Nz8(Ntl0(k - I), 

flZk _ I -;:::;NZk - 18Dz, 

flZk -;:::;NZk 8Dz, 

Sk -;:::;NZk_18Z4-;:::;Nzk8Z4' (14) 

The elementary identity N8(Zz ® Z2) -;:::;N ® Z2 relates 
(14) to the definition of the fl-groups (6). Also, N18NI 
-;:::;Nz8Nz·1,z,9,1O 

Note that in taking direct products of algebras, one al
ways amalgamates their centers, so that the usual ® product 
between algebras in fact corresponds to the 8 product 
between the underlying groups, and not to the ® product of 
those groups. 

Because the structure of the vee groups is determined by 
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their connection to Clifford algebras, a knowledge of the 
order structure is sufficient to identify them uniquely. The 
order structure of the N-groups is determined as follows: 
Theorems 2 and 3 give the number of elements of order two 
as the involutions. Since the order of the N-groups is 22k +, 
(Table III), the number of elements of order four is just the 
difference (remembering that there is also the unit of order 
one to subtract). 

type (i): 

type (ii): 
(15) 

It is convenient to introduce the notation (l,a,b), or 
more simply (a,b ) to denote the order structure of a group: 
one element of order one, a elements of order two, and b 
elements of order four. Since the vee groups arise from Clif
ford algebras, they contain no elements of any higher order. 
The order structure of the N-groups can therefore be given in 
general from Theorem 2 and Eq. (15) as 

Nu _ , :(22k + 2' - 1, 22k _ 2'), 

N2k :(22" - 2' - 1, 22" + 2k). (16) 

The order structure of the fl and S groups is obtained by 
using the central product and (14). In general, it is easy to see 
that the direct product of two groups with orders (a,b ) and 
(c,d), respectively, will have order 

(a,b) ® (c,d) = (a + c + ac + bd,b + d + be + ad ).( 17) 

In the case of a direct product with the group Z2' we 
have, from Table I and (17), 

(a,b) ® (1,0) = (1 + 2a,2b). (18) 

This identity (18) allows the calculation of the order 
structure of the fl-groups from (6) and (16). One obtains 

flu _ ,:(22k +' + 2k + , _ 1, 22, +, _ 2k + I), 

flu:(22k+' _ 2k +, -1, 22k +' + 2'+ I). (19) 

The central product of an N-group with any other vee 
group will amalgamate the Z2 center of the N-group in the 
process. We can use (17) and (18) to obtain an expression for 
the order of the central product as follows: 

N®G-;:::;Zz®(N8G), C(N) =Zz, C(G):>Zz' (20a) 

(a,b ) ® (c,d ) 

= (1,0) ® (a + c + a; + bd - 1 , b + d +2bC + ad). 

(20b) 

The expression on the right-hand side of (20b) gives the 
order structure of N8G. In particular, the central product of 
an N-group with the complex group Z4 gives the order struc
ture of the S-groups as 

N®Z4-;:::;Z2 ®(N8Z4) = Z2 ®S, 

(a,b) ® (1,2) = (1,0) ® (a + b,a + b + 1). 

(2Ia) 

(2Ib) 

It is easy to check from (16) and (21) that both NOdd and 
Neven give the same S-group via (14). The order structure of 
the S-groups is, therefore, 

Sk :(22k + , - 1, 22k + I). (22) 

We include an explicit listing of the order structure of 
the vee groups for the first few cases, which serves as a useful 

Nikos Salingaros 741 



                                                                                                                                    

TABLE IV. Order structure of the finite groups associated with Clifford algebras. 

Order Dimension 
Vee Corresponding of of Order Structure 
group Clifford algebra group algebra 2 4 

N, real 2-spinors, generalized quaternions 

N2 quaternions 
11, 
112 Clifford biquaternions 
S, Pauli algebra, complex quaternions 

N, Eddington-Majorana 

N4 Minkowski space-time 
11, 
114 
S2 Dirac algebra 

N, 
N6 
11, 
116 
S3 

N7 
N. 
117 
11. 
S4 Eddington double E-frame 

reference (Table IV). In Ref. 1 we gave a similar table which 
was calculated from the Clifford algebras directly. (Note 
that Ref. 1 reverses Ns and N6 , and does not employ the fl 
notation). Table IV can be used to uniquely identify any fin
ite group which arises from a Clifford algebra. This con
cludes our discussion of the vee groups. The order structure 
of the vee groups in general has also been computed in Ref. 4. 

Comment: For completeness, we note that the con
struction of Clifford algebras given in Ref. 2 and utilized in 
this paper is a direct extension of classic results ofR. Brauer, 
E. Cartan, H. Hasse, H. Weyl, and E. Witt. The construction 
of n-dimensional spinors from tensor products of 2-spinor 
representations is discussed in Ref. 12. The construction of 
Clifford algebras as tensor products of quaternion algebras is 
discussed in Refs. 13 and 14. 

V. CONCLUSION 

In this paper, the properties of Clifford algebras were 
studied in terms of the finite groups that they define. This 
procedure generalizes the usual method of deriving proper
ties of Clifford algebras from manipulations of the represen
tation matrices. That has been the standard practice fol
lowed in physics, but it is a method with severe limitations, 
especially when the dimension of the Clifford algebra is 
large. Since physical processes are independent of a specific 
matrix representation, an entirely representation-free for
mulation should appear as a more elegant and useful alterna
tive to the more traditional methods. 

The practical content of this paper is summarized in 
Table IV. From this table, one can identify any Clifford alge
bra which arises in a physical application simply by comput
ing its order structure. This calculation may be done using 
any particular matrix (or other) representation of the alge-
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8 
8 

16 
16 
16 

32 
32 
64 
64 
64 

128 
128 
256 
256 
256 

512 
512 

1024 
1024 
1024 

2 5 2 
2 I 6 
3 II 4 
3 3 12 
3 7 8 

4 19 12 
4 11 20 
5 39 24 
5 23 40 
5 31 32 

6 71 56 
6 55 72 
7 143 112 
7 III 144 
7 127 128 

8 271 240 
8 239 272 
9 543 480 
9 479 544 
9 511 512 

bra. Once the algebra has been identified in Table IV, then 
one has a set of structural results that the algebra possesses 
by virtue of belonging to a specific family. All the algebraic 
properties then follow from the group-theoretical construc
tion of this paper. 
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Explicit expressions are derived for the infinitesimal operators ofthe representations 1T). of the 
most degenerate series of the group Sp( p, q) and for the irreducible unitary representations of the 
group Sp(p + q) with highest weight (m, m, 0, ... ,0) with respect to an Sp(p)XSp(q) basis. The 
Sp( p) X Sp(q) basis can be chosen arbitrarily. The irreducibility conditions for the representations 
1T). and the structure of the reducible representations 1T). are discussed. All the unitary irreducible 
representations of the most degenerate series ofSp(p, q) are obtained. It is shown that there are 
four series of unitary representations (principal, supplementary, discrete, and ladder). 

PACS numbers: 02.20. + b 

I. INTRODUCTION 

In this article, explicit expressions are obtained for the 
infinitesimal operators of the representations of the most de
generate series ofSp(p, q) and of the unitary irreducible re
presentations ofSp(p + q) which have highest weights (m, 
m,O, ... ,0) in an Sp( p) X Sp(q) basis. Using these infinitesimal 
operators, we can then investigate the most degenerate series 
representations 1T). ofSp(p, q). In particular, we have found 
the irreducibility conditions for the representations 1T). of 
Sp(p, q). We have defined all the irreducible representations 
among the set of the representations 1T).. Some of the repre
sentations 1T). are reducible. We have found the irreducible 
representations of Sp( p, q) which are contained in reducible 
representations of 1T). • Among the set of irreducible represen
tations of Sp( p, q), which are contained in reducible repre
sentations 1T). of Sp( p, q), there are finite-dimensional repre
sentations. They lead to finite-dimensional irreducible 
representations of the compact group Sp(p + q). We have 
determined all irreducible representations of Sp( p) X Sp(q) 
which are contained in the finite-dimensional representa
tions of Sp( p, q) and Sp( p + q) which have highest weights 
(m, m, 0, ... , 0). The multiplicities do not exceed 1. 

Analyzing the unitarity condition for the irreducible 
representations 1T). and for the irreducible components of the 
reducible representations 1T)., we have obtained four series of 
irreducible unitary representations of Sp( p, q). They repre
sent all the unitary irreducible representations of Sp( p, q) 
which can be extracted from the irreducible representations 
ofSp(p, q) which are considered in this article. 

In this paper we use the method which was developed 
by us in Refs. 1-4. The Lie group Sp(p, q) and its algebra 
sp( p, q) are discussed in Chap. 9 in Ref. 5. These groups can 
be realized by complex 2( p + q) X 2( p + q) matrices. Let us 
note that physicists frequently use the notation Sp(2p, 2q) 
and Sp(2p) for the groups Sp(p, q) and Sp(p). This notation 
refers to the dimensionality of the matrices. Here we use the 
notation Sp( p, q) and Sp( p), following Helgason. 5 

For the notation and definitions which we use in the 
following we refer to Refs. 5 and 6. 

II. THE REPRESENTATIONS OF THE MOST 
DEGENERATE SERIES OF Sp(p, q) 

The maximal compact subgroupK ofSp( p, q) is isomor
phic to Sp( p) X Sp(q). It consists of the matrices 

diag[Sp( p), Sp(q)]. 

The Lie algebra f = sp( p) X sp(q) of K consists of the matri
ces5 

o 
o 

(I) 

whereXJJEu( p), XzzEU(q), and u( p) is the Lie algebra ofU( p). 
Here XI3 denotes a symmetric p Xp matrix, while XZ4 denote 
a symmetric q X q matrix. Further below we shall consider 
the case for whichp»q. 

We have the Cartan decomposition sp(p, q) = f + l>, 
where l> consists of the matrices5 

o 
o 
Y~ 

- Yi; 

Y~l - Y 12 

o ' 
o 

with Y1Z and YI4 complexpXq matrices. 

(2) 

We shall now consider the representations of the most 
degenerate series ofSp(p, q). The representations are in
duced by one-dimensional representations of the subgroup4.6 

P=ANM(K) =A 'N'M'. (3) 

The subgroups A, N, M (K ), A " N', M' are defined in the 
following manner. The subgroups A and N are defined by the 
Iwasawa decomposition6.7 G = ANK of the group G = Sp(p, 
q). Here A is a commutative subgroup, and N a nilpotent 
subgroup. The subgroup A ' is one-dimensional and A ' CA. 
We have A ' = exp a', where a' is the one-dimensional subal
gebra ofsp(p, q) which is generated by the matrix (2) for 
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which Y)4 = 0, and 

Y" ~ [~ ° ~] 0 ° . (4) 

0 1 

We denote this matrix by hJ• Therefore, A '= {exp th),tER J. 
The subgroup M (K ) is a maximal connected subgroup of K, 
such that mh = hm for every meM (K ) and every hEA '. It is 
easy to verify that M (K ) consists of the matrices 

diag(Sp(p - I), u, Sp(q - I), u) uESp(I). 

I t is clear that the group M (K ) is isomorphic to the group 
Sp( p - I) X Sp(q - I) X Sp( I). The subgroup M' is a maxi
mal connected subgroup in Sp( p, q), such that mh = hm for 
every meM' and every hEA '. We do not need the explicit 
form of M'. The nilpotent subgroup N' is generated by the 
root subspaces which correspond to the positive restricted 
roots of the pair (sp(p, q), a'). We have N' eN. 

Let us note that the subgroup A can be represented as 
A = A 'A ", where A " = exp a" anda" consistsofthosematri
ces of the Lie algebra a of A, which are orthogonal to a' with 
respect to the Killing-Cartan bilinear form. 6 Every element 
hEA is uniquely decomposed into the product h 'h ", h 'EA " 
h "EA ". 

Now we consider the one-dimensional representation 

h 'n'm'~xp[A (log h ')], h 'EA', n'EN', m'eM', (5) 

of the subgroup (3), where A is a complex linear form on a'. It 
is clear that 

exp[A (th))] = exp at, OEC, (6) 

where h' = exp th)EA " and h)Ea' is defined above. 
The representation (5) of P induces the representation 

1T). of Sp( p, q). This representation acts upon the space 
L ~ (K ), K = Sp( p) X Sp(q), consisting of functions fEL 2(K ) 
for which 

f(mk) = f(k), meM (K). (7) 

The representation 1T). is given by the formula 

1T). (g)f(k) = exp[A (log h ')] f(kg), (8) 

where h 'EA ' and kg EK are defined by the I wasawa decompo
sition of the element kg: 

kg = hnkg = h 'h "nkg, hEA, h "EA ", nEN. 

It is clear from (6) that 1T). is given by a single complex 
number o. In what follows we consider the case that p >q > I. 
The infinitesimal operators of the representations ofSp( p, I) 
and Sp(p + 1) in Sp(p) XSp(l) basis are considered in Ref. 8. 

III. INFINITESIMAL OPERATORS OF THE 
REPRESENTATIONS 1T). OF Sp( p, q) 

In this section we will determine the explicit form for 
the infinitesimal operators of the representations 1T). ofSp( p, 
q). For this construction we shall make use of Lemma 5.2 of 
Ref. 4. LetB (.,.) be the Killing-Cartan form on sp(p, q), and 
let e denote the Cartan involution on sp(p, q). Then 

(x,y) = - cB(x, ey), c>O, (9) 
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is a scalar product on sp( p, q). The adjoint representation of 
Sp(p, q) on the carrier space sp(p, q) will be denoted by Ad. 
For the representations 1T). ofSp( p, q) Lemma 5.2 of Ref. 4 is 
formulated in the following manner. 

Lemma 1: The infinitesimal operators 1T). (Y), YE~c (~c 
is a complexification of ~), of the representations 1T). of the 
group Sp( p, q) act upon the infinitely differentiable functions 
of L ~ (K ) in the manner 
1T).(Y)f(k) = «(Ad k)Y, H)A (H)f(k) 

- «(Ad k )Y,p) f(k) 

+HQ, «(Adk)Y,h)]f(k), (10) 

where H is a normalized element of a' with respect to the 
scalar product (9), h is an element of a' such that a(h ) = I [a 
is a simple restricted root of the pair (sp( p, q), a')], Q is identi
cal to the operator Q) of formula (5) of Ref. 2, p denotes half 
the sum of the positive restricted roots of the pair (sp( p, q), 
a'), including multiple roots, and [.,.] denotes the commuta
tor of the operator Q with the multiplication operator. 

In the following we will need an orthonormal basis for 
L ~ (K). The space L 2(K ) has a basis which consists of all 
matrix elements of all nonequivalent irreducible representa
tions of K = Sp(p)XSp(q). The functions of L~(K) satisfy 
the condition (7). Therefore, all matrix elements of the irre
ducible representations of K, which satisfy the condition (7), 
can be taken as a basis of L ~ (K). From (7) it is clear that the 
condition (7) is satisfied by the matrix elements of those irre
ducible representations of K which contain the one-dimen
sional indentity representation of M (K ) = Sp( P - I) 
X Sp(q - I) X Sp( I ). We shall find these representations of K. 
An irreducible representation of Sp( p) is characterized by p 
integersm)J m2, •.• , mp, m»mz>'" >mp>O. Therepresenta
tions ofSp(p) with highest weights (m), mz, 0, ... ,0) (and only 
these) contain the one-dimensional identity representation of 
Sp( p) (see § 130 in Ref. 9). The restriction of a representation 
ofSp(p) with highest weight (m), mz, 0, ... , 0) onto 
Sp( p - 1) X Sp( I) contains the irreducible representation of 
Sp( p - I) X Sp( I) with highest weightS 
(O, ... ,O)sp(p_lI(m) - mZ)Sp(11 with unit multiplicity. More
over, this restriction does not contain other irreducible re
presentations of Sp( p - I) X Sp( I) which have an identical 
part fors Sp( p - I) [i.e., the same highest weight 
(O, ... ,O)sP(P _ II ]. 

Therefore, the restriction of the irreducible representa
tion of K = Sp(p) X Sp(q) with highest weight (m), m2, 0, ... ,0) 

(m;, m~, 0, ... ,0) onto 
K' = [Sp(p - I)XSp(I)]X [Sp(q - I)XSp(I)] contains the 
representation of K' with highest weight 

(O, ... ,O)sP(p_lJ(m) - mz)sp(IJ(O, ... ,O)sp(q-lJ(m; - m~)sp()1 and 
does not contain other representations of K' which have 
identical parts for Sp( p - 1) and Sp(q - I). The subgroup 
M(K) = Sp(p - I) X Sp(q - I)XSp(l)isembeddedintoK'in 
such a way that Sp( I) is embedded diagonally into 
Sp(I)XSp(I): 

g3 Sp( 1)---+gxgESp( I) X Sp( I). 

Therefore, the restriction of the representation of K ' with 
highest weight (O, ... ,O)(m) - mz)(O, ... ,O)(m; - m~) onto 
M (K ) contains the one-dimensional identity representation 
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of M (K ) if and only if the tensor product of the representa
tions (ml - m2 ) and (m; - m;) ofSp(l) contains the one
dimensional identity representations of Sp( I). Since 
Sp(I)-SO(3) this implies that this assertion is valid if and 
only if 

Hence, the one-dimensional identity representation of M (K ) 
is contained only in the representations ofSp( p) X Sp(q) with 
highest weights (m p m2 , 0, ... ,0) (m;, m;, 0, ... ,0) for which 

(11) 

Moreover, the multiplicity of this representation of M (K) is 
1. We shall denote these representations of K = Sp(p) 
XSp(q) by [ml' m2] [m;, m;]. 

Let f1 denote an M (K I-invariant normalized vector of 
the carrier space of the representation [m p m2] [m;, m; ] of 
K. This vector is unique (up to the multiplier ei'P). Let Ir) 
denote a set of orthonormal basis elements for this space, 
r = 1,2, ... ,dim[m l,m 2] [m;, m;]. We will not restrict the 
choice of this orthonormal basis. LetD (k) denote the opera
tor which representskin the representation [m lm2] [m; m; ] 
of K. Then the functions 

(dim[ml' m2 ] [m;, m;] )1/ 2 (f1 ID (k )Ir) 

-(dim[m l, m2] [m;, m;] )1/2Dnr(k) 

(12) 

for all r and for all m I' m2, m; , m;, for which the condition 
(II) is satisfied, constitute an orthonormal basis for the space 
L ~(K). Namely, the matrix elements (12) (and only these) 
satisfy the condition (7). 

The restriction of 11';. onto K acts upon L ~ (K ) by the 
formula 

11';. (ko)f(k) = f(kko) 

Therefore, all functions (12), with fixed m l, m 2, m;, m;, con
stitute a basis for the subspace on which 11';. realizes the irre
ducible representation [ml' m2] [m;, m; ] of K. It follows 
from this that the irreducible representations of K are con
tained in 11';. not more than once (with unit multiplicity). 

We shall now derive the infinitesimal operators 11';. (Y) 
in the basis (12). We use Lemma 1 which was formulated 
above. 

The scalar product (9) can be given by the formula 

(X, Y) = ~ Tr XYT. (13) 

The element H of Lemma 1 coincides with the matrix (2) for 
which YI4 = ° and Y12 is given by (4). A simple restricted 
root a of the pair (sp(p, q), a') is given bya(H) = 1. Then the 
element h of Lemma 1 coincides with H. Due to the formula 

a(h') = (ha, h '), h 'Ea', 

the element ha Ea' corresponds to the root a. It is easy to see 
that ha = H. 

Now we have 

«(Ad k )Y, H»). (H) = «(Ad k )Y, h»), (ha ), (14) 

«(Ad k )Y,p) = !(r + 2s)(ha, ha )«(Ad k )Y, h), (15) 
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where r denotes the multiplicity of the root a and s the multi
plicity6 of the root 2a. The algebra sp(p, q) is an algebra of 
the type ell (see pp. 30--32 in Ref. 6 or Table 3 in Ref. 4). 
Using the root system ofthis algebra, we find that 

!(r + 2s)(ha' ha ) = 2p + 2q - 1. (16) 

Since the representations 11';. are of the degenerate series, the 
chain (2) of subgroups of Ref. 2 reduces to 

Sp(p)XSp(q) = K -KI -:JK2 = M(K). 

Moreover, between the subgroups KI and K2 there is one 
subgroup K i [see the chain (3) in Ref. 2)], which is different 
from K I and K 2 • The subgroup K i can be found in the same 
way as in the case of the group U( p, q) in Ref. 2. We find that 

K i = diag(Sp( p - 1), Sp( 1), Sp(q - 1), Sp( 1)). 

The subgroups K-:JK i -:JM (K) are used to evaluate the ei
genvalues of the operator2 Q. The operator Q acts upon the 
states (12) as 

= q(ml' m2 , m;, m;)lm l, m2, m;, m;, r), (17) 

where q( ... ) is a number. 
According to (10), (14)-( 17), it follows that 

11';.(Y)lm l, m2, m;, m;, r) 

= [). (ha ) - 2p - 2q + 1 + !Q 
- !q(m l , m2' m;, m;)] 

X «(Ad k )Y, h )Im., m2 , m;, m;, r). (18) 

For the elements YEl' we take the basis elements of l'. 
Since [f, l'] C l', it follows that l' is a carrier space for the 
representation of f with respect to the action ad b, bEf. This 
representation of f = sp( p) + sp(q) has the highest weight 
(1,0, ... ,0) (1,0, ... ,0). [The first part is a highest weight for 
sp(p), the second part for sp( q).] We choose an orthonormal 
basis of l' with respect to the scalar product (13). Let Y., Y2, 

... , Yn , n = dim l', denote the elements of this basis. 
The expression «(Ad k )lj,h) of(18) is a matrix element 

of the representation of Sp( p) X Sp(q) with highest weight 
(1,0, ... ,0) (1,0, ... ,0). Since 1m., m2 , m;, m;, r) is also a matrix 
element of the representation of K [see (12)], we have 

«(Ad k )Y, h) 1m., m2, m;, m;, r) 

njnz 

X (m.m 2m; m;, f1; (I,O, ... ,O)(I,O, ... ,O),h In.n2n; n;,f1) 

X (n l n2n; n;, r'lm.m2m; m;, r;(I,O, ... ,O)(I,O, ... ,O),lj) 

(19) 

where (",1",) denotes the Clebsch-Gordan coefficients for 
the tensor product of the representations Sp(p)XSp(q) with 
highest weights (m p m2,0, ... ,0) (m; ,m;,O, ... ,O) and (1,0, ... ,0) 
(1,0, ... ,0). Since the element hEl' is invariant with respect to 
M (K), it follows that the same f1 occurs twice in the first 
Clebsch-Gordan coefficient on the right-hand side of (19). 

Let us find the values of n l , nz, n;, n; over which the 
summation in (19) is to be carried out. The tensor product of 
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the representations ofSp(p) with highest weights 
(m l ,m2,0, ... ,0) and (1,0, ... ,0) is decomposed into irreducible 
represen tations by making use of the same form ula as is done 
for the representations of SO(2p) with the highest weights 
(m l ,m2,0, ... ,0) and (1,0, ... ,0) [see, for example, formula (4.5) 
in Ref. 4]. We have also to take into account that due to the 

I 

first Clebsch-Gordan coefficient of (19) the integers n I' n2, 

n; , n; obey the condition 

Therefore, the summation in (19) is over the following values 

(ml' m2 - 1, m;, m~ - 1), (m, + 1, m 2, m;, m; - 1), (m, - 1, m 2, m;, m; + 1), 

(m" m2 + 1, m; - 1, m;), (m" m 2 - 1, m; + 1, m;). 

(20) 

Now we have to substitute (19) into (18) and to evaluate 
the numbers 

(21) 

for all values of(n" n2, n;, n;) which are enumerated in (20). 
The numbers (21) are to be evaluated by means of the for-

I 
mula (50) of Ref. 2. The reader also finds in this paper the 
definitions and notation which is used in formula (50) of Ref. 
2. For our present case it holds A ' = (m" m2, m;, m;), 
A 2 = (m, - mZ, m; - m;). The values which one obtains in 
evaluating formula (50) of Ref. 2 for all (n" n2, n;, n;) enu
merated in (20) are given in Table I. 

Using Table I, formulas (18) and (20), we find that 

+ L (0- - M - M' - 4p - 4q + 4)K:: = ::::(r',))lm, - 1, m2, m; - 1, m;, r') 
r' 

+ L (0- + M - M' - 4q + 2)K::,:;"",; (r',))lm, + 1, m2, m;, m; - 1, r') 
~ -

+ L (0- + M - M' - 4q + 2)K::'I11';,:l(r',))lm" m2 + 1, m; - 1, m;, r') 
r' 

(22) 

TABLE I. 

A' +7' (A'+R',7') 1(7',7') A 2 + r l(A' + R 2, r) l(r,r) 

m, + I,m" 2(m,+m;+p+q) 2 m, - m2 + I, (m,-m 2+m; -m; +2) 
m; + I.m; m; -m; + I 

2 m"m2+ I 2(m2 + m; + p + q - 2) 2 m,-m,-I, (- m, + m 2 - m; + m; - 2) 
m;,m; + I m; -m;-I 

3 m 1 -l,m 27 2( - m, - m; - p - q) 2 m l -m 2 -1, (-m,+m2-m;+m;-2) 
m; -I,m; m; -m;-I 

4 m" m,-I 2( - m2 - m; - p - q + 2) 2 m, - m2 + I, (m,-m,+m; -m; +2) 
m;,m; -I m; - m; + I 

5 m,+I,m" 2(m, - m; + p - q + I) 2 m, - m, + I (m,-m2+m; -m; +2) 
m;,m; -I m; -m; +1 

6 m,-l, m 2 , 2(-m,+m;-p+q-l) 2 m,-m,-I (-m,+m,-m; +m; -2) 
m;,m; +1 m; -m;-I 

7 m l ,m2 + 1, 2(m,-m; +p-q-I) 2 m,-m2 -1 (- m, + m, - m; + m; - 2) 
m~ - 1, m; m; -m;-1 

8 m
"

m 2 -1 2( - m2 + m; - p + q + I) 2 m,-m,+1 (m,-m,+m; -m; +2) 
m; +I,m; m; -m; + I 
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where 

u =A. (h a ), M = m l + m 2, M' = m; + m;, 

and K n:n; (r',j) is a coefficient of In" n2 , n;, n;, r) on the 
n)n2 

right-hand side of(19). In (22) the summation over r' is de-
fined by the nonzero Clebsch-Gordan coefficients in (19); 
these Clebsch-Gordan coefficients are contained in 
K n:n; (r'j). 

n}n2 

The integers m" m 2 , m;, m; are dependent. Namely, 
they satisfy the relation (11). Therefore, instead of m I' m 2, 

m; , m;, we can introduce the integers 

M=m,+m 2 , M'=m;+m;, J=m l -m2 .(23) 

Then we obtain for the functions (12) the notation 

(24) 

For the representations [m
"

m 21 [m; ,m; ] of 
Sp(p)XSp(q), which are contained in the representation 1T'A 

of Sp( p, q), the values of J, M, M' run over all nonnegative 
integers such that either all of them are even or all of them 
are odd. This follows from the equalities 

J = M - 2m 2, J = M' - 2m;. 

Therefore, the sum M + M' (and M - M') is even. 
Thus we have obtained the infinitesimal operators 

1T'). (lj) which correspond to the elements of p. In order to 
obtain all infinitesimal operators of the representation 1T')., 

we must also have the infinitesimal operators for irreducible 
representations of K = Sp(p) X Sp(q). These were found in 
Ref. 8. 

Let us note that the expressions for the infinitesimal 
operators (22) are valid for any Sp( p) X Sp(q) basis. The basis 
1m" m 2, m;, m;, r) in (22) coincides with the basis 
1m, ,m2,m; ,m; ,r) used for the second Clebsch-Gordan coef
ficient on the right-hand side of (19). The Clebsch-Gordan 
coefficients for the most interesting Sp( p) X Sp(q) bases will 
be investigated in a forthcoming paper. 

IV. STRUCTURE OF THE REPRESENTATIONS 1T). OF 
Sp(p, q) 

In this section we determine the irreducible representa
tions 1T'). which are contained among the set of all representa
tions 1T'). ofSp( p, q), and, moreover, we investigate the struc
ture of the reducible representations 1T). • 

Lemma 2: A representation 1T). ofSp( p, q) is irreducible 
if for every representation [m l ,m2 ] [m; ,m;] of 
Sp( p) X Sp(q), which is contained in 1T')., no one of the 
numbers 

u+M +M', u-M -M' - 4p - 4q + 4, 

u - M + M' - 4p + 2, u + M - M' - 4q + 2, 

[the coefficients on the right-hand side of (22)] is equal to 
zero. 

This lemma is proven in exactly the same manner as 
statement 7.1 in Ref. 4. We omit the proof. 

Theorem 1: A representation 1T'). ofSp(p, q) is irreduci
ble if and only if u is not an even integer. 

The irreducibility of a representation 1T'). for which 
u = A. (h a ) is not an even integer, follows from Lemma 2. The 
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reducibility of a representations 1T')., for which u is an even 
integer, will be shown below. 

Let us consider the representations 1T'). for which u is an 
even integer. Below the representations 1T'A will be denoted 
by tfI, where u = A. (ha ). It is known4 that for real u the 
representations tfI and 1T' - U + 4p + 4q - 2 are either both reduc
ible or both are irreducible. Moreover, the irreducible repre
sentations tfI and 1T' - U + 4p + 4q - 2 are equivalent, and the re
ducible representations tfI and 1T' - U + 4p + 4q - 2 contain the 
same irreducible representations ofSp( p, q) [see Chapter 5 in 
Ref. 4]. Therefore, it is sufficient to consider the representa
tions tfI with u < 2p + 2q - 1. 

Let us investigate the structure of the representtions tfI 

with even u, u < 2p + 2q - 1. In order to do this, we set the 
coefficients in the parenthesis of the right-hand side of (22) 
equal to zero: 

u+M+M'=O, 

u - M - M' - 4p - 4q + 4 = 0, 

u + M - M' - 4q + 2 = 0, 

u - M + M' - 4p + 2 = 0. 

(25) 

(26) 

(27) 

(28) 

Since u < 2p + 2q - 1, the relation (26) cannot be satisfied. 
We shall consider the relations (25), (27), (28). We distinguish 
three cases. 

Case 1: The integer u is even and u,;;;O. In Fig. 1 we plot 
the points (M = m l + m 2 , M' = m; + m;) which corre
spond to the representations [m" m2l[ m;, m;] of 
Sp( p) X Sp(q) which are contained in 1T'U. Ifwe plot Eqs. (25), 
(27), and (28) in Fig. 1, then it is seen that the points (M, M') 
are divided into four regions, namely D F, D 0, D +, D -. The 
points which are located on a straight line belong to that 
region from which the arrow points to the line. 

Let us now consider the points (M, M') of D F. It is seen 
from (22) that the operators 1TU(lj) can increase the sum 
M + M' in a vector IJ, M, M', r) only in the first and in the 
second summands of the right-hand side of(22). These sum
mands vanish for M + M' = - u. Therefore, the operators 
tfI(lj) cannot transform vectors IJ, M, M', r) with (M, 
M')EDFintovectors IJ,M,M',r) with (M,M')ED ° (see Fig. 
1). Hence, all the vectors IJ, M, M', r) with (M, M')ED F 

-'J-t-4p-z 

-fT 

o 

FIG. I. Figure for Case I. 
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constitute the basis for an invariant subspace of L 6 (K) with 
respect to sp( p, q). The representation 1f' realizes a subrepre
sentation on this subspace. We denote this subrepresentation 
by D ~. Let us remark that the operators 1T"( Yj) can trans
form vectors IJ, M, M I, r) with (M, M ')ED 0 into vectors IJ, 
M, M ', r) with (M, M')ED F. This follows from (22). This 
means that D ~ is not contained in 1T" as a direct summand. 

Let us now consider the points (M, M ') from D F + DO. 
One can see from (22) that the operators 1f'( Yj) increase 
M - M I in the vector IJ, M, M I, r) only in the fifth and in the 
seventh summand of the right-hand side of(22), and M I - M 
only in the sixth and in the eighth summand. The fifth and 
the seventh summands vanish for M - M I = - a + 4q - 2. 
The sixth and the eighth summands vanish for 
M I - M = - a + 4p - 2. Therefore (see Fig. 1), the opera
tors 1f'( Yj) cannot transform the vectors IJ, M, M I, r) with 
(M, M')EDF + DO into vectors IJ, M, M ', r) with (M, 
M ')ED + + D - . Hence, the representation 1T" ofSp( p,q) real
izes on the vectors IJ, M, M ', r) with (M, M')EDF + DO a 
subrepresentation, which we denote by D ~F. The quotient 
representation D ~F I D ~ will be denoted by D ~. The quotient 
representation 1T" I D ~F thus decomposes into a direct sum of 
representations of Sp( p, q), which correspond to the vectors 
IJ,M,M'r) with (M,M ')ED + and to the vectors IJ,M,M'r) 
with (M, M ')ED -. We denote these representations by D ,,+ 

andD;; . 

Thus for case 1 the representation 1T"leads to four re
presentations D ~, D ~, D ,,+ , D;; of Sp( p, q). Irreducible 
representations ofSp( p) X Sp(q) are contained in these repre
sentations of Sp( p, q) at most once (i.e., with unit multiplic
ity). 

The representations D ~, D ~, D ,,+ , D ,,- of Sp( p, q) are 
irreducible. The proof of this irreducibility is analogous to 
the proof of irreducibility of the representations of U(n, 1) 
and SOo(n, 1) which are contained in the principal nonuni
tary series of these groups (see §2 in Chap. 7 and §7 in Chap. 
8 in Ref. 4). We omit the proof. 

The representations 1T" for Case 1 have thus the follow
ing structure: 

* 

° 
° 

° 
* 

D+ 
" 

° ~ l' D;; 

where * denotes a nonzero matrix. 
The representation D ~ is finite-dimensional. Its highest 

weight is ( - a12, - a12, 0, ... ,0). This follows from 
Theorem 5.13a of Ref. 4. The considerations given above 
permit us to find all highest weights of the irreducible repre
sentations of K = Sp( p) X Sp(q), which are contained in the 
restriction of the representation D ~ of Sp( p, q) [and, there
fore, of Sp( p + q)] onto Sp( p) X Sp(q). These irreducible re
presentations ofSp(p)XSp(q) have highest weights (ml' m 2, 

0, ... ,0) (m;, m;, 0, ... ,0) for which m l - m2 = m; - m; 
(therefore, m l + m2 + m; + m~ is even) and 

m l +m2 +m; +m;<-a. 
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FIG. 2. Figure for Case 2. 

These representations of Sp(p)X Sp(q) are contained in D ~ 
with multiplicity one. 

Case 2: The integer a is even and ° < a < 2p + 2q - 2. 
The considerations for this case are the same as for Case 1. 
For this case the relation (25) cannot be satisfied. Equations 
(27) and (28) are shown in Fig. 2. The points (M, M ') are 
separated into three parts D 0, D +, D - . On the subspace for 
which the vectors IJ, M, M', r), (M, M')EDo form a basis a 
subrepresentation of 1f' is realized. We denote it by D ~. The 
quotient representation 1f' I D ~ decomposes into a direct 
sum of two representations ofSp(p, q). One of these corre
spondstothepoints(M,M')ED + and will be denotedbyD :; 
the other corresponds to the points (M, M ')ED - and will be 
denoted by D ;; . It is easily observed that the representation 
D ~, D : , D;; are irreducible. The representation 1f' for 
Case 2 has thus the structure 

(29) 

Case 3: a = 2p + 2q - 2: For this case the relation (25) 
cannot be satisfied. The relations (27) and (28) become identi
cal. This case is shown in Fig. 3. In fact this case coincides 
with Case 2; the difference is that in this case the points of DO 
are located on straight line only. As in Case 2, we obtain 
three irreducible representations D~, D ,,+ , D;; of Sp( p, q) 

and the representation 1f' has the structure (29). 

a M 

FIG. 3. Figure for Case 3. 
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V. MOST DEGENERATE UNITARY REPRESENTATIONS 
OF Sp(p, q) 

We have constructed the irreducible representations tfI 
(u is not an even integer), D~, D (7+ , D;; of Sp( p, q). Let us 
now determine those among them which admit unitariza
tion. According to the results of Refs. 10 and 11 (see also §4 
of Chap. 5 in Ref. 4), this can be done in the following man
ner. We construct the intertwining operators II (u) for all 
pairs (tfI, 17 - (7 + 4p + 4q - 2). Then we determine for which re
presentations the intertwining operator is Hermitian and 
positive (or negative) definite. These representations can be 
made unitary. For details we refer to Refs. 10 and 11. The 
procedure is equivalent to the following steps. We construct 
the intertwining operators II (u), and then we introduce in 
the formulas (22) the new basis 

IJ, M, M', r)' = II(u)- 1I2 IJ, M, M', r). (30) 

Representations, which admit unitarization, are unitary in 
the basis (30). Now we have to verify which ones of the repre
sentations are unitary, i.e., to verify for which representa
tions the unitarity condition 17( lj)* = - 17( lj) is fulfilled in 
the basis (30). 

The intertwining operator II (u) for the pair 
(17(7,17- (7+ 4p + 4q - 2) is defined as 

l7aII(u) = II(U)17- a+4P +4q -2. (31) 

For the matrix elements of II (u) we have4
•
10 

(J, M, M', rIII(u)IJI, M I, M;, r l ) 

= a(J, J, M')8JJ 8MM 8M'M,8" . 
I 1 1 I 

(32) 

Let us now consider the relation (31) for the infinitesimal 
operators of l7a

• Taking matrix elements on both sides of(31), 
we obtain from (32) and (22) the following system of equa
tions for the matrix elements a(J, M, M '): 

(u+M +M')a(J,M,M') = (-u+M +M' +4p +4q- 2)a(J + I,M + I,M' + 1), 

(u+M -M'-4q+ 2)a(J,M,M') =( -u+M -M' + 4p)a(J + I,M + I,M'-I), 

(u-M +M' -4p+ 2)a(J,M,M') = (-u-M +M' +4q)a(J - I,M - I,M' + 1), 

(u-M -M' -4p-4q +4)a(J,M,M') = (-u-M -M' + 2)a(J -I,M -I,M' -1). 

lt follows from that a(J,M,M') does not depend on J, and that 

a(M+i,M'+i)=iiI
l 

u+M+M'+2j a(M,M'), 
j = 0 - u + M + M' + 4p + 4q + 2(j - 1) 

(33) 

a(M + i,M' - i) = iiIl 

u+M -M' - ~ + 2(j + .1) a(M,M'), 
j=O -u+M-M +4p+2.J 

(34) 

a(M - i, M' + i) = iiIl 

u - M + M' - ;P + 2(j + .1) a(M, M '), 
j=O -u-M+M +4q+2J 

(35) 

a(M-i,M'-i)= IT u-M-M'-4p-~+~(j+ 1) a(M,M'). 
j = I - U - M - M + 2J 

(36) 

If we fix a(M,M') for fixed values M = M o, M' = M b, then 
we obtain from (33)-(36) the a(M,M') for all M and M'. 

(3) all the representations D a+ and D;; (most degener
ate discrete series), 

Theorem 2: Among the set of irreducible representa
tions 17(7 (uis not an even integer), D~, D (7+ ,andD;; ofSp( p, 
q) the following representations admit unitarization: 

(4) the representation D ~p + 2q _ 2 (ladder representa
tion). 

The unitarity of the representations of class (1) follows from 
(22). Direct verification shows that the unitarity condition 
17( lj)* = - 17( lj) is fulfilled for them. In order to obtain 
unitary representations for classes (2)-(4), we have to use the 
new basis (30) in (22). This basis is constructed by means of 
(33)-(36). In the new basis we have 

(1) the representations tfI, for which u - 2p - 2q + 1 
are purely imaginary (principal most degenerate unitary se
ries), 

(2) the representations tfI, 2p + 2q - 2 < u < 2p + 2q 
(most degenerate supplementary series), 

tfI(lj)IJ, M, M', r) = L [(u + M + M'l( - u + M + M' + 4p + 4q - 2)] 1/2Km: + :,m'IJ + 1, M + 1, M' + 1, r') 
r' m,+ ,m2 

+ ~ [(u+M +M')( -u+M +M' + 4p + 4q - 2)]1I2K;;:;:;;:;:: IJ - 1, M + 1, M' + 1, r') 

- L [(u-M-M'-4p-4q+4l(-u-M-M'+2)lI/2Km,-I,m'IJ-I M-I M'-I r') 
r' mi - l.m2 ' , , 

- L [(u - M - M' - 4p - 4q + 4)( - u - M - M' + 2)l 1lZK;;::';;:;:::: IJ + 1, M - 1, M' - 1, r') 
r' l' 2 

- L [(u-M +M'-4p+2)(-u-M+M'+4q)lI/2K;;::;;/:;;IJ-I,M-I,M'+ I,r') 
r' I' 2 

+ L [(u+M -M' - 4q + 2)( - u+M -M' + 4p)lI/2K;;::':\+m~ IJ - I,M + I,M' - 1, r') 
r' I • 2 

- L [(u - M + M' - 4p + 2)( - u - M + M' + 4q)lI/2K;;::':\-m l
, IJ + 1, M - 1, M' + 1, r'), (37) 

r' I '2 
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Now one can verify directly that the representations of 
classes (2)-(4) of Theorem 2 satisfy the unitarity condition 
1T( Yj)* = - 1T( Yj) in the basis (30). 

We want to point out that some of the unitary represen
tations of Theorem 2 were constructed in Ref. 12. 

VI. INFINITESIMAL OPERATORS OF UNITARY 
IRREDUCIBLE REPRESENTATIONS OF Sp( P + q) IN AN 
Sp( p) X Sp(q) BASIS 

It was pointed out in Sec. 4 that the representations D ~ 
of Sp( p, q) lead to irreducible representations of Sp( p + q) 
with highest weights ( - 0/2, - 0/2, 0, ... ,0). The infinitesi
mal operators for these representations of Sp( p + q) can be 
obtained in the following manner. The Lie algebra Sp( p, q) of 
Sp( p, q) has the Cartan decomposition 

sp(p, q) = f +~, f = sp(p) + sp(q). 

[(O"+M +M')( - O"+M +M' + 4p + 4q - 2)]-1/2 by 

The compact Lie algebra sp(p + q) corresonds to sp(p, q), 
which has the decomposition 

sp( p + q) = f + ij:l, i = !=T. 
Therefore, multiplying the infinitesimal operators YjEj:l of 

the representations D ~ of Sp( p, q) by !=T, we obtain the 

infinitesimal operators Xj = !=T YjE,f=T j:l of the repre
sentations D ~ of Sp( p + q) with highest weights ( - 0"/2, 
- 0"/2, 0, ... ,0). The infinitesimal operators X; do not satisfy 

the unitarity condition X t = - X; if they are obtained from 
(22). To satisfy the unitarity condition, we have to use the 
basis (30). As a consequence of this, we obtain the formula 
for the infinitesimal operators Xj of the irreducible unitary 
representations of Sp( p + q) with highest weights 
(m,m,O, ... ,O), m;;.O and integer, from formula (37) by replac
ing 1T"( Yj) by X j , namely, 

- [(2m -M -M')(2m +M +M' + 4p + 4q - 2)]1/2, 

[(0" - M - M' - 4p - 4q + 4)( - 0" - M - M' + 2)]-1/2 by - [(2m - M - M' + 2)(2m + M + M' + 4p + 4q - 4W/2, 

[(O"+M -M' - 4q + 2)( - O"+M -M' + 4p)]-1/2 by 

[(0" - M + M' - 4p + 2)( - 0" - M + M' + 4q)] - 1/2 by 

The resulting formula satisfies the unitary condition 
Xj = -Xj • 
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Realizations of F4 in SO(3) ® SO(3) bases and structural zeros of the 
6j-symbol 

H. De Meyer,a) G. Vanden Berghe, and J. Van der Jeugtb
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The decompositon of F4 irreps in the group chains F4~SO(3) ® G2~SO(3) ® SO(3) and 
F4~SO(3) ® Sp(6) ~SO(3) ® SO(3) is considered. In both cases a realization oftheF4 Lie algebra in 
terms ofSO(3) ® SO(3) tensor operators is established. From these, the nontrivial vanishing of 
certain 6 j-coefficients is explained. 

PACS numbers: 02.20.Qs, 03.65.Fd 

I. INTRODUCTION 

It has been known for a long time that the standard 
SO(3) tensor operator formulation of the exceptional Lie al
gebra G2 provides an explanation for the nontrivial vanish
ing of Racah's 6 j-coefficient I ~ ~ n. Many others of the 
nontrivial or structural zeros ofthe 6 j-symbol, which do not 
result from triangle condition violation, have been tabulated 
in a recent book ofBiedenharn and Louck. 1 Moreover, it has 
been suggested by these authors that the exploration of other 
exceptional Lie algebras might lead to an analogous explana
tion of some more of these zeros. 

A realization of the by rank next higher exceptional 
algebra F4 in terms of Sot 3) tensor operators has already 
been constructed by Wadzinski.2 Unfortunately, no zeros 
follow from it, since his solution makes the SO(9) subalgebra 
contained in F4 explicit and, therefore, too many SO(3) re
presentation space bases (or, equivalently, in that case too 
many bosons) are needed. Instead, it has been shown by the 
present authors3 that in the maximal decomposition of F4 
into SO(3), a minimal realization in terms of two such bases 
exists from which two structural zeros can be explained. On 

I 

11.50(3) ® 50(3) TENSOR OPERATORS 

account of Regge symmetries, even more zeros followed. 
Besides SO(9) and SO(3), F4 contains three more maxi

mal subalgebras, i.e., SO(3) ® G2, SO(3) ® Sp(6), and 
SU(3) ® SU(3). By inspection of branching rule tables such as 
those of Mckay and Patera,4 it is readily seen that the chain 
F4 ~ SU(3) ® SU(3) ~ SO(3) ® SO(3) is not a good candidate 
for explaining structural zeros of the 6 j-symbol, since both 
the lowest dimensional and the adjoint irrep of F4 decom
pose into SO(3) ® SO(3) irreps with degeneracy. On the other 
hand, the chains F4~SO(3) ® G2~SO(3) ® SO(3) and 
F4~SO(3) ® Sp(6PSO(3) ® SO(3) will prove in the present 
paper to be an excellent basis for the explanation of such 
zeros. 

In Sec. II, some relevant formulas concerning 
SO(3) ® SO(3) tensor operators and their use in realizing a 
classical Lie algebra are reviewed. Sections III and IV, re
spectively, deal with the two inclusion chains in the order 
mentioned above. It is clarified how structural zeros appear 
in the analysis. Finally, the reader should be aware that 
throughout, the labeling conventions of McKay and Patera4 

are followed, with the exception ofSO(3) irreps which we 
label by half the number they use. 

An SO(3) ® SO(3) tensor operator is the outer product of two SO(3) tensor operators, each acting upon separate SO(3) 
representation spaces. Hence we can define such an operator by means of reduced matrix elements2,5: 

(2.1) 

Herein I and k are SO(3) representation labels which assume integral or half-odd integral values, [k] = 2k + 1 is the dimension 
of the SO(3) tensor representation, and l' is an additional label to distinguish irreps with the same I. The heavy dot and 
semicolon are used to indicate the outer product of tensors and SO(3) irreps, respectively. The SO(3) ® SO(3) tensor operators 
satisfy the following commutation relations: 

alResearch Associate N.F.W.O., Belgium. 
blResearch Assistant N.F.W.O., Belgium. 
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{k; k' 
k3} {kl k2 k3} k i( '/' 'I ') k (/ / ) 

2 

X /' / ; /; /4 /1 
V , T[ I,T4 4 'Vq' TI I,T4 4 1 q, ' 

4 3 

{k' k' k 3} {k [ k2 k3} k i( '/' '/ ') k, (/ / )] -8,,8 8,,8 [ 2 
V , T3 3,T2 2 'Vq' T3 3,T2 2 , (2.2) 

1\'4 1",1'"4 1 1'4 11/4 I; I~ /; /3 12 / q, .' 
I 

with K = kl + k2 + k3 and L = /1 + 12 + 13 + 14 , 

If A denotes an irrep of a classical Lie group H, we learn from tables4 how A decomposes into irreps (i k ';rk ) of a 
particular SO(3) ® SO(3) subgroup, r being used to distinguish again between similar irreps. Hence the SO(3) ® SO(3) tensor 
operators which constitute an operatorrealization of A can be labeled by (r'k 'q';rkq)whereq'(q) runs in unit steps from - k'to 
k ' ( - k to k ). In order to define a space spanned by product states I T'/' m' ;T/m) in which these operators act, we select an irrep 
B of H for which B occurs in the decomposition of the Kronecker product2 A XB. If B decomposes into irreps (T'/ ';TI), the set 
IIT'/'m';T/m):m' = -I', -/' + 1, ... ,l';m = -I, -I + 1, ... ,lj is an acceptable basis. Since it is our aim to construct real
izations of a Lie algebra, A is identified to the adjoint representation of H. Moreover, it is advantageous as well for computa
tional purposes as for making the probability of finding nontrivial zeros maximal, to choose the dimension of B as low as 
possible. Without making the choice of B explicit, the generators of H can be written as 

(2.3) 

whereby the g-coefficients remain to be determined. To do so, we use the property that the set of generators is closed under 
commutation, which allows us to write 

[ 
G y~k ,;y,k"G y!k i;y,k,] = ( - 1 t + q, + qi + q, 

Q2,Q2 ql,ql 

(
k' k' 

X I. ([k '][k l[ k; ][kd [k;] [k2 ]}112 : I 

k'ky'y q2 q; 
k' ) 

- (q; + q~) 
X(k2 kl k )Cy'k';Yk Gy'k';yk 

q2 ql -(qt+q2) Yik~.yikIY2k2'YI,kl Qi+Qi;Q.+Q2' 
(2.4) 

where the C-coefficients remain to be determined. Substitution of(2.3) in both sides of(2.4) leads with the application of(2.2) to 
the following equations with respect to the unknown g- and C-coefficients: 

/ ' 2 

~~; ~,'} {~12 

>} {\I ~: 
~} 

k} [yik i;T,1 ,.r:l] [y,k "T'j',Ti l i] } 
j g y,k"T,I"Tj g y,k,;Tj,T,I, ' (2.5) 

where now K = k + kl + k2 . Ifwe let all parameters herein vary, we generate a usually overcomplete system of equations 
linear in the C 's and quadratic in the g's. Substituting the solution for the latter coefficients in (2.3) we obtain an operator 
realization of the group generators. In the following sections, we apply the present technique to F4 in two different decomposi
tions. Since in neither case degeneracies occur, we systematically drop the labels rand T. 

III. F4 :::> 50(3) ® G2 :::> 50(3) ® 50(3) 

Using standard tables,4 it is verified that in the present chain of reductions, the F4 adjoint representation (1 000) 
decomposes into the SO(3) ® SO(3) irreps (0;1), (0;5), (1;0), and (2;3), whereas the lowest-dimensionalF4 irrep (0 0 0 I) decom
poses into (1;3) and (2;0). By means of the procedure outlined at the end of Sec. II, we obtained, after straightforward 
calculation, the following realization of the F4 algebra in terms of SO(3) ® SO(3) tensor operators: 

Gg:! = vg(1,1).v!(3,3), Gg:~ = vg(1,1).v~(3,3), 

G !;~o = v!,(I,I).vg(3,3) + (.J5/~)v!,(2,2).vg(0,0), 
G~;~q = v~,(1,1).v!(3,3) + (( - WN2)(v~,(1,2).v!(3,O) + v~,(2,1).v!(O,3)]. (3.1) 

Herein a is a free parameter. Obviously, the generators GO;t, G 0;5, and G 1;0 of(3.1) form together the SO(3) ® G2 subalgebra of 

F4 • 

752 J. Math. Phys., Vol. 25, No.4, April 1984 De Meyer, Vanden Berghe, and Van der Jeugt 752 



                                                                                                                                    

We next demonstrate how the basis (3.1) can be exploit
ed to explain some structural zeros of the 6 j-symbol. Let us 
first consider the commutator [G 0;5,G 2;3] in which we sub
stitute the explicit forms (3.1) for the generators. On account 
offormula (2.2), the commutator can then be reexpressed as 
a linear combination ofSO( 3) ® Sot 3 ) tensor operators. Since 
the algebra (3.1) is closed, it should be possible to recombine 
the tensor operators in terms of F4 generators. However, 
from (2.2) it is clear that one can generate tensor operators 
which do not even occur in (3.1). Hence the coefficients with 
which these operators appear have to vanish. Two cases have 
to be distinguished: either an unwanted tensor is formed 
more times with different coefficients, or an unwanted ten
sor can appear only one or more times with the same coeffi
cient. In the first case, there results a relation between pro
ducts of 6 j-coefficients; in the second case a product of two 
6 j-coefficients has to vanish. If then one of these is obviously 
different from zero, the remaining one has to vanish and we 
will have explained a structural zero. When this program is 
executed on the commutator mentioned above, it turns out 
that a single term proportional to 

{~ ~ ~} g ~ ~} v2
(1,1).v

5
(3,3) 

remains, by which is explained the structural zero (~ j j J 
= 0 which has already been found in the chain G2~SO(3). 

This is not really a surprise since the generator G 0;5 in the 
commutator under consideration behaves as a scalar (rank 
zero tensor) with respect to the SO(3) part of the SO(3) ® G2 

subalgebra. Similarly, in the commutator [G 0;5,G 0;5], there 
remains a term proportional to 

{21 2 01} {3
5 

5 3} 0 3 1 3 3 v (l,l).v (3,3), 

which is absent in (3.1). The same structural zero is found 
again. 

The previous reasonings show that new nontrivial zeros 
are most likely to appear in the commutator [G 2;3,G 2;3] . 

And, indeed, it turns out that a single term proportional to 

{22 2 3
1
} {03 3 O} 3 0 2 0 3 v (2,2)·v (0,0), 

which originates from the commutators [v2(1,2).v3(3,0), 
v2(2, 1).v3(0,3)] and [v2(2, 1) ·v3(0,3),v2(1,2).v3(3,0)] survives. 
Hence we have explained the following structural zero of the 
6j-symbol, 

2 

2 ~} = O. (3.2) 

Since this 6j-coefficient is, under Regge symmetry opera
tions, only related to itself, the result (3.2) is the only new 
zero connected to the chainF4~SO(3) ® G2~SO(3) ® SO(3). 
On the other hand, also, relations between products of 6 j
symbols follow from that chain, but in the context of the 
present paper it is not worthwhile to report on them explicit
ly. Also, they are independent of the choice of the q-sub
scripts and this is why we constantly omitted that label. Fin
ally, it should be remarked that the result (3.2) has not been 
used in setting up (3.1), so that the vanishing of the 6j-coeffi-
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cient (3.2) is really a consequence ofthe fact that (3.1) closes 
under commutation. 

IV. F4 :J SO(3) ® Sp(6):J SO(3) ® SO(3) 

In this chain, the adjoint representation of F4 reduces 
into (0;1), (0;3), (0;5), (1;0), (~; ~), and (!; ~), whereas the 26-
dimensional irrep decomposes into (0;2), (0;4), and (~ ; ~). A 
similar but lengthier calculation than in the previous case 
now leads to the following SO(3) ® SO(3) tensor operator re
alization of F4 : 

Gg:! = vg (O,O).v! (2,2) 

+ )6vg (O,O).v! (4,4) + (ft 1v2)vg (!,!).v! (~,~), 

Gg:! = vg(0,0).v!(2,2) + (J[f/9)vg(0,0).v!(4,4) 

+ (- W(5v2/3Y3)vg(0,0).[v!(2,4) + v~(4,2)] 

- ¥ vg (!,!).v! (~ , ~), 

Gg:~ = vg(0,0).v~(4,4) - (- W(Ji5/~)vg(O,O) 

X [v~(2,4) + v~(4,2)] - (JI4/m)vg(~,!).v~(~,~), 

G !i~ = v!, (!,!).vg (~ , ~), 

G !(~;3/2 = V!(2(!,0)'V!/2(~ ,2) + V!(2(0'!)'V!/2(2, ~) 

+ ( - l)a(v2/v1s) [V!(2(!,0)'V!/2(~,4) 

+ V!(2(0'!)'V!/2(4,~)], 
G 1/2;9/2 = vl /2(l 0)'V9/2(5 2) + vl /2(O 1)'V9/2(2 5) 

q';q q' 2' q 2' q"2 q , 2 

(4.1) 

Again a is a free parameter, and now one recognizes the 
SO(3) ® Sp(6) subalgebra by restricting (4.1) to the set ofgen
erators GO;I, G O;3, G O;5, and G 1;0. 

In the same way as before, all the commutators between 
the F4 generators (4.1) must be systematically analyzed. 
There is one commutator, namely [G 1/2;9/2, G 1/2;9/2], by 
which a new structural zero of the 6j-symbol can be ex
plained. Indeed, from the commutators rvi/2(!,0).v9/2(~ ,4), 
'Vi/2(0'!)'V9/2(4, ~)], [Vi/2(0'!)'V9/2(4, ~),vihH,0)'V9/2(~ ,4)] 
originates on account of (2.2) a single term proportional to 

(~ ~ ~) (! ! ;)v
O
(0,0).V

7
(4,4), 

which is not present in the algebra (4.1) and, therefore, has to 
vanish. Hence the zero 

{! 
9 
"2 

4 
(4.2) 

finds an explanation within the chain F4~SO(3) ® Sp(6) 
~ SO(3) ® SO(3). On account of a Regge symmetry operation 
carried out on the 6j-coe~fficient (4.2) at the same time the 
zero 

5 !}=O (4.3) 
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becomes explained. Finally, as before, we will not insist here 
on the many relations between products of 6 j-symbols 
which result from the present treatment of the F4 algebra. 

v. DISCUSSION 

The present paper closes our study of F4 in the context 
of explaining structural zeros of the 6 j-symbol. At this stage, 
it has been shown that F4 yields eleven such zeros, of which 
three have been reported on in this paper. The other eight 
which have been explained3 in the chain F4:::> SO(3) are 

{1~ 1~ !} = C~ 1~ ~} =0, 

{1~ 1~ :} = {1~ 1~ ~} = {1~ 1~ 1~} 

= {I! : :} = {I! 1~ ~} 
10 

9 
A new aspect of the procedure of realizing algebras 

which has been clarified here is the usefulness of direct pro
ducts of the familiar SO(3) tensor operators. They are inter
esting by the way they reduce, for a given algebra, the num
ber of tensors and at the same time the number of different 
representation space bases to be taken into consideration. 
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These are precisely conditions which favor the finding of 
nontrivial zeros. 

On the other hand, we may not have exhausted F4 com
pletely yet. Indeed, since we have restricted our attention to 
minimal representations and to the short reduction chains 
ending at a single SO(3) or at a direct product ofSO(3) 
groups, extensions can still be envisaged. However, although 
not zero, the probability of explaining nontrivial zeros be
comes very small. 
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Indecomposable representations of the simple complex Lie algebra A 1 are investigated in this 
article from a general point of view. First a "master representation" is obtained which is defined 
on the space of the universal enveloping algebra n of A l' Then, from this master representation 
other indecomposable representations are derived which are induced on quotient spaces or 
subduced on invariant subspaces. Finally, it is shown that the familiar finite-dimensional and 
infinite-dimensional irreducible representations of su(2) and sui 1, I) are closely related to certain of 
the indecomposable representations. Indecomposable representations of Al [su(2), su(l,I)] have 
found increased applications in physical problems, including the unusual "finite multiplicity" 
indecomposable representations. Emphasis is placed in this article on an analysis of the more 
unfamiliar indecomposable representations. The matrix elements are obtained in explicit/orm for 
all representations which are discussed in this article. The methods used are purely algebraic. 

PACS numbers: 02.20.Qs 

INTRODUCTION 

It is the purpose of this article to study unusual repre
sentations of the simple complex Lie algebra A l' which is the 
complexification of the physically significant Lie algebras 
su(2) and su(I,I). 

Originally it was only the algebra su(2), and itsfinite
dimensional irreducible representations, which was of rel
evance to physical applications. The original application of 
su(2) was in atomic physics, and it was Wigner who pioneer
ed this work. 1 The theory behind the application of su(2) to 
physical problems became known as angular momentum 
theory. 

The noncom pact real simple Lie algebra sui 1,1), and its 
infinite-dimensional irreducible representations, entered 
physics at a later date. It was Bargmann2 who did a systema
tic study ofsu(1, 1) [actually the group SU(1,I) and its infi
nite-dimensional irreducible representations]. As in the case 
of su(2), many authors have discussed the irreducible infi
nite-dimensional representations ofsu(l,l) and it is beyond 
the scope of this introduction to attempt to list even the most 
important articles. We want, however, to mention the work 
ofGel'fand, Graev, and Vilenkin3 and that of Holman and 
Biedenharn,4 since they had a profound influence on our 
thinking. 

Finally, it is indecomposable representations (i.e., re
ducible, but not completely reducible representations) of Al 
which have found physical applications. Chacon, Levi, and 
Moshinsky5 have shown that the so-called Armstrong ten
sors6 (the radial part of the mUltipole operators in atomic 
physics) transform like indecomposable representations of 
A 1 [or sui 1,1)]. Representations of this type were discussed in 
a general manner, by Gel'fand, Graev, and Vilenkin,3 while 
the authors of this article obtained the matrix elements of 
these representations in explicit form.7 In this article the 
authors also demonstrated the existence of an unfamiliar 
type of indecomposable representations of Al [or sui 1,1 )], 
which they calledfinite-multiplicity indecomposable repre-

sentations. These representations have the property that 
some of their weight subspaces have dimension > 1 (in fact 
2). It turns out that these representations are also found in 
physical applications. FIato and Fronsdal8 have, in their in
vestigation of singletons, made use of indecomposable repre
sentations of the (de Sitter) algebra so(3,2) whose restriction 
to a certain sui 1,1) subalgebra contains finite multiplicity 
indecomposable representations. 

Certain types of indecomposable representations have 
actually been known in physics for a long time. They are 
associated with the Poincare algebra, the algebra of the Eu
clidean group, and others. We will not discuss these algebras 
and their representations since we limit our discussion in this 
article to the algebra A l' We refer the interested reader to 
Ref. 9. 

In view of the proliferation in physical applications of 
what was once considered by physicists as unfamiliar and 
unusual representations, it appears to be warranted to inves
tigate the (indecomposable) representations of A 1 in a general 
manner. The methods used are purely algebraic and follow 
along the lines of thought as presented by Dixmier lO and 
Jacobson. 11 

While irreducible representations of A 1 have been dis
cussed extensively, relative little is known regarding inde
composable representations of A l' In fact the few indecom
posable representations which have been discussed are of a 
rather special type. They are defined on "one-parameter 
families of states," i.e., they can be realized algebraically on 
the quotient spaces n +, n _, n + + n _ of the universal en
veloping algebra n of A l' Indecomposable representations of 
this type were discussed in Ref. 3, 12, 13, and 14. 

In this article we obtain the matrix elements for all re
presentations which are discussed in explicit/orm. Again, 
very little is known regarding the matrix elements, and with 
the exception of the indecomposable representations dis
cussed in Refs. 12, 13, and 14, the matrix elements for the 
indecomposable representations are obtained here for the 
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first time. Finally, some of the representations, finite- as well 
as infinite-dimensional, are quite familiar, and all is known 
about them. These will occur as special cases in our investi
gation. 

In this article we will use the term indecomposable to 
mean that a representation is reducible, but not completely 
reducible (i.e., the representation space has invariant sub
spaces, but is not the direct sum of invariant subspaces). 

The representations of A 1 which are discussed in this 
article are defined on the space of its universal enveloping 
algebra fl, on ideals of fl, on invariant subspaces, and on 
quotient spaces. We define a very general representation of 
A Ion all of fl, called "master representation," and derive 
from it other indecomposable representations, until we ob
tain the familiar representations of su(2) and suI 1,1) as simple 
special cases. 

1. REPRESENTATIONS OF su(2) AND su(1, 1) ON THE 
SPACE OF THEIR UNIVERSAL ENVELOPING ALGEBRA 

In this section representations of the simple complex 
Lie algebra A 1 (Cartan notation) are investigated on the 
space of the universal enveloping algebra fl of A I' The alge
bra A 1 is the complex extension of both, the compact algebra 
su(2) and the noncom pact algebra sui 1,1) Thus having ob
tained an algebraic representation of A I' an algebraic repre
sentation of su(2) and suI 1,1) has been obtained too. These 
latter representations are obtained from a representation of 
A 1 by means of restriction of the field to the reals R (and 
possibly by a change of basis within the complex algebra A I' 
unless the basis employed in A I happens to correspond to the 
basis of the real form). 

Certain representations of suI 1,1) on the space fl were 
investigated in Ref. 7. The present article takes a much more 
general point of view, and the results which were obtained in 
Ref. 7 will appear as special cases of the results obtained in 
this article. It should be noted, however, that both the basis 
chosen for A 1 and for fl in this article differ from the one 
which was chosen in Ref. 7. In this article we prefer to choose 
the more familiar (to the physicist) "angular momentum" 
basis of su(2) in A I, while in Ref. 7 we chose a basis which 
"corresponds" to the noncompact form su(I,I). Moreover, 
in this article we choose a basis for fl by ordering the ele
ments 1+, 1_, 13 in the sequence I+L/3' Simple symmetry 
considerations will relate the results obtained in different 
bases. In particular, the basis chosen for A I in this article is 
related to the basis chosen for A I in Ref. 7 by the substitution 

Ir-+h = 13, 1+ -e = il+, 1_-+/= iL, i = v'=T. 
The algebra A 1 can be defined by choosing the basis 

AI: P3,1+,I_j, (1.1) 

with the Lie products given by 

[/3 ' I ± ] = ± 1 ±' [l +, 1_] = 13 , 

and the general element lEA I' 

1= C3/3 + c+l+ + c_I_, c3' c ± EiC. 

The algebra A 1 has the Casimir element 

C = 2/+1_ + 13(/3 - 1). 
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(1.2) 

(1.3) 

A basis for universal enVeloping algebra fl of A I can be 
chosen as 

fl: !I,/~/"1l;; n,m,r=O, 1,2, ... )' (1.4) 

where 1 denotes the identity operator and n, m, r are not 
simultaneously zero. For reason of convenience we will later 
on frequently represent the identity operator fl by the values 
n = m = r = O. The elements of fl are then all the finite lin
ear combinations over the basis elements given by Eq. (1.4) 
[the product in Eq. (1.4) is the tensor product]. 10,1 I 

The space fl can be factored into a product of three 
subspaces, 

(1.5) 

where the bases for the three subspaces can be chosen as 

fl+: [I,/~, n=I,2,3''''J, 

fl· 

JiY': 

[1,1,"-, m = 1,2,3, ... j, 

[1,1;, r=1,2,3, .. ·j. 

(1.6) 

A linear representation of A 1 on the space fl (or on one 
of its subspaces V) is a linear map of fl (or of the subspace V) 
into itself, such that the Lie product is satisfied. The follow
ing Lie products, within the universal enveloping algebra, 
will be needed in order to calculate the matrix elements for 
the various representations: 

[/3' I n± ] = ± nl"-± ' 
(1.7) 

In the following the most general algebraic representa
tion of A 1 on its universal enveloping algebra fl is obtained. 
This representation is subsequently made use of to derive 
from it other representations which are defined on various 
(invariant) subspaces of fl, on quotient spaces of fl with re
spect to invariant subspaces, on quotient spaces of (invariant) 
subspaces of fl with respect to invariant subspaces of the 
invariant subspaces, etc., leading down all the way to the 
familiar finite-dimensional irreducible representations of an
gular momentum theory su(2) and the familiar irreducible 
infinite-dimensional representations, bounded on one side or 
unbounded on both sides, of suI 1,1). We say that a represen
tation of suI 1,1) is bounded if the operator 13 can be diagona
lized and the set of its eigenvalues is bounded. 7 

2. REPRESENTATIONS ON fl 

Making use ofEq. (1.7), it follows that the relations 
hold: 

p(l3)/~ 1,"-1; = I~ 1,"-1;+ 1+ (n - m)ln+ 1'"-1;, 

p( I + )1"+ I '"- I; = 1"++ II '"- I;, 

p(L)/~ 1,"-1; = 1"+ 1,"-+ II; _ nl"+-l/,"-l;+ 1 

+ n[m - !(n - 1)]1"+-1/,"-1;, 

p( C )1 ~ 1 '"- I; 

= 21 "++ 1/,"-+ 11; + 1 n+ 1,"- I; + 2 

- (2m + I)/~ 1,"-1;+ 1+ m(m + 1)/"+ 1,"-1;. 

(2.1) 

It is easy to prove that the map p forms a representation of Al 
on fl, i.e., that 
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FIG. l. The basis for n is plotted in the form ofa crystal lattice. The action 
of the elements 1,,1 ± of A I upon the basis elements is indicated by (multiple) 
arrows. The circle at the bottom of the arrow which indicates the action of I, 
indicates that also a multiple of the state is obtained upon which I, acts. 
Note, however, that matrix elements may become zero for the action of I, 
and I_upon certain basis elements. 

[p(13),p(I±)] = ±p(l±), [p(l+),p(l_)] =p(13)' 
(2.2) 

The representation given by Eq. (2.1) is a rather unusual one. 
It is indecomposable, and, moreover, the linear operator P(/3) 
which represents the element 13 of the Cartan subalgebra of 
A I does not have any eigenvector. 

The action of the operators p(1 ± ), P(/3) onto the basis 
elements is shown in Fig. 1. It can be seen from Eq. (2.1) and 
Fig. 1 that the operators p(1 ± ), P(/3) can only increase a pow
er of 1_ and a power of 13, whereas a power of 1+ can be 
increased and decreased. Therefore, each of the subs paces 
M V, VR , M VR with bases 

M V: II n+ 1 ~ + ml;, n, m, r = 0, 1,2, ... }, 

(2.3) 

MVR: {l~/~+mlf+r, n,m,r=0,1,2, ... }, 

where R, M are positive integers, forms an invariant sub
space of n with respect to the representation equation (2.1). 
These invariant subspaces carry subrepresentations which 
are induced by the representation equation (2.1). The repre
sentation equation (2.1) also defines representations on quo
tient spaces of n with respect to these invariant subspaces. 
The representations on the quotient spaces are obtained 
from Eq. (2.1) by formally setting 

fornlMV, 

I n+ I~ If-o, fornlVR, 

I~ I~ 1;-0, l~ I~ If-o, fornlMVR. 
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It is clear that the space M V has invariant subspaces 
M, V,M'>M,and M, VR,M'>R,R any positive integer. The 
space VR has invariant subspaces VR" R ' > R, and M VR" 
R '>R, Many positive integer. The space M VR has invariant 
subspacesM , VR"M'>M,R '>R,(M,R )=I=(M',R ').Thus,we 
can consider representations induced by the representation 
on the quotient spaces 

MVIM, V, M'>M, MVIM, VR, M'>M, 

VRIVR " R'>R, 

VRI M VR " R '>R, M VRI M, VR " M'>M, R '>R. 

It is easy to see from Eq. (2.1) and Fig. 1 that the repre-
sentation p of A I on n is a semidirect sum of the representa
tions realized on M V 1M + I V, M = 0, 1, 2, ... (0 V = n ), and a 
semi direct sum of the representations realized on V R I V R + I , 
R = 0, 1, 2, ... (Vo = n ). In other words, if PM denotes the 
representation realized on M V 1M + I V, then the representa
tionp, Eq. (2.1), can be represented in the basis (1.4) by matri
ces 

000 

• PI 0 0 

o * P2 0 

° 0 • P3 

where. is a nonzero matrix. 

The representations on quotient spaces will be consid
ered now. First of all we consider the representations on n I 
I Vand n I VI' The representations on M V 1M + I V and 
VRIVR + I can be considered in the same way. 

3. REPRESENTATIONS ON nl, V 

The basis of the quotient space n I I V can be identified 
with the set 

fI ~ I;, n, r = 0, 1, 2, ... J. (3.1) 

This space can be formally defined by setting I n+ 1 ~ I; = 0, 
m> 1. Making use of this relation in Eq. (2.1), one obtains 

P(/3)/~ I; = In+ 1;+ 1+ nln+ I;, 

p(/+)ln+ I; = I~+ II;, 

p(L)ln+ I; = - n/~-I/;+ I - ~(n - l)n/~-'/;, 

p(C')/~ I; = In+ 1;+ 2 _/~ 1;+ I. 

This formulas are graphically illustrated in Fig. 2. 

(3.2) 

It can be easily checked that Eq. (3.2) forms a represen
tation. This representation is indecomposable, has invariant 
subspaces WR with bases 

WR: (/~/f+r, n,r=0,1,2, ... j, 

with R >0, integer, and P(l3) has no eigenvector. The sub
spaces WR carry subrepresentations. Moreover, the repre
sentation equation (3.2) induces representations on the quo
tient spaces (n II V)lWR -nil VR • These are obtained from 
Eq. (3.2) by formally setting 1 n+ 1 f = 0. For R = lone ob
tains 
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FIG. 2. Action of elements of A, upon the basis of the space {J I, V. 

(3.3) 

p(L)I"+ = - ~(n - l)nl"r-1, p(C)I"+ = O. 

Equation (3.3) forms an infinite-dimensional indecom
posable representation with lowest weight A = O. It has two 
extremal vectors, namely, l,p(L)l = 0, and/+,p(L)I+ = 0 
(for the definition of extremal vectors, see Refs. 14, 7). It is a 
special case of a so-called elementary representation. 14.7 The 
representation equation (3.3) contains two irreducible repre
sentations of A]: a one-dimensional representation and an 
infinite-dimensional representation with lowest weight 1. 

The space WR has invariant subspaces WR " R '> R. 
Equation (3.2) induces on WRIWR, a representation. Let us 
consider representations on the quotient spaces WR I WR + 1 • 

The basis of this space can be identified with 

{/"+ If, n = 0,1,2, ... J. (3.4) 

It follows from Eq. (3.2)that on WRIWR + I 

P(/3)1"+ If = nl"+ If, 

p(/+)/"r If = l"r+ I/f, 

p(L)I"+ If = - ~(n - l)nl"+-l/f, 

p(C)I"+ If = O. 

(3.5) 

Thus, the representation on WRIW,+ I is algebraically equi
valent to the representation equation (3.3). Therefore, the 
representation of A] on n I I V is a semidirect sum of an infi
nite number of representations, Eq. (3.3) (denoted by do). In 
the basis (/"+ I;, n, r = 0, 1,2, ... j the representation equa
tion (3.2) can be represented by matrices 

do 0 0 0 

• do 0 0 

o • do 0 

o 0 • do 

where. denotes nonzero matrix. 
The representation induced by Eq. (3.2) on the quotient 

spaces nl I VR has the property that the subset of elements 
/ "r / f - I, R > 0, n = 0, 1 ,2, "', are eigenvectors for P(/3) (see 
Fig. 2). 
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FIG. 3. Action of elements of A, upon the basis elements of the space (J IV,. 

4. REPRESENTATIONS ON illV1 

The quotient space n I VI can be defined by setting 
1"+ I"'. I; = 0, r;;. 1. Applying this condition to Eq. (2.1) 
yields the following representation on il IV]: 

nIVI : {1,1"+ I"'. , n,m=O, 1,2''''J, 

P(/3)1"+ I"'. = (n - m)I"+ I"'. , 

p(/+)I"+ I"'. = 1"++ II"'., (4.1) 

p(L)/"r I"'. = 1"+ 1"'.+ 1+ n[m - ~(n - 1)]/"+-1/"'., 

p(C)/"r I"'. = 2/"++ II"'. + 1+ m(m + 1)/"r I"'. . 

These formulas are graphically represented by Fig. 3. 
The representation equation (4.1) is indecomposable, 

P(/3J is diagonal and its weight subspaces are infinite-dimen
sional. There are invariant subspaces R W, R > 0, integer, 
with bases 

fl"+ I ~ +', n, r = 0, 1, 2, ... j. 

The representation equation (4.1 J is discussed in detail 
in Ref. 7 and corresponds to the nonmultiplicity free repre
sentation with A = O. 

5. REPRESENTATIONS ON ill 1_ 

The basis of nil _ can be identified with 

{I, 1"+ I;, n, r = 0,1,2, ... j. (5.1) 

It follows from Eq. (2.1), making use of L/; = (/3 + lrL 
and the property p(L)1 = A 1, that 

P(/3)/"r I; = I "r I; + I + nl"+ I;, 

p(/+)I"+ I; = 1"++ II;, 
, , 

(I )1 n l' = A " r. I n I k 
P - + 3 ~ ( _ k )'k , + 3 

k~O r .. 

- nl"r- I/ ;+ 1_ !(n - l)nl "r- I/ ;, (5.2) 

, r' 
(C)I" l' = 4A " . l" + II k 

P + 3 k"2o (r _ k )!k! + 3 

+ 1"+ 1;+2 _1"+ 1;+ I. 

These relations form a representation of A I' as can be verified 
by direct computation. This representation has no invariant 
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FIG.4. Action of elements of A 1 upon the basis elements of the space n /1_. 

subspaces and P(/3) has no eigenvectors (Fig. 4). For A = 0 
the representation Eq. (3.2) is obtained. 

6. REPRESENTATIONS ON nlI3 

Let us consider the representations induced by Eq. (2.1) 
on the quotient space n 113, where 13 is a left ideal generated 
by (/3 - AI) withfixedAEC. Thebasisofn 113 can beidenti
fied with 

[I, p+ I~, n, m = 0,1,2, ... J. (6.1) 

Using the property p(/3)1 = A 1, one obtaines from Eq. (2.1), 

P(/3)/"+ I~ = (A + n - m)/"+ I~ , 

p(/+)/"+ I~ = 1"++ I/~ , 

p(C)/"+ I~ = 1"+ I~+ I 

- n(A - m + ~ (n - 1))1 "+- II ~ , 

p(C)/"-r I~ = 2/"++ I/~+ I 

+ (A - m)(A - m - 1)/"-r I~ . 

(6.2) 

The representation equation (4.1) is obtained from Eq. (6.2) 
for the special value A = O. The representation equation (6.2) 
is graphically shown in Fig. 9 of Ref. 7. 

The representation given by Eq. (6.2) was investigated 
in some detail in Ref. 7 (with a difference in the definition of 
the bases for A I and n, as was noted at the beginning of Sec. 
1). Here we investigate these representations further. In or
der to do so, we need to state some of the results of Sec. III of 
Ref. 7. 

The space n 113 has invariant subspaces H R with basis 

{l "-r I ~ + " n, r = 0, 1, 2, ... J. (6.3) 

On the quotient space HRIHR + I (R = 0,1,2, ... ; Ho = n) 
the multiplicity-free representation pR is realized and it 
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holds 

pR(/3)/"-r I~ = (A + n - R )/"-r I~ , 

pR(/+)/"+ I~ = 1"/ I/~ , 
(6.4) 

pR(C)/"+ I~ = - n[A - R + !(n - 1)]/"+-1/~ , 

pR (C)I"+ I ~ = (A - R )(A - R - 1)/ "-r I ~ . 
This is a representation with lowest weight A - R. The re
presentationpR is reducible if A - R = - !(n - 1), 
n = 1,2,3, .. ·. In this casepR has a second extremal vector, 
namely I ~ 21,1 - R ) + II ~ , and is indecomposable. This inde
composable representation has two irreducible representa
tions: a finite-dimensional representation of A I with highest 
weight !(n - 1 )==R - A and an infinite-dimensional repre
sentation with lowest !(n + l)=R - A + 1, which is real
ized in an invariant subspace. If A - R =I - !(n - 1), 
n = 1,2,3, .. ·, then the representationpR is irreducible . 

The representationp, Eq. (6.2), on n 113 is decomposed 
into a semidirect sum of the representations pR, 

pO 0 0 0 

* pI 0 0 

where each of the constituents pR is realized on the quotient 
space H R I H R + I . 

The representationp, Eq. (6.2), on n 113 cannot be de
composed into a direct sum of multiplicity-free representa
tions of A I' It can be decomposed into a direct sum under the 
condition that we extend n 113 by including infinite sums of 
basis elements 1"+ I ~ ,n, m = 0,1,2, .. ·. Two cases are distin
guished: 

Case (6a): A =lim, m = 1,2,3, .. · 

First we consider representations on the quotient space 
(n 113 )1 HR' These representations can be decomposed into a 
direct sum 

R-I I Gl piS) (6.5) 
s=o 

of multiplicity-free representations piS). The basis for piS) is 

P"-rxIS), s=O, 1,2""J 

with 

xiS) = IS_ + :~: {k! ,DI [A - s - W + I)]} -ll k+ I k_+ s. 

(6.6) 

The representation piS) acts on the basis elements as 

p1S1(/3)1 "-r xiS) = (A - s + n)l "-r xiS), 

pIS)(/ +)/ "-r xiS) = 1"++ I xis), 

pIS)(C)I"+ xiS) = - n(A - s + !(n _ 1))/ "+- Ixls), 

pIS)(C)I"+ xiS) = (A - s)(A - s _ 1)/"+ xiS), 
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i.e., the representation piS) is isomorphic to the representation 
pR which acts on H R 1 H R + I (see above). 

Now we extend the space n 113 to include infinite (for
mal) sums of basis elements and extend the action of the 
representationp by linearity. In this case the representation 
decomposes into a (infinite) direct sum of representations piS), 
s = 0, 1,2, "', which are multiplicity-free. The basis for the 
representation piS) is 

II~ xis), n = 0,1,2, ... J 

with 

xiS) = I s_ + k~ I {k! ,VI [A - s - W + 1)] } - II k+ I k_ + s. 

(6.8) 

For piS) we have 

pIS%)I"+ xis) = (A - s + n)1 ~ xis), 

piS)(1 +)1"+ xiS) = I ~+ IXIS), 

piS)(L)I"+ xiS) = - n[A - s + !(n - 1)]/"+- lx iS), 

pIS)(C)1 ~ xiS) = (A - s)(A - s - 1)1 ~ xis). 

(6.9) 

Therefore, the representations piS) are given by the same for
mulas as the representationspiS) andpR, but they act in differ
ent spaces. 

Case (6b): A = 1m, m = 1,2,3, ... 

If one attempts to decompose the representationp into a 
direct sum of multiplicity-free representations of A I [extend
ing the space n 113 to include infinite sums as was done for 
the case (6a)], it turns out to be impossible. 7 Instead, the 
representationp (after an extension of n 113 to include infi
nite sums) can be decomposed into a direct sum which in
cludes multiplicity-free representations as well as a finite 
number of finite-multiplicity representations. In the follow
ing we give the decomposition in explicit form. Moreover, 
we construct explicitly the indecomposable finite-multiplic
ity representations. These representations have found phys
ical applications. 8 

As was mentioned above, the representation p on n 113 
can be decomposed into a semidirect sum of representations 
pS with lowest weights A, A-I, A - 2, .... We divide these 
weights into two subsets: 
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Subset 1: 

A =!m, 

A-I = ~m - 1, 

A -2=!m -2, 

A - (2A - 2) = - A + 2 = -!m + 2, 

A - (2A - 1) = - A + 1 = -!m + 1. 

Subset 2: 

A - 2A = - A = - ~m, 

A - (2A + 1) = - A-I = -!m - 1, 
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A - (2A + 2) = -A - 2 = - ~m - 2, 

Now we consider the vectors (6.8). In this case (i.e., when 
A = !m, m = 1,2,3,. .. ) some of the xiS) may not exist. Indeed, 
in the sum 

{ 

k } - I 
c~) = k! ,g [A - s - W + 1)] , k = 1,2, 3,. .. , 

(6.10) 

c~) = 1, 

some of the coefficients c~) may become singular. In fact, for 
givenA = !m, m = 1,2,3, "', and givens = 0,1,2, "', such 
that 

2(A - s) - 1 = k;;. 1, integer, (6.11) 

the coefficients 

c~), c~)+ I' c~)+ 2' 

become singular. Thus, this xiS) does not exist. 
It follows from Eq. (6.11) that the lowest vector xiS) be

comes singular if 

A -s;;'1. (6.12) 

It is known that the lowest vector xiS) belongs to the weight 
A - s. Now we consider the lowest weights of Subsets 1 and 
2. It follows from the singularity condition A - s;;' 1 that all 
vectors xiS), s = 2A, 2A + 1, 2A + 2, "', which belong to 
weights of Subset 2, are not singular. The vectors xiS), 
s = A -! or A, ... , 2A - 1, which belong to the weights! or 
0, ... , - A + 1, of Subset 1 are not singular too. The vectors 
xiS),s = 0,1,2, ... ,A - lorA -~, which belong to the weights 
A, A-I, ... , 1 or ~ of Subset 1 are singular. 

It follows that for the case A = ! there is no singular 
vector. For this case the vectors xiS), s = 0, 1,2, "', can be 
constructed in exactly the same manner as was done for Case 
(6a) by making use ofEq. (6.8). Then these vectors are used to 
construct the bases! 1"+ xiS), n = 0, 1,2, ... J, s = 0, 1,2, .... 
The representations piS), which are given by Eq. (6.9), are 
realized on these bases. As in Case (6a) the representation p, 
which is realized on the extension of the space n 113 , A = !, 
can be decomposed into a direct sum of representations pis), 
s = 0, 1,2, .... 

Now let A = !m, m = 2, 3, 4, .... For every s, such that 
s;;.A we construct the vector xiS), by making use ofEq. (6.8). 
Then we construct the basis 

II "+ xis), n = 0, 1, 2, ... J . 

The representation piS), given by Eq. (6.9), is realized on this 
basis. We obtain a direct sum 

00 I $ piS). 
s=A 

ors~JI-l 

This representation is a subrepresentation of the representa
tionp defined on n /13, Now we will construct the remainder 
of the representation p. 

We return to the singular vectors (6.10). Let us consider 
the finite part of the sum (6.10), 
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2iA -s- I) L C~)lk+ Ik_+s. 
k=O 

(6.13) 

This sum does not contain singular terms. The following 
relation holds: 

2iA -s - I) 
pILl L C~)lk+ Ik_+s 

k=O 

-ciS) eiA-s-l)J2iA-s-I)+s+1 - 2iA - s - I) + - . 

The element 
elA - S - 1)/2~A - s - I) + s + I 

is the first term (k = 0) of the basis element 

12lA - s - I)XiSf) = 12lA - S - 1)( I c~')1 k+ I k_+ Sf) 
k=O 

of the (indecomposable) representationpiSf ), where 

s' = 2(A - s - 1) + s + 1 = 2A - s - 1. 

(6.14) 

As we saw, the vector xiS" is not singular. The representation 
piSf ) has a lowest weight 

A - s' = - A + s + 1. 

The representations piS) andpiH) have the same eigenvalue of 
the Casimir operator C. Therefore, these two representa
tions are related to each other through an indecomposable 
representation. 

Instead of the nonexisting element xiS) with nonsingular 
(regular) part (6.13), we consider the vector 

(6.15) 

such that 

p(LIY!S) = elA-S-I)xiS'). (6.16). 

The constants a and dk are defined by 

a = 2 - 2iA - S - I) ( [2(A - s - 1)] W = (~iA _ S _ I) ) - I, 

(6.17) 

(k + I)(A - s + !k) , 
k = 0,1,2, "', 

where 

_ (-2)k+I[2(A -s)-I]! 

- (k + I)! [2(A - s) + k ]! ' 
k = 0,1,2, "', 

(6.18) 

The coefficient do is arbitrary and can be chosen to be zero. 

By means of the vectors x iSf ) and yiS) we construct the 
basis 

(/N+yiSi, n=0,1,2,. .. ; 

1":- x iSf ), m = 0,1,2,···; s' = 2A - s - 1 J, 

It can be directly shown that Eq. (6.2) induces on this basis an 
indecomposable representation (we denote it by piS

•
Sf )) and 

that 

P(/3)/"r yiS) = (A - s + n)1 "r yiS), 

P(/3)/,,:- xiS" = ( - A + m + s + 1)/ ":- xis.), 
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p( I + )IN+ yiS) = I N/ lyiS), 

p(/+)/":- x iSf ) = 1":-+ IxiSf ), 

(I )1 N yiS) = 12iA - S - I) + NxiSf ) p - + + 

- n[A - s + !(n - 1)]/"r- lyiS), 

p(L)/":- x iSf ) = m[A -s - !(m + 1)]/,,:-- lx iH ), 

p( C)I N+ yis) = 2/,~ - S + NxiSf ) 

+(A -s)(A -s-I)/"ryiS), 

p(C)/":- xis.) = (A - s)(A - s - 1)/":- XiSf). (6.19) 

To simplify notation, we have dropped the indicess, s' in Eq. 
(6.19). 

The subspace spanned by 

(1m xis.) m =0 1 2 ... J +, , , , 

remains invariant, and thus the representationpis.s", Eq. 
(6.19), yields under restriction to this subspace an indecom
posable subrepresentation which is multiplicity-free. This 
representation has two extremal vectors which are xis.) and 
121A - s) - I x iSf ) with weights - A + s + 1 and A - s, respec
tively. Thus, the representation piS,S.) "contains" a finite-di
mensional irreducible representation of A I with highest 
weight A - s - 1 and two infinite-dimensional irreducible 
representations with lowest weight A - s. None of these re
presentations can be separated into a direct summand. 

Let us remember that the representationpiS,Sf) is charac
terized by an integer s such that s<:;;A - 1, A = !m, m = 2, 3, 
4, "', and an integer s' such that s' = 2A - s - 1. Thus, the 
integers sand s' are not independent. Figure 5 gives a graphi-

1\-5 +n+1 11/ Ii . " 

1\-'5+3 

:J/Ii~'" 
I. • 

1171; ~, 
1\-$+ 2- ]711 ~, 
1\-5+1 FIG. 5. Finite multiplicity indecom-- . 

ij/f posable representation of A I for 
A -s==!N=~. 

1\ - s '10- • 
';)0 1/ /1->.-1 • 

-A+~+3 

il X N-2 

f' 
-A,H+2.. r 
_1\+$ .. I 

• )co 
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cal description of the representationpls,SI), The vectors 1"+ yiS) 
y" , 1 '::- x lSl ) ==x m are shown by dots. The action of the oper

ator p(1 +) is shown by dashed arrows, and the action of p(/_) 
by solid arrows. 

The case of the simplest representation oftypeplS,SI) is 
graphically described in Ref. 7, Fig, II. 

The situation for Case (6b) with A = !m, m = 2, 3, 4, 
.... , is thus the following. The representation equation (6.2) 
can be decomposed into a direct sum ofmultipIicity-free re
presentations piS) and non-multiplicity-free representations 
piS,S'). The representations pis) correspond to the lowest 
weights A - s of Subset 2 (see above). The representations 
piS,S') are semidirect sums of multiplicity-free representations 
pis) and pis') with lowest weights A - sand 
A - s' = - A + s + I, which belong to Subset 1. To the 
particular case of A = ! of Subset 1 corresponds in the de
composition the multiplicity-free representation piS"), 

s" =A -!. 

7. REPRESENTATION ON il+u!l_ 

Another type of representations of A 1 is obtained as 
follows. Using the property 

I+L =HC-/3(/3-1)], (7.1) 

where C denotes the Casimir invariant of A I' it is easy to 
verify that the basis for il, Eq. (1.4), can be reexpressed as 

fl"+ f(C'/3)' L m g(C'/3)' n,m = 0,1,2,. .. J, (7.2) 

wherefandg are polynomials. The unit element is given by 
the trivial polynomialf = I (or g = 1) and n,m = 0. With 
respect to these elements the following relations are obtained 
from Eq. (2.1): 

p(/+)/_" =n[A-!(n-I)]L"-I, n;;>l, 

p(L)/"+ = -(n-I)(A+!n)In;-I, n;;>l. 

Case (7a) 

Making use of Eq. (2.1), we obtain 

P(/3)/~ =1"±(/3±n), 

p(/+)/"+ =1"++1, p(L)L" =L"+I, 

p(L)/"+ =1"+-I!HC-/3(/3 -1)] 

- n[/3 + !(n - 1)] J, n;;>l, 

p(/+)I"- =1_"-I/HC-/3(/3+1)] 

+n[l3-!(n-l)]J, n;;>l. 

Ifwe set 

p(C)l=Al, p(/3)1=Al, A,AEC, 

then Eq. (7.2) goes over into the basis 

11,1"+ ,/_ m, n,m = 1,2,3,. .. J. 

(7.3) 

(7.4) 

(7.5) 

This is a basis for the quotient space il IE, where E is a left 
ideal of il which is generated by the elements C - A 1 and 
13 - AI. The relations (7.3) then induce onil IEarepresenta
tion. For this representation the following holds: 

P(/3)/"± = (A ± n)/"± ' 

p(1 ± )/"± = I~+ I, n;;>O, (7.6) 
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p(/± )1",:: =HA-(A +n)(A +n± 1)]/",::-1, n;;>l, 

p(C)/~ = AI"± . 

These representations are determined by two numbers A, A. 
It appears that these representations have not been discussed 
in the literature. However, for the particular case that 
A = A (A + I), this type of representation was discussed in 
Ref. 7 . 

For the case that A = A (A + 1) the following holds: 

p(/+)L" = n[A - !(n - 1)]/_ "-I, n;;>l, (7.7) 

p(/_)/"+ = - (n - I)(A +! n)/"+-I, n;;>l. 

Thus, for A = !m, m = 0,1,2,. .. , the representation has two 
infinite-dimensional invariant subspaces which are generat
ed by the extremal vectors /+, p(L)/+ = 0, and 
L m + 1 , p(/ +)L m + 1 = 0. In addition, there is a finite-di
mensional noninvariant subspace wiTh basis 

11'/_'/_ 2, ... ,/_ m J, 

on which a finite-dimensional representation of A 1 is real
ized. A representation ofthis type is shown in Fig. I of Ref. 7. 

If A = - !m, m = 1,2,3,. .. , there are two infinite-di
mensional invariant subspaces, with one nested in the other. 
The extremal vectors are 1+, p(L)/+ = 0, and 
1+ m, p(l_)/+ m = 0. Obviously, the invariant subspace gen
erated by 1+ m is contained in the invariant subspace generat
ed by 1+. It is a representation of the type shown in Fig. 7 of 
Ref. 7. 

Case (7b) 

Let 

Inl± (HC-/3(/3 +1)]-n[/3 ±!(n-l)]J. (7.8) 

We set again 

p(C)l =Al, p(/3)1 =Al, A, AEC. 

Then, defining new basis elements 

I'; = CUI I k I ± ) - I/"± ' (7.9) 

one obtains from Eq. (7.3) the relations 

p(/3)/'; = I'; (13 ± n), 

p(/+)/'~ = I'~ + IIH C -/3(13 - 1)] - (n + 1)(/3 + ~n) J, 
p(/+)/"'. =1"',-1, n;;>l, (7.10) 

p(l_ )/'~ = I If:' - 1, n;;> I, 

p(/_)/ "'. = I'." + I(H C -/3(13 + 1) + (n + 1)(/3 -! n)lJ· 

If in Eqs. (7.9) and (7.10) the operators C, 13 are replaced by 
the eigenvalues A, A, then Eq. (7.10) yields a representation. 

If in addition 

A =A (A + 1), 

one obtains from Eq. (7.10) the representation 

p(/3)I'; = (A ± n)/'~ , 
p(/±)I'{:, =I'{:,-I, n;;>l, 

p(/+)/'~ = -n[A+!(n+l)]/,,:'+I, 

p(L)/'." = (n + I)(A -! n)/'1l + 1, 

p( C )/'~ = A (A + 1 )/'~ . 
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This representation has, for A = ~m, m = 0,1,2,.··, two 
infinite-dimensional invariant subspaces, defined by the ex
tremal vectors 1', p(/+)I' = 0, and 1':::, p(L)/'::: = O. The 
two invariant subs paces overlap, resulting in a third, finite
dimensional invariant subspace with basis 

(1',I'~ ,k= 1,2,3, ... ,ml. (7.13) 

This is a representation of a type shown in Fig. 2 of Ref. 7. 
General properties of these representations have been dis
cussed by Gel'fand, Graev, and Vilenkin. 3 

For A = - ~m, m = 2,3,4,.··, again two infinite-di
mensional invariant subspaces are obtained, nested in each 
other. The first is definied by the extremal vector 
I', p(l +) l' = 0, and the second by the extremal vector 
1 '+- 2A + 1, p(1 +)/'+- 2A + 1 = O. Obviously the invariant sub
space generated by the second extremal vector is an invariant 
subspace of the invariant subspace generated by the first ex
tremal vector. It is a representation of a type shown in Fig. 5 
of Ref. 7. 

For 

A 0:/- - !m, m = 2,3,4,. .. , and A o:/-~m, m = 0,1,2,.··, 

the representation contains one invariant subspace which is 
generated by the extremal vector I'. 

8. FINITE-DIMENSIONAL IRREDUCIBLE 
REPRESENTATIONS 

The representation equation (7.12) has, for A = ~t, 
t = 0, 1,2, ... , three invariant subspaces. One ofthese is fin
ite-dimensional with basis 

{l',/'~ , n = 1,2, ... ,2A I (8.1) 

and carries a (2A + 1 )-dimensional irreducible representa
tion. These are the familiar angular momentum representa
tions. An additional redefinition of basis elements, 

n =A - m, m =A,A - 1, ... , -A, 

IA,A ) = 1', 
m 

IA,m - 1) = II [~(A - k + I)(A + kW/2/'~ -1m
-

I
), 

k~A 

m =A,A - l,A - 2, ... , -A + 1, (8.2) 

leads, on the invariant subspace equation (8.1), to the stan
dard form for these representations in angular momentum 
theory 

p(/3)IA,m) = mIA,m), 

1 
p(l ± )IA,m) = fi {A (A + 1) - m(m ± 1)}1/2IA,m ± 1), 

(8.3) 

p(C)IA,m) = A (A + l)1A,m). 

9. ELEMENTARY REPRESENTATION ON 11+,11_ 

The elementary representations7
•
14 of A I are defined on 

the space n _ or n +. The elementary representations are 
infinite-dimensional, but bounded on one side. Moreover, 
the basis for the representation space can be generated from 
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the extremal vector which belongs to the highest weight 
(lowest weight) A, namely 1. That is, 

{1,p(L)nl, n=I,2,3,.··1 (9.1) 

or 

(9.2) 

forms a basis for a representation. If this representation is 
irreducible, then 1 is the only extremal vector. If not, then 
there is another extremal vector which corresponds to a low
er weight A - n (higher weight A + n). These representa
tions can be obtained in various manners. For example, the 
representations generated by the extremal vectors XiS) of 
Case (6a) are elementary representations (with lowest 
weight). Another example for obtaining elementary repre
sentations is provided by Case (7a), for A = A (A + 1). The 
representation equation (7.6) then has an invariant subspace 
with basis 

(9.3) 

On the quotient space {n + $ n -I IV - n _ with basis 

{ 1,1_,/2_ 13
_ " •• }, (9.4) 

the elementary representations are obtained from Eq. (7.6) as 

p(l3)Ln =(A -n)Ln, 

p(/+)L n = n[A - !(n - l)]/n_-l, n>O, 

p(L)L n = 1"-+ I. 

(9.5) 

If A = !t, t = 0,1,2, ... , then the representation is indecom
posable with a second extremal vector It~ I, p(/+)/t~ 1= O. 
If A o:/-! t, t = 0,1,2,.··, then the representation is irreduci
ble. 

Considering the case of an irreducible elementary re
presentation (A 0:/- ~ t ) and introducing a new index m by 

n =A -m, 

the following holds: 

n[A - !(n - 1)] = HA (A + 1) - m(m + 1)]. 

Defining new basis elements 

IA,A) = 1, for m =A, (9.6) 

IA,m) = C~~ HA (A + 1) - k(k + I)]} -1/2/~ -m, 

form =A - 1,A - 2, ... , thematrixelementsofanirreduci
ble elementary representation, Eq. (9.5), then take on the 
form 

P(/3)IA,m) = mIA,m), 

p(l_)IA,m) = {HA (A + 1) - m(m - 1)] 11/2IA,m - 1), 
(9.7) 

p(I+)IA,m) = [HA (A + 1) - m(m + 1)] 11/2IA,m + 1), 

m =A,A - l,A - 2,.··. 

If the elementary representation is reducible, i.e., if 
A = ~ t, t = 0,1,2,. .. , then the basis equation (9.6) is not suit
able since the basis element lA, - A-I) is singular. If we 
are, however, interested only in the elementary subrepresen
tation defined on the invariant subspace generated by the 
extremal vector 12~ + I, then we can define the basis elements 
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IA.-A-1)=/2~+I, m= -A-I. (9.8) 

IA.m) = { ~ t( 2 ! [A (A + 1) - k (k + 1)] } ~ 112/ ~ ~ m. 

m = - A - 2. - A - 3 ... ·• 

and it follows that Eqs. (9.7) again hold true. It is clear that 
this must be the case since. under A++ - A-I. the expres
sionA (A + 1) remains unchanged. Thus Eq. (9.7) now de
scribes the irreducible elementary representation with high
est weight - A-I. 

For A = ~ t. t = 0.1.2 ... ·• Eq. (9.5) induces. on the quo
tient space with respect to the infinite-dimensional invariant 
subspace generated by the extremal vector /2~ + I. a finite
dimensional irreducible representation of dimension 
2A + 1. It follows that Eq. (9.7) then gives the matrix ele
ments of this finite-dimensional representation for 
m = A. A-I ..... - A. This. of course. is a result which was 
obtained previously in a different manner [Eq. (8.3)]. 

10. INDECOMPOSABLE AND IRREDUCIBLE INFINITE
DIMENSIONAL REPRESENTATIONS 

A careful investigation of the representations obtained 
yields a wealth of derived representations. defined on invar
iant subs paces. as well as on quotient spaces. Some examples 
are given below. 

Case (10a) 

These are infinite-dimensional representations which 
are bounded on one side and which have afinite-dimensional 
invariant subspace (note that the elementary representations 
may have an invariant subspace. but if they do have one this 
subspace is infinite-dimensional). Representations of this 
type can be obtained. from the representation given by Eq. 
(7.12). by considering the representations which are induced 
by this representation on the quotient space fl+ufLI 
fl~ - V. One obtains (deleting primes) 

P(/3)P+ = (A + n)P+. n> 1. 

p(/+)/n+ = _ n[A + !(n + 1)]/~+ I. n>l. 

p(L)P+ = /~~ I. n>2. (10.1) 

p(L)/+ =0. 

p(C)P+ =A (A + 1)/~. n>1. 

Then. if A = -! m. m = 2.3 ..... the representation equa
tion (10.1) contains an invariant subspace of dimension 
(m - 1). with basis 

(10.2) 
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Considering the representation equation (7.12) again. it 
is easily observed that for A = ~ m. m = 0.1.2 ... ·• this repre
sentation has an invariant subspace with basis 

[I"'. ./"'.~ 1 ..... L.l.P+. n = 1.2.3 .... J. (10.3) 

Restriction of the representation to this invariant subspace 
yields again an infinite-dimensional representation with a 
finite-dimensional invariant subspace. 

p(/3)/~ = (A + n)P+. n = 0.1.2 .... . 

p(/3)/ r~ = (A - r)/ r~. r = 1.2 ..... m. 

p(/+)/'~ = l'~~ I. 

p(/+)/~ = - n[A + !(n + l)]/n++ I. 

p(L)l'~ =(r+1)(A-!r)/r~+I. 

(10.4) 

p(l~)/~ = /~~ 1, 

p(c)/n+ = A (A + l)/n+ • 

p(c)/r~ = A (A + 1)1'~ . 

Case (10b) 

These are infinite-dimensional. irreducible representa
tions unbounded on both sides. From Eq. (7.3) it follows that 
if 

A +! ± JA +! #n. n = 0.1.2 ... ·• 

and 

-(A -!)±JA+!#m. m=0.1.2 ... ·• 

where p(/3)l = A 1 and p(C)1 = A 1. then the representa
tion equation (7.6) is infinite-dimensional. irreducible. and 
unbounded on both sides. 
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Formal linearization of nonlinear massive representations of the connected 
Poincare group 
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Let V I be an arbitrary finite direct sum of unitary irreducible representations, each of positive 
(mass)2, ofthe connected Poincare group Po = R4<2<SL(2,q. It is proved that each nonlinear 
representation of Po with linear part Vi, on the space of differentiable vectors of V I, is formally 
linearizable. Further, it is remarked that, commonly used, nonlinear massless representations of 
R2<2<SOo(I,I) are nonlinearizable and that the corresponding evolution equations do not have 
covariant wave operators. 

PACS numbers: 02.20.Qs, lUO.Qr, 11.30.Cp 

1. INTRODUCTION 

Autonomous (i.e., non-time-dependent) evolution 
equations, currently appearing in mathematical physics, 
have often, due to the physical systems considered, certain 
covariance properties, such as Poincare covariance. It was 
proposed in Ref. 1 (cf. Refs.2 and 3) how to take the covar
iance properties explicitly into consideration, when trying to 
integrate such equations and a theory of nonlinear represen
tations of Lie groups and Lie algebras was initiated. Heuris
tically a (nonlinear) analytic representation (V,E) of a real 
Lie group G in a Frechet space E is a local analytic action V 
of G in E with a fix point (which we take to be the origin). Let 
V = Ln> I un be the Taylor development of V around the 
origin in E, where un is a monomial of degree n. V I is called 
the linear part of V. V is said to be analytically linearizable, if 
there exists an analytic mapA: O-E, being analytically in
vertible on some neighborhood 0 C E of the origin and if A 
intertwines Vand V I, i.e.,AoV = V loA. Vis said to be for
mally linearizable if the last equality is true in the sense of 
formal power series. Let g be the Lie algebra of G. As in the 
case oflinear Lie group representations, one can also for the 
nonlinear case associate a Lie algebra representation (T,E 00 ) 

to (V,E ) on the space of differentiable vectors E 00 of ( V I,E ) 
by Tx = dVexp{tx)ldt It~ 0 (for details, see Ref. 2). Let 
B = T x for some X E g. Then the evolution equation du(t )I 
dt = B (u(t )j, u(t ) E E 00 , is said to be covariant under the ac
tion of g.3 Now, if (V,E) is analytically linearizable, then 
u(t) = A -10 V !xP(tX) oA (uo), Uo E E 00 , is a nontrivial global 
solution, if the image of A has a subset (different from (0 J) 
invariant under V !xP(tX)' t E R, and if Uo is appropriately cho
sen. Tentatively, to construct A, one can now try to profit 
from the often rich algebraic structure of G (compared with 
that of R), and divide the proof of the existence into two 
parts. First prove the existence of a formal power series A 
intertwining ( V,E ) and ( V I,E ) and second prove the conver
gence. The formallinearizability of all nonlinear representa
tions of G with a given linear part (V I,E ) is equivalent to the 
triviality of the one cohomology spaces H I(G,.2" n (E)), n>2 
(see Ref. 2, Proposition I), where .2" n (E) are the continuous 
symmetric n-linear maps of E to E. To what concerns the 
Poincare group Po = R4(xSL(2,q,4 the following has been 
proved: 

(i) If V I is a unitary representation having a definite 
energy sign and a finite discrete strictly positive (mass)2 spec
trum, then (V,E) is analytically linearizable.2,5 

(ii) The analytic representations of the proper analytic 
subgroups, of dimension at least 3, of SOo (3,1) are under 
very general conditions formally linearizable [analytically 
for SOo (3)]. See Ref. 1, Proposition 5 (resp. Refs. 6-8) for 
SOo (3) [resp. SOo (2.1), the Euclidean group of the plane E 2 , 

and the affine group of the complex plane W2]. 

In the present article we prove, on the domain of differ
entiable vectors, theJormallinearizability of all analytic (and 
formal) representations of the Poincare group 
Po = R4<2<SL(2,q, for which the linear part (V I,E) is a uni
tary representation with a finite discrete strictly positive 
(massf - spectrum. The difference of this linear part to the 
one considered in (i) above is the admission of both positive 
and negative energies. The proof of the triviality of 
H I (Po,.2" n (E)), n>2, in Refs. 2 and 5 was based on that the 
intersection of the (mass)2 - spectra of the linear part (V I,E) 
and its symmetrized tensor product ( ® n V I, ~ ~E ) was emp
ty Vn>2. This is no longer the case when both energy signs 
are present, and, for proving the triviality of the cohomo
logy, the following strategy is adapted. The cocycles 
R E Z I(Po,.2" n Jf!l. can be identified with functions from Po 
into S(R3,eM) ® (® ~S'(R3,eM)). As for the present linear 
part (V I ,E ), the space of differentiable vectors is isomorphic 
to a Schwartz space S (R3 ,eM), MEN. Fix a point 1" on one of 
the orbits of V I. The stability group of 1" is SU(2). Then 
R4<2<SU(2)X( ~ n E) 3 (g,F)_[R g (F)](1") E em, wheremisthe 
dimension of the inducing representation, defines an element 
R' EZI(R4<2<SU(2),em ®(~nS'(R3,eM))). WeprovethatR' 
is a coboundary by observing that H I (R4(xSU(2),em 
® ( ~ n S '(R3,eM))) = H I(R4,em ® ( ~ n S '(R3n ,eM))), as 
SU(2) is compact, and then solve the coboundary equation 
on R4. This last step is equivalent to solving a system oflinear 
equations, with polynomial coefficients, in S'. The compati
bility condition, being exactly that R ' is a cocycle on R4, the 
system has a solution A.. The a~io).l of SL(2,q on A. defines 
now an element A ES(R3,em) ® (® n S'(R3,eM)). By repeat
ing this procedure to each orbit of V I, we have proved the 
existence of A E .2" n (E ) having R as image under the co
boundary operator, (i.e., A is a potential for R ). 

For the purpose of proving analytical linearization, 
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there is a serious drawback in the proof of 
H t(po, 2" n (E)) = {o J, outlined above. To prove the existence 
of ..t, we have used theorems9

•
10 on the solution of the divi

sion problem in S', so we do not have any estimates on A, 
which should be necessary for a proof of the convergence of 
the intertwinning formal power series. The vanishing of the 
cohomology indicates that it is worthwhile to try to find such 
estimates. Another, perhaps, less serious, problem is that we 
have used the compactness of the stability group SU(2) and 
in some way (which at the moment is not very clear to the 
author) used the simple connectivity of the orbits of U t. This 
makes the generalization, to the case of a linear part ( U t ,E) 
with "mass zero orbits," problematic. Finally, the finiteness 
of the (mass)2 - spectrum was essential. 

Covariant wave operators, for relativistic nonlinear 
wave equations, intertwine the linear and nonlinear repre
sentations, naturally associated. A necessary condition of 
the existence of C~ wave operators is then the formal linear
izability of the nonlinear representation (cf. Ref. 3). It is not 
difficult to see (see Sec. 5) that the nonlinear representations 
of the Poincare group R2(2<SOo(I,I) in 1 + 1 dimension, nat
urally associated with a large class of massless local nonlin
ear wave equations, are not formally linearizable. This class 
of equations, not having covariant wave operators, contains 
the equations (J; - a;)ip (x,t ) = F (ip (x,t )) (t,x E R, 
F analytic with no constant and linear term). 

2. MAIN RESULT AND NOTATION 

In order to expose the main result of the paper, we first 
fix necessary notation and reproduce some definitions. Giv
enFrechetspacesF t,F2,F\andF, wedenoteY(F I,F2), the 
set of symmetric formal power series A = l:n> I A n from F I to 
F2, whereA n 

E 2" n (F t,F 2), the algebraic vector space of con
tinuous symmetric n-linear maps from F I to F2. We denote 
2" n (F,F)by 2" n (F),2" 1(FI,F2)by 2"(FI,F2)andY(F,F)by 
Y(F), F I ® F 2 denotes the completed projective tensor pro
duct ofF I and F 2 and ; :F the symmetrized n-fold complet
ed projective tensor product of F. We will not distinguish 
between A n E 2" n (F I ,F2) andA n E 2"( ®:F I ,F2), due to the 
canonical algebraic isomorphism between these spaces (Ref. 
11, Proposition 43.4). The usual composition law offunc
tions gives a composition law 
Y(F I,F2) XY(F2,F3)_Y(Ft,F3) defined by 

BoA = I I BP(A n, ® ... ®A np)un, (2.1) 
n>l nJ+···+np=n 

I<p<n 

whereA = ~n>1 An E Y(F\F 2
), A n"E 2"(® ;FI,F2), 

B = ~n>1 B n E Y(F2,F 3), B n E 2"( ® ;F2,F3), and Un is the 
symmetrization operator un(u l ® ... ® un) = (n!)-I~jEPn Ui, 

®···®U· ,UI, ... ,U EFI,Pn being the group of permutations 
of n eler:;ents. Th~ invertible elements in Y(F 1 ,F2) are those 
A with a (continuously) invertible linear part A I E 2" (F I ,F 2). 
A = ~n>1 An E Y(FI,F2) is said to be analytic if, for 
An E 2" n(F 1,F2), A n(u) = A n(u, ... ,u), the series 
A (u) = ~n>1 A n(u) converges for all u in a neighborhood of 
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zero in F I. We could here demand convergence only on 
smaller sets and obtain a weaker notion of analyticity. 

Definition 2.1 I: A formal representation (U,F) of a real 
Lie group G in F is a homomorphism g-Ug from G to the 
group of invertible elements in Y(F) such that, if 
Ug = ~n>1 U;, U; E 2" n(F), then the map (g,ul, ... ,un) 
-U;(ul, ... ,un ) is continuous from G x (X" F)intoF for each 
n;;. 1. (U 1 ,F) is called the linear part of ( U,F). 

Definition 2. 2 I: An analytic representation ( U,F) of Gin 
F is a formal representation for which there exists an open 
neighborhood V of the identity in G such that, for each g E V, 
Ug = ~n> I U; is an analytic map (from a neighborhood & g 

of the origin in F). 
Definition 2.3 I: A representation ( U,F), formal or ana

lytic, of G is said to be formally linearizable if there exists A 
invertible in Y(F) such that AOUg = U ~ oA, Vg E G. 

Next introduce a continuous linear unitary representa
tion (U 1 ,cW), involving only a finite number of massive fields, 
of the Poincare group Po = R4 (xSL(2,q in a Hilbert space 
JY'. More explicitly, let ( U 1,cW) be a finite direct sum of uni
tary irreducible representations of Po. Let (d U I ,JY' 00 ) be the 
corresponding representation of the Poincare Lie algebra 
.\.1 = R4 E3-SL(2,qI2 in the Frechet space JY' 00 of differentiable 
vectors of ( U 1 ,cW). JY' 00 is isomorphic to a Schwartz space of 
test functions. Denote by P

fL
, M fLV , j.1, v = 0,1,2,3, the ele

ments of a standard basis of.\.1. We make the following as
sumption on the (mass)2 operator: 

3 

The spectrum of - (dUpy + I (dUp/ 
i= 1 

is a subset of ]0,00 [. (2.2) 

Denoting by (U I ,JY' 00 ) the differentiable representation as
sociated with (U 1,cW) (see Ref. 13, p. 254), the main result, 
which will be proved in Secs. 3 and 4, can be formulated as 
follows: 

Theorem 2.4: Any analytic or formal representation 
(U,JY' 00 ), with linear part (U I ,JY' 00 ), of Po is formally lineari
zable. 

Remark 2.5: Given any analytic representation (U,cW) 
of Po, with the above linear part (U 1,cW). Then (U,cW) is ana
lytically equivalent to a smooth representation (T,cW) (see 
Definition 6 of Ref. 1), with linear part (U 1,cW). (T,cW) has a 
restriction (T,JY' 00) (see Proposition 4 of Ref. 1) to which 
Theorem 2.4 can be applied. In this sense ( U,cW) is formally 
linearizable on a dense invariant subset of JY'. 

Remark 2.6: The formal representation (U,JY' 00 ) in 
Theorem 2.4 is COO , in the sense that the mapping 
PoX 2"(;;JY' 00 ,JY' 00) 3"Jg'U 1 ® ... ® un) 
-U;(u. ® ... ® un) E X( ®;Yr 00 ,JY' 00) is COO ,when 
X( ®;JY' 00 ,JY' 00 ) is given the topology of bounded conver
gence. 14 

3. TRIVIALITY OF CERTAIN COHOMOLOGICAL 
SPACES 

Let (S;,H;), O<;i<;n, n;;.2, be unitary irreducible repre
sentations of Po, with mass mj > 0, spin S; E ~N, and energy 
sign E; Ell, - 1 J, respectively. We will use an explicit real-
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ization of (S; ,H; ). As usual SL(2,q acts on the hyperboloid 
Vmi,Ei = {(ko,k) E R41k E R3,k ~ - Ikl2 

= m;, 
kolkol- I = €; J, by (B,k )~A (B )k, where B E SL(2,q, 
k E Vmi'Ei ' andA:SL(2,q~SOo(3,1) is the canonical projec
tion. Let E; be the (finite dimensional) carrier space of an 
irreducible representation, with spin s;, of SU(2), the stabil
ity group of (€;m;,O,O,O) E Vmi,Ei' We choose then (S;,H;) in 
the following form: 

[S;(a,B If](k) = e;akV;(B If(A (B -I)k) 

for kE Vmi,Ei' (a,B)ER4(xSL(2,q, (3.1) 

fEH; = L 2(Vmi,Ei' E;,li.I;(k)-ldk), li.I;(k) = (m; + IkI2)1/2, 

where V; is a representation of SL(2,q in E;, compatible 
with theoneofSU(2) andak = aUk ° - ~;~ I a;k i. Occasion
ally, we will consider Hi as a space of functions R3~E;, by 
means of the diffeomorphism V mi,Ei :3 (ko,k)~k E R3. The 
space of differentiable vectors H; 00 of (S; ,H; ) can then be 
identified withS (R 3 ,Ej ) and we denote by (S;.H;oo ) the differ
entiable representation associated with (S; ,H; ). 

Introduce the rep!,esentations (S I,F I) = (So,H 000 ) and 
(S2,F2) = (® I<i<n Si' ® I<i<n Hioo)' (S2,F2) is differentiable 
(see Proposition 4.4.1.1 0 of Ref. 13). The representation 
(T,S/' b (F2,F I)) of Po (b stands for bounded convergence) de
fined by (g,A )~ Tg (A ) = S ~AS ~ _ I is differentiable. In fact, 
the representation (T,S/' c (F2,F I)) (e stands for the topology 
of convergence on compact subsets in F I) is differentiable 
(see Ref. 14, p. 14). The statement follows now that F I is a 
Montel space. The space of one cocycles Z I (Po, S/' b (F2,FI)) 
[resp. the space of l-coboundaries B I(Po,S/' b (F2,F I))] is the 
space of all continuous maps R: Po~S/' b(F2,FI), such that 

R gg, =Rg +S~Rg.s~-, 

[resp. Rg = S ~AS~_ I - A, 

for some A E S/'(F2,FI)]. (3.2) 

B I (Po,S/' b (F2,F I)) is a subspace of Z I(PO'S/' b (F2,F I)). The 
quotient space H I (Po, S/' b(F2,F I)) = Z l(po,S/' b (Fl,F 1))/ 
B I (Po,S/' b(Fl,F I)) is called the I-cohomology space. 

Remark 3.1: As (T,S/' b (F2,F I)) is differentiable, it fol
lows (see Ref. 14, Lemma 2, p. 13) that 
Z I (Po,S/' b (Fl,F I)) = Z ~ (Po,S/' b (F2,F I)), i.e., the map 
Po:3g~Rg E S/' b(F2 ,FI) is Coo ifR E Z I (Po,S/' b(F2,F I)). Ob
viously, B I (Po, S/' b (F2,F I)) = B ~ (Po,S/' b (F2,F I)). 

In the remaining part of this paragraph, we prove the 
triviality of H I (Po, S/' b (F2,F I)). 

Introduce the real analytic functionsf;: R3n~R, 
1 <)<3, defined by 

n 

f;(kl, .. ·,kn ) = - I kj, kj = (kj,k],k])ER3. (3.3) 
j~ I 

Lemma 3.2: Given distributions T; E S '(R3n ,q, satis
fyingpTj =PT;, i,j = 1,2,3. Then there exists adistribu
tion B E S '(R3n ,q, such thatpB = Ti, i = 1,2,3. 

Proof: Let as be the germ of real analytic functions at 
s = (SI,,,,,Sn) E (R3)n (see Ref. 10, p. 23~1; cf. Ref. 16, Chap. 
II). ForeverysE R3n, we will prove that, ify; E as,i = 1,2,3, 
satisfy ~~~ I Yi f; = 0 (in as), then ~~ ~ I Y; Ti = 0 in a 
neighborhood of s. Theorem 1, p. 23~2, and Sec. 3, p. 2S~4 
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in Ref. 10 guarantee then the existence of B. 
For 1 <i<n - 1, introduce new coordinates 

s' = (s; , ... ,s~), s; = S;, s~ = - ~;~ I Sj, k' = (k; , ... ,k~), k; 
= k;, and k~ = - ~;~ Ikj, where k = (kl, ... ,kn ) E (R3)n. 

Transformed functionsf\ germs Y; E as, and distributions 
T'i are defined by j';(k; , ... ,k~) = P(k1, ... ,kn ), y;(k; , ... ,k~) 
= y;(kl, ... ,kn), and T';(k; , ... ,k~) = T;(kl, ... ,kn ), respective

ly. Thenf';(k; , ... ,k~) = k ~;. 

If one of the s~;, i = 1,2,3, let us say s~ I, is different from 
zero, then!'1 is a unit in as" so y; = - (ftl)(yz /,2 
+ y; /,3). Using the hypothesis of Lemma 3.2, we get 

3 

I y;T'i 
;= 1 

= - (f'I)-I(yz /,2 + y; /,3)T'1 + y1T,1 + Y3 T '3 

= _(ftl)-I(YZ/'IT'1+YZ/'IT'3) 

+ yz T'2 + y; T'3 = O. 

Let s~ = 0, and let g l,g2,g3 be elements in the equiv
alence classes y; ,y; ,y;, respectively. If k = (k; , ... ,k~ _ I ), 
then in some neighborhood of s' = (s; , ... ,s~ _ I ,0), g; can be 
expanded into a convergent power series 

gi(k') = I h f"u"a'(k )(ftl(k ')t'(f'2(k ')t'(f,3(k 'it', 
a.,a2'U_'>O 

(3.4) 

where h f"u"a, are real analytic functions in a neighborhood 
() ofs = (s; , ... ,s~ _ I) (independent of i,a l,a1,a3). Substitu
tion of (3.4) in ~1~ I gu f'i = 0, in a neighborhood ofs', and 
identification of the coefficients give in () 

h f'o,o = h ~,u,o = h ~,o,u, Va,>O, (3,Sa) 

h ~,O,I + h ~,o,o = h ~,I,O + h 1,0,0 = h ~,O,I + h ~,I,O = 0, (3.Sb) 

h fl - l'U2>U" + h ~.,a2 - Ita,. + h ~1>a2,aJ - 1 = 0, Va
l
,a

2
,a

3
# 1. 

(3.Sc) 

(3.4) and (3.Sa) give in a neighborhood of s' 

I gi T'i = (h ~,1'(:f'2 + h ~,0'1'3)T'1 + (h ~,O,ry'l 
1<;<3 

+ h ~'0'1'3)T'2 + (h ~,O,ry'l + h ~,I,ry'2)T'3 

+ I [h f' - l,a2,a'(fI))a, - I 

a •• a 2.a}> 1 

x (f'2)U'(f'3t'TI) 

+ h ~"u, - l,u'(f,I)a'(f,2)a, - 1(/,3)a'T'2 

+ h ~"a"a, - 1(f'I)U'(f'2)a2(f,3)u, - IT'3]. 
(3.6) 

The hypothesisj'iTJ = j'jT\ for i,j = 1,2,3, and then (3.Sb) 
give 

(h ~,I,ry'2 + h ~,0'1'3)T'1 + (h ~.O,ry'l + h ~,0'1'3)T'2 

+ (h ~,O,O/,I + h ~,I,ry'1)T'3 

= (h ~,I,ry'lT'2 + h ~,oy'3T'I) 

+ (h ~,0,ry'IT'2 + h ~,0'1'2T'3) 

+ (h ~,0'ry'3T'1 + h ~,I,ry'2T'3) 

= (h ~,I,O + h ~,o'0}fI)T'l 

+ (h ~,O,I + h ~,I,olf'2T'3 

+ (h ~,o,o + h ~,0,llf'3T'1 = O. 
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The hypothesis and (3.5c) give, for a l,a2,a3> 1, 

(f'l)a, - 1(f'Z)a, - 1(f'3t3 - I [h~' - l,a"a,!,Zf'3TI! 

+ h ~,.a, -1.af'1'3T'2 + h ~"a,.a, - I f'1'2T'3] (3.8) 

= (f'l)a, -1(!,2)a, -1(f'3t,-1 [h~' -I,a"u, 

+ h ~"a, - I,a, + h ~"a"a, - I] f'1,zT'3 = 0. 

(3.6), (3.7), and (3.8) prove that };1<;J<;3 g; T'; = ° in a neigh
borhood of s'. Hence, the existence of B follows from the 
above cited result of Ref. 10. Q.E.D. 

Letfo: (R3)n-+R be the real analytic function defined by 

Lemma 3.3: Given a distribution T E S '(R3n ,q satisfy
ing!, T = 0, for i = 1,2,3. Then there exists a distribution 
B ES'(R3n ,qsatisfyingfOB = TandfB = 0, fori = 1,2,3. 

Proof For 1 <J<n, introduce the isomorphism 
Qj:S(R3,Cj-+S(R3,R) El1S(R3,R) by QjfIJ 
= (2 Re fIJ, - 2EjWj 1m fIJ). The image, of the map 

S(R3,q3fIJ + iEjWjfIJ E S(R3.q (F = - 1) under Q is the 
mapS (R3,R) El1 S (R3,R) 3 (¢I'¢2)-+(¢2,W]¢tl. Note thatw2 is a 
polynomial. The equation ifo B = iT is equivalent to th~ 
equation (ifOB)(®j= 1 Qj-I)=(iT)(®j=1 Qj-I),wherethe 
rhs and the)hs are complex valued continuous linear func
tionals on ® n(s (JR3,R) El1 S (JR3,JR)) = S (JR3n.R) 

El1." El1S(R3n,R) (2n copies). A complex valued continuous 
linear functional F on S (JR3n,JR), is identified with 
FES'(R3n.q. There are then T',B' E S'(JR3n ,C2n ). such that 
(iT)( ® jn= I Qj-I) = T' and 

(ifOB)(.~ Qj-I) = (imoEoB) ( ; Qj-I) 
} -I }= I 

- It I ill (B (~l Qj-l)) 
= (imoEo - i ill) B (.; Qj-I) 

1= 1 }= I 

= (imoEoI- Itlill)B', 

where 

ill =I® ... ®I®( ° 1) ®I® ... ®I 1= (1 0) 
- wJO ' ° l' 

A = (imoEoI - }; 7= I ill) is a r X r matrix of polynomials 
in kt ..... kn. Hence we have to prove the existence of 
B' E S '(R3n ,C2n ), such that AB' = T' andrB' = ° for 
i = 1.2,3, under the conditionfT' = 0. Now,fiT' = ° for 
i = 1.2,3, so there is (Ref. 15, p. 101) a distribution 
G E S '(JR3

(n - II ,C2n ), such that T'u = Gv, for all 
u E S (R3n ,q, where v E S (JR 3

(n - II,q and 

v(kl, ... ,kn _ I ) = u(kl,· .. ,kn _ 1 , - };'j~ / kj ). Similarly put 
B'u = Fv, for FE S '(JR3

(n - II.C2n). The equationfiB' = 0, 
i = 1,2.3, is then satisfied and theequationAB' = T' isequi
valent to PF = G, where 
P(kl .... ,kn _ l ) =A (kl .... ,kn _ l , - };'j~/ kj ). Pis a 2n X2 n 

matrix with polynomial coefficients. The determinant of Pis 
not the zero polynomial. In fact,f° is not the zero function. 
By Ref. 9 there exists then a solution F of PF = Gin 
S '(JR3In - II ,C2n ). Q.E.D. 
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Lemma 3.4: Let T I'- E S '(R3n ,q satisfy 
fl'- TV = fV T I'- , for J-l. v = 0.1,2,3. Then there exists 
BE S '(JR3n ,q satisfyingfl'- B = T I'- , for J-l = 0,1,2,3, 

Proof: By Lemma 3.2 there exists a solution 
C E S '(R3n ,q of the systemfi C = T i , i = 1,2,3. Define 
T'I'- = TI'- - fl'-C,J-l = 0,1.2,3. As T'; = 0. i = 1,2.3, there 
is, by Lemma 3.3, a solution C' E S '(R3n,q of the system 
fl'- C' = T"',J-l = 0,1,2,3, B = C + C' has the announced 
properties. Q.E.D. 

4Letr = (Eomo,O,O,O). The representation (O,JP b (F2,Eo)), 
ofR

I 
Ci<SU(2). is defined by (R4Ci<SU(2))X JP b (F2,Eo) 3 (g,Ao) 

-+S g(r)AoS:_ I E JP b (F2.Eo), where S !(r) is the inducing 
representation of the stability group JR4Ci<SU(2) of 'I in Eo, i.e" 
S (~,BI (r)e = Vo(B )ei~omoaOe, (a,B) E R4(xSU(2). 0 is differentia
ble. As above. we introduce. for the representation 
(O,JP b (F2,Eo)), the cohomology HI(R4(xSU(2),JP b (F2,Eo)). 

Remark 3.5: Similarly, as in Remark 3, 1, it follows that 
Z I(R4(xSU(2).JP b (F2,Eo)) = Z ~ (JR4Ci<SU(2),JP b (F2,Eo)) and 
that B I(R4Ci<SU(2),JP b (F2.Eo)) = B ~ (R4(xSU(2), 
JP b (F2,Eo))· 

For the sake of completeness, we prove the following 
lemma, which is contained in Proposition 5 of Ref. 1: 

Lemma 3.6: Let R E Z I(JR4Ci<SU(2),JP b (F2,Eo)). Then 
Rg = 0, mod B I(JR4Ci<SU(2).JP b (F2,Eo)), for g = (O,B). 
BESU(2). 

Proof Let J-l be the normalized invariant measure on 
SU(2). Define A = S SU(2IR(O.B I df.L(B) E JP b (F2,Eo). R is 
equal, modB I tog-+Rg + Og(A) -A. But 
Rg + Og(A) -A = ° ifg = (O.B l, B E SU(2). Q.E.D. 

Proposition 3. 7: H I(JR4 (xSU(2),JP b (F2,Eo)) = 10 J. 
Proof Let R E Z I(R4(xSU(2),JP b (F2,Eo))' We have to 

prove that R is a coboundary. By Lemma 3.6, there is no 
restriction to choose Rg = ° for g = (O,B ), B E SU(2). The 
map R4(xSU(2)3g-+Rg E JP b(F2,Eol is differentiable. De
fineS-x = dRexp(tXl/dt It=o E Y(F 2,Eo) for all X E R48-su(2), 
the Lie algebra ofJR4(xSU(2). As R4 Ci<SU(2) is simple connect
ed, R is a coboundary if and only if (see Ref. 17, Proposition 
1.2) there exists A E Y(F2,Eo) such that 

d (S l(r)JxA - Ad( ® nS2)x = S-x, '<IX E R48-su(2). 

(3.10) 

NotethatS-x = ° for all X = (O,b), bE SU(2).and that ifAo is 
a solution of (3.10) on the ideal R4, then 
A = S SU(21 dJ-l(B 1 0 (O,B lAo, where J-l is the normalized 
invariant measure on SU(2). is a solution on R4 Ci<SU(2). 

We have the following topological isomorphism: 

Yb(F2,Eo)~Yb( ; S(R3,E;),Eo) 
1,;;",<" 

~ ( ; S(R3 .E;)) ' ®Eo 
1 <.I<.n 

( 
'" ),®En 

~ ® (S(R3,q®E;) 
)<I<.n 

~(S(R3n,q ® ( ® Ei))' ®Eo 
J<l<n 

~S'(R3n,q®Eo® ( ®. E;), 
l ... , .... n 

(for isomorphism numbers 2,3,4, and 5 see, respectively. pp. 
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525, 533, 530, and 525 of Ref. 11), where S '(]R2n ,q is the 

strong dual ofS (R3n ,q. Let! eb JJ~IEoand! en:::\E:, l<i<n, 
be bases of Eo and E ;, respectively. Due to the above isomor
phism, if C E 2' b (F2,Eo), then 

C = I I I C(jO;jl,.·.,jn)ei[jei.,'···i,,", 
i<.io<dim Eo 1 <i<.n 1 <.ii<dim E: 

where C (jO;jl, ... ,jn) E S '(]R3n ,q. The restriction of(3.1O) to 
the ideal]R4 gives then 

ifl' Ao(jo;jl,···,jn) = Sp (jO;jl,···,jn)' 
" 

Vo<f.1-<3, 1 <io<dim Eo, (3.11) 

and l<ii <dim E;, I<i<n. By differentiation of the cocycle 
equation R gg, = Rg + e (g)Rg" it follows that fl's pJj) 
= fVsp (j), Vj = (jO;jl, ... ,jn)' There is then, by Lemma 3.4, 

a soluti~n Ao(j) E S '(]R3n ,q, for each possible 
j = (jo;jp ... ,jn). The corresponding Ao E 2'(F2,Eo) solves 
(3.10) on the ideal]R4. Hence there exists A E 2'(F2,Eo) solv
ing (3.10) for all X E ]R4(2<~u(2), which proves that R is a co
boundary. Q.E.D. 

For k E Vmo,€o' letBk E SL(2,q be such that A (Bk)r = k 
and let ]R33k_k = (EoWo(k),k)-Bk E SL(2,q be Coo. This 
is always possible, as seen from the choice [see (6.34) of Ref. 
18]: 

(3.12) 

where the Pauli matrices are 

(To = (~ ~), (TI = (~ ~), 

(T2 = e ~ i), (T3 = (~ ~ J. 
The corresponding transformation in]R4 is [see (6.33) of Ref. 
18], ifp = (pO,pl,p2,p3) = (Po,p) E R4: 

3 

(A (Bdp)O = (Eo"Zo)-1 I kI' pI', 
I' = 0 

(A (BklP)i =i + (Eomo)-lki[(kO+Eomo)-1 

X jtl kjp+pOJ, l<i<3. 

Each R E Z I(p 0'2' b (F 2,F I)) has a restriction 
ROE Z I(R4(2<SU(2),2' b (F2,Eo)), defined by R ~(f) 

(3.13) 

= [Rg(f)](r),JE F2, andg in the subgroup ]R4(2<SU(2). By 
Proposition 3.7, there is, for each such R, A 0 E 2'(F2,Eo) 
satisfying 

R ~ = egA 0 - A 0, Vg E ]R4(xSU(2). (3.14) 

For the couple (R,A 0) define A by 

[Af] (k) = VO(Bk H [R _,s2 -.I] (r) 
gk gk 

+A OS2_.fJ, VfEF2, kEVm E' (3.15) 
~ mo 

wheregk = (O,Bk) andBk is given by (3.12). Bythedifferen
tiability properties of S I, S 2, R, and B it follows that 
A E 2' (F 2,C b( V mo,£o ,Eo)). In the next few lemmas, we prove 
thatRg =S~AS;_I -A,gEPo,whenRg(E2'(F 2,F I))is 
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considered as an element in 2'(F2,C :(Vmo,£o,Eo))' For con
sistency, we note that the representation (S I,F I) of Po has a 
unique extension to a differentiable representation 
(S I,C :(Vm € ,Eo)). 

Lemm~ 3.8: Let R E Z I (Po, 2' b(F2,FI)) be zero on the 
subgroup SU(2) and consider R valued in C :(Vmo,€o,Eo). If 
A 0 is defined by (3.14), g = (O,B), B E SL(2,q, h 1- I 
= (O,B k-IB -IBA(Blk) and h2 = (O,B AI~lk)' then 

(i) Vo(BdA °S~k_ ,s~-, = Vo(B -IWo(BA(Blk)A °S~" 

VkE Vmo,£o' 

(ii) Vo(Bd(R _,s2 _ ,sg2 _ I f)(r) gk gk 

= Vo(B -IWo(BA(Blk)(Rh,S~J)(r) 

+(S~_IRgf)(k), VfEF2, kE Vmo,£o' 

Proof: We first note that hi = hzggk and that 
B k- IB - IB A(B Ik E SU(2). In fact, the last property follows 
from that A (B k- I)A. (B - I)A. (B A (B Ik )r 
= A (B k- I)A. (B -I)A. (B)k = A (B k- I)k = rand thatthesta

bility group of r is SU(2). 
(i) VO(Bk)A °S2 _,sg2_, = VO(Bk)A °Sh2 -,s~ . The rhs of 

gk I 2 

this expression, byusingAOS~,_l = VO(Bk-IB-IBA(Blk) 

(A 0 + R~,) [see (3.14)] can be written Vo(B -IWO(BA(B)k) 
(A 0 + R ~, )S~" The first part of the lemma follows now 
from R~, = 0, as by hypothesis R = 0 on SU(2). 

(ii) LetfE F2. Then Vo(Bd(R _ ,s2h _ ,s;_ I f)(r) gk k 
= Vo(B k)(R -,s h2 _ ,s ~ f)( r). The rhs of this equality can, 

gk I 2 

by using (3.2) and R h , = 0, be written 
VO(Bk Wo(B k- IB -IBA(Blk)(Rh -,s~ f)(r). As hlgk- J = hzg 

18k 2 

and Rh,g = R h, + S l,RgS~2-1' this gives, by the definition 

of S 1, that Vo(Bd(R _,s2 _ ,sg2_, f)(r) 
g. g. 

= Vo(B -I) [VO(BA(Blk)(Rh,St g)(r) + (Rgf)(A (B)k l]. Us
ing once more the definition of S I, one gets the second state
ment of the lemma. Q.E.D. 

Lemma 3.9: Let R be as in Lemma 3.8 and g = (O,B), 
BE SL(2,q. If A is given by (3.15), thenRg =S~AS;-, -A. 

Proof: We get by (3.15) and Lemma 3.8, forfE F2, that 
[AS~, f] (k) = VO(Bk )(Rgk- ,s~.- ,s~-, f)(r) 

+ VO(Bk)A OS~k_ ,s;f = Vo(B -1)Vo(BA(Blk)[ A °S~J 

+ (Rh,St f)(r)] + (S ~-,Rgf)(k) = (S ~-,Af)(k) 
+ (S ~-, Rg f)(k ). Q.E.D. 

Lemma 3.10: Let R and A 0 be as in Lemma 3.8 and let 
a E R4, g = (a,!), h = (A (B k-l)a,I), uta) = exp(iar), where 
IE SL(2,q is the identity element. Then, for fE F2, 

(i) VO(Bk)A °S2 _ ,sg2 -, f = u( - A (B k- J)a) 
g. 

X VO(Bk )(R _,s2 -.I - R hS 2 _ .1)(7) gk gk gk 

+ (S~-,Rgf)(k). 

Proof' We observe thatggk = gk h. Statement (i) follows 
then directly from (3.14) and statement (ii) follows from re
peated use of (3.2) in the following calculus: 
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= VO(Bk)(Sh,R _,s2_J+S
h
l _, _IRg/ 

gk gk gk 

- S L -,Rh S 2 
_ J)(7) = U( - A (B k- I)a) gk 

X VO(Bk)(R _,s2 J gk gk 

- Rh S2._ J)(7) + (S~- ,Rg/)(k). 
g. 

Q.E.D. 

Lemma 3. 11:Let R be as in Lemma 3.8, g = (a,I), 
a E R4, and I the identity in SL(2,q. If A is given by (3.15), 
thenRg =S~AS:-, -A. 

ProolFor/E F2, we get, by(3.15)andLemma3.1O, that 

(AS:-, /)(k) = u( - A (B k- la))Vo(Bk ) [(Rgk- ,s:k-I/)(7) 
-- (R h S 2 _ J)(7) + A °S2 _ J + (R h S 2 -1/)(7)] gk gk gk 
+ (S ~-,Rg/)(k) = (S ~-, (A + Rg)/)(k). Q.E.D. 

Proposition 3.12: Let R E Z I (Po,.2" b (F 2,F I)) be zero on 

the subgroup SU(2) and consider R valued in C b'( Vmo.<" ,Eo). 
If A is given by (3.15), then Rg = S ~AS:-, - A, for every 
gEPo' 

Prool As g = (a,B) = (a,I )(O,B ), the results follow from 
(3.2), Lemma 3.9, and Lemma 3.11. Q.E.D. 

Proposition 3.13: LetR E Z 1 (Po,.2" b (F2,F2)), be zero on 
the subgroup SU(2). Then A, defined by (3.15), is an element 
of .2"(F2,FI). 

Prool For every seminorm ql (resp. q2) inF I (resp. F2), 
there is aseminormpl (resp,P2) inF I (resp. F2) and a positive 
number CI (resp. c2 ) depending on X E p, such that 

ql(S!xP(tXI iJ)<:PI(/I)exp(c I It I) [resp. q2(S~xP(tXI/2) 
<:P2(/z)exp(czlt I)] for all t E Rand/I E F 1 (resp.f2 E F2). This 
follows, for example, from the definition of (S I,F I) (resp. 
(SZ,F2)). By Remark 3.1, we can define 
Sx = dRexp(tx/dt It~o E .2"(F2,FI). Differentiation of the 
cocycle equation (1.3) and then integration gives that 

Rexp(tXI/ = S~ds S !XP(SXI SxS;xp( _ sXI J, for/E F2. Here the 
integral is that of the Riemann integral in the topology ofF I. 
This, integral representation of R, and the above estimates 
show that, for each seminorm P in F I and each X E p, there is 
a semi norm q in F2 and a positive number c, such that 
p(Rexp(tXI /)<:exp(clt I)q(/),forall/E F 2 andt E R. Inparticu
lar choosep(u) = IU(7)I Eo' U E FI, X = (O,a3 ) and 
t = - In(mo- IEok 3t (Eok 0)), where k = (k o,O,O,k 3) E Vmo.<,,' 

Then gk- I = exp(tX), which substituted into the estimate of 
R gives 

I (Vo(Bk )Rgk- ,s:k- J)(7) lEo <:~Ik °ICq(/), V/E F2, (3.16) 

for some c > ° and seminorm q on F2. Choosing c and q suffi
ciently large, it follows from the continuity of A ° [in (3.15)] 
that 

1V0(BdA °S:.- JI<:!lkOICq(/), V/EF2. (3.17) 

From the action of SU(2), we can conclude that estimates 
(3.16) and (3.17) are true for all k E V mo •• o' and further from 
(3.15) that 

I(A/)(k)IEo.;;;lkOICq(/), V/EF 2, kE Vmo•Eo ' (3.18) 

Next, the equation dS lA - AdS;' = Sx, X E P (see 
Proposition 3.12) yields (dS 1 rA =~;;:; 6 (dS 1 Y' 
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Xs,,(dSit- P -
1 +A (dsi)n, for n:>l. In particular, for 

X = Po, we get, after division by (ik °t , 

(A/)(k) = Ct~ ((dS ~o Y')sPo (dS ~o)n - p - y) (k) 

+ (A (dS~ )'i)(k )(ik 0) - n, (3.19) 
o 

for k E Vm E ,JE F2, and n;;;d. (3.19) shows that 
A E .2"(F2:Ho)' In fact, the first term on the rhs defines an 
element in .2"(F2,FI) and (3.18) gives that 
I(A (dS~y/)(k )(ik 0) - nlEo <: Ik °lc- nq((dS~J'i). It follows 
then, from the measurability of Vmo•Eo 3k--(A (dS~,,)'i)(k) 
E Eo, that the second member on the rhs of (3.19) defines an 
element in .2"(F2,Ho), for n sufficiently big. 

Further the cobord equation (see Proposition 3.12), 
S ~Af = RgS: / + AS: J, has a rhs which is a Coo function 
from Po into H o' HenceAfE Fl. Finally, by the same equa
tion, it follows that the map Po 3 g--S ~A/ E H o converges to 
zero in Coo (Po,Ho) (with topology of convergence on com
pact subsets of Po), when/goes to zero in F2. Hence 
A E .2"(F 2,F I) (cf. Ref. 13, p. 253). Q.E.D. 

Proposition 3.14: H I (Po,.2" b (F2,F I)) = 10}. 
Prool We can, for every equivalence class in 

H I(Po,.2" b (F2,F I)), choose arepresentativeR, being zero on 
the subgroup SU(2) (see the proof of Lemma 3.6). R is then a 
coboundary by Proposition 3.12 and Proposition 3.13. 

4. PROOF OF THE LINEARIZATION THEOREM 

By hypothesis, there is a positive integer N and there are 
continuous unitary irreducible representations (U I,,:;-r'i ), 
l.;;;i<:NofPo,such that U I = Ef) t~ I U j

l and,:;-r' = Ef) f~ I,:;-r'i' 
The I-cohomology H 1 (Po,.2" b (® n,:;-r' 00 ,,:;-r'oo i), n>2, for the 
representation Po X .2" ( ; n,:;-r' 00 ,,:;-r' 00 ) 

3 (g,A )--U ~A (~nu ~-,) E .2"( ~ n,:;-r' 00 ,,:;-r'oo ), is intro
duced similarly to the cohomology H I (Po,.2" b (F2,F I)) in 
Paragraph 3. 

Lemma 4.1: H I(Pa • .2" b ( ~ n,:;-r' 00 .,:;-r' "" )) 
'" A 

= Ef) iH I(Po,.2" b ((,:;-r'i,)"" ® ••• ® (,:;-r'iJoo ,(,:;-r'i"loo )), where 
the direct sum is taken over all i = (io,il, ... ,in ) 

E \1, ... ,Nl n + l
• 

Prool For l<j<:N, let 1Tj:,:;-r' 00 --(,:;-r'j)oo , be the canoni
cal projection 1Tj (u I Ef) ... Ef) UN) = Uj and let R: 
Po--.2" b ( ~ n,:;-r' 00 ,,:;-r'oo ) be a map. Then 

Rg = l:iEII ..... Nln+11Ti"Rg(1Ti, ®"'®1Ti,,! 
~ EfJAE II ..... N j"+ I (Rio;i, ..... ;,,) , where (R io;i, ..... iJg€.2"((,:;-r'i,)oo 
® ... ® (,:;-r'in) 00 ,(,:;-r'i

o
) 00 ). As 1Ti U; = U Ig 1Ti , it follows now 

that R is a cocycle (resp. coboundary) if and only if Rio;i ..... i" is 
acocycle (resp. coboundary), for alIi E I 1, ... ,N 1 n + I .Q.E.D. 

Pro%/ Theorem 2.4: There exists an invertible 
A E Y(F). s~chAoUg = U~oA, if 
H I (Po,.2" b ( ® n,:;-r' 00 ,,:;-r' 00 )) = 10), for every n>2 (cf. Propo
sition 1 of Ref. 2). It follows from Lemma 4.1 and Proposi
tion 3.14 that this cohomology is trivial. Q.E.D. 

5. A REMARK ON THE NONLlNEARIZABILlTY OF 
CERTAIN MASSLESS REPRESENTATIONS OF 
R2 (><!l\o(1,1) 

Let D (r) be the open disk with radius r> ° and center ° 
in C and let J: D (r)--C be a holomorphic function, with 
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J (0) = J '(0) = O. We consider the (1 + 1 I-dimensional wave 
equation (a 2/ at 2 - a2/ ax2)rp = J (rp ) in its evolution form: 

d (rp (t )) ( 0 1) (rp (t )) ( 0 ) 
dt ¢ (t ) = a2 0 ¢ (t ) + V (rp (t )) 

=T (rp(t)) (a= ~). (5.1) 
- Po ¢(t) ax 

The space of initial conditions is chosen to be E = L ~ (JR) 
al L ~ (JR), where L ~ (JR) is the Frechet space of complex val
ued COO functions on JR, being in L 2 together with all its 
derivatives. Tpo and Tp, = a al a defines a nonlinear repre
sentation T of the Lie algebra JR2. This representation can 
naturally be extended to a representation ofJR2&~o(1,1). 
However, we will not use the boosts. The transformation 
a+(k) = ~(k) - ilk I$(k),a_(k) = ¢(k) + ilk 1$(k),(kE JR 
and $ the Fourier transform of rp), for (rp,tP) E E, takes Eq. 
(5.1) into 

!!.-. (a+(t)) = A (a+(t I) + (~(a+(t) - a_It ll) 
dt a_It) 0 a_It) \](a+(t)-a_(t)) 

=1' (a+(t I). (5.2) 
Po a_(t) 

Here [Ao(~~)] (k) = (0- ilk I ~k I H~~~Z:) and J(a+(t) 
- a_(t)) = J(rp (t II "'. Introduce also [Tp, (~~)] (k) 
= ( = :Z~~~Z:). l' is t~e image of T under the ~ove transfor

mation. Denote by E, the image of E and by E I the LF-space 
CO'(R- {OJ)alCO'(JR- {OJ),whereCO'(JR- {OJ) is the 
space of Coo functions with compact support in R - {O J . 

Proposition 5.1: If J =1= 0, there is no formal linearization 
A E Y(EI,E) ofT (the linear term of A is thecanonicalinjec
tion). 

Proo!' Let J(z) = ~n>m cnzn, Cm =1=0 for Izl < r. Denote 
by l' n the term of degree n in T. A necessary condition for 
the existence of a formal linearization A E Y(E I,E) is that 
thecohomologicalequations, T~,A m -A m(~:==-ol Iq ® T~, 
®Im_q_ tl = 0 a~d T~oA m -A m(~:~o Iq ® T~o", 
®Im _q_l) = - T';." wlJ...en~Jq2s the identity on ®;EI' 
have a solution A mE 2'( ® ';'EI,E) (cf. Ref. 2). Introduce the 
projection operators Q+(~~) = (g+), Q_(~~) = (~_), 
[Q +(~~ )](k) = (~~ Hk) if k;pO, [Q +(~~ )](k) = 0 if k <0, 
Q - = I - Q +, and Q:; = QE'QE, for EI ,E2 = ±. We note 
thatQ:; T~o =EIE2 T~,. The cohomological equations give 
the equality 

Q E, A m( ® mQ a, ) (m ~ I I ® 1'1 ® I ) 
€2 a 2 ~ q PI m - q - 1 

q~O 

(EI E2 -a l a 2) = _Q:;T';.,(®mQ~;). (5.3) 
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Choosing EI = aI' E2 = a2, the nonvanishing component of 
the rhs of (5.3) is, evaluated at ® m(~~): Cm (it (X -Ia:;) 
.(X -Ia:; ) ..... (X -Ia:; ) (m factors), where. is the convolu
tion and (X-Ia:;Hk) = k -laE,(k) for Elk;pO and 
(X -Ia:;)(k) = 0 for Elk < O. Hence the rhs of(5.3) is different 
from zero, whereas the lhs vanishes. Q.E.D. 

Remark 5.2: It follows from the proof that the nonexis
tence of A is insensible under change of the spaces EI and E. 
The present choice of Eland E2 was made in order to state a 
precise result. The result is also valid for coupled equations 
Drpi = J;(rpl,· .. ,rpn), 1 <;i<n, where Ji are holomorphic in a 
neighborhood of 0 in en . 
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Concerning the Lie algebras generated by certain linear combinations ofSO(3) tensor operators 
two theorems are given which disprove some widely accepted results in the standard literature. 

PACS numbers: 02.20.Sv 

In his description of collective motion in the nuclear 
shell model, Elliote introduced SO(3) tensor operators 
v~(ll') (q = - k, - k + 1, ... ,k) of rank k mapping the 
(21' + I)-dimensional space with angular momentum basis 
!1/',m'>:m'= -1',-1'+ 1, ... ,1') into the (21+ I)-di
mensional space with basis! I/,m > :m = - I, -I + 1, ... ,/ ). 
From the work of Racah2 such tensor operators are known 
to be completely defined by means of their reduced matrix 
elements: 

(1 ) 

Herein I and I' assume both positive integer values or both 
half-odd integer values. 

It has been explicitly shown by Judd3 that the set of 

[v~,'(lalb),v~~(/)d)] = I [(2kl + I)(2k2 + 1)(2k3 + 1)]1/2 
k"q, 

The important fact is the presence of a phase factor 
( - 1 t -in front of one ofthe mixed type tensors. Since in the 
(s,d ) case there is only one type of such tensors the need for an 
alternating phase factor did not become apparent there. Pre
sumably, the identification with an SO(21 + 21' + 2) algebra 
in the general case has been erroneously made by simply 
counting the number of independent tensor operator combi
nations. Clearly, when 1= 2 and I' = 0 it is the E = + 1 
choice which leads to SO(6). What kind of algebra is generat
ed in general by 5t' for E = + 1 or E = - 1 is answered in: 

Theorem 2: The set of tensor operators 5t' spans the 
compact SO(21 + 21' + 2) algebra when E = + 1 and the 

I 

tensor operators [v~ (II) I k odd and 0 < k < 21 ) spans the Lie 
algebra of the rotational groups SO(21 + 1) and this for all 
IENo. On the other hand, it is known from Elliott's model or 
more recently from the I. B. A. model that the set! v! (dd ), 
v!.(dd), v~- (sd) + v~- (ds) Is = O,d = 2) is an SO(6) operator 
basis, from which it has been taken for granted 1,3 that simi
larly [v~(ll), v~:(/'1 '), v~: (Il') + v~:(l' I)lk and k' odd J con
stitutes a basis for the Lie algebra of SO(21 + 21' + 2). The 
incorrectness of this statement follows from: 

Theorem 1: The set of tensor operators 5t' = ! v~(lI), 
v~,'(l' 1'), v~""(ll') + E( - l)k "v~""(I'/)lk,k ',k "ENo, k and k' 
odd, o <h;;2/, O<k '(2/', I/-l'I(k "(1 + 1', 
EE! - 1, + 1) J forms a Lie algebra basis. The proof is ob
tained by direct verification, taking into account that (Judd3

) 

k2 

Ib 
(2) 

I 
noncompact SO(21 + 1,21' + 1) algebra when E = -1. 
We first define operators E ~~, , 

k 

q 
I') k II' m' vq ( ), 

(3) 

which on account of(2) themselves satisfy the commutation 
relations 

As a next step we form the combinations 

W =EII _(_IV'+vEII +p{o [EII'+E(-I)fL+vEI'1 ] 
VJ-L VJ.l } -J.l-v J.lO 1-0 O-v 

+ 0 [EEI'I +(_I)fL+vEII' ] - 0 0 [Ell' +€EI'I]} vO OfL - fLO fLO vO 00 00 

( - i(J.L,v(/) , 

W = E I,/, _ ( _ 1) fL + v E 1'1' + P {o [EE 1'1 + ( _ 1) fL + vEl/' ] 
vp VJl -1-"-11 J.lo.....o O-v 

+OvO [Eg~ +E( -1)fL+vEI~fLo] - 0fLOOvO [Eg; +€E~]} 
( - I' (J.L, v(i') , 

WVfL =p(I-0fLo )(l-ovO ) [E~~ +E( _I)fL+vEI~fL_v] 

(-i'(J.L(I', -i(v(/), 
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where p is an arbitrary complex constant of unit modulus to 
be determined later. Notice that for peRo (peCo) the set (5) is 
the image of Y under a real (complex) nonsingular linear 
mapping. Also Woo = Woo, and if lor I' equals zero, (5) re
duces to a single line. The operator set (5) is very well suited 
to construct the Cartan-Weyl basis of the algebra spanned 
by Y. Indeed, ! W;i(i = 1, ... ,1), Wjj(j = 1, ... ,1'), 
Woo = Woo J is a set of I + I' + 1 intercommuting operators 
which may serve as Cartan's H-generators. The remaining 
operators in (5) can play the role of the E-generators since on 
account of (4) 

[W;;,WVI'] = (Ovi -0l'i -O_yi +O-I'i) WVI" 

[W;;,WVI'] = (Ovi -0l'i -O_yi +O-I'i) Wvl" 

[ Wi" WVI' ] = [W;;, WVI'] = 0 , 

[W;;,Wyl'] = (Ov' -O_vi) iVVI" 

[ W;;, iVvl'] = ( - ° I'i + ° _ 1';) iVvl' ' 

[ Woo, iVvl' ] = 0 , 

and ifEp2 = + 1, 

[Woo,WVI'] = ( - 01'0 + 0vO) WY1l , 

[Woo,WVI'] = ( - 01'0 + 0vO) WVI' ' 

or if Ep2 = 1, 

[ Woo, WVI' ] = ( - 01'0 + ° vO)( - 1) I' + y W _ I' _ v , 

(6) 

(7a) 

[ Woo, WVI' ] = ( - 01'0 + 0vO)( - 1) I' + v W _I' _ v' (7b) 

From these commutators we can read off the root structure 
ofthe algebra spanned by Y only if Ep2 = + 1, in which 

773 J. Math. Phys., Vol. 25, No.4, April 1984 

case the roots are of the form ± ej ± ej whereby 
{ei Ii = 1, ... ,1 + I' + 1 J is the set of canonical orthogonal 
unit vectors in an (I + I' + 1 )-dimensional vector space. The 
root structure is that of the SO(21 + 21' + 2) Lie algebra. 
Hence if E = + 1 we can choose p = + 1 (the choice 
p = - 1 only replaces indices J..l by - v and vice versa) 
proving that Y consists of the compact generators of 
SO(21 + 21' + 2). If E = - 1, we can choose p = i (or equiv
alently - i), showing that in order to preserve the root struc
ture all (21 + 1) X (21' + 1) mixed type tensors v~: (II ') 
- ( - l)k· v~: (/'1) should be provided with an i-factor in 

front. Hence the algebra spanned by Y is the noncompact 
SO(21 + 1,2/' + 1) Lie algebra which has (21 + 1) X (21' + 1) 
noncompact generators and which contains SO(21 + 1) 
® SO(2/' + 1) as maximal compact subalgebra.4 The latter 
subalgebra is clearly generated by {v~(ll ),v~ '(/'1') J. Finally, 
if E < 0 we see from (7b) that with p = ± 1 we do not obtain 
the Cartan-Weyl form and that it is impossible to establish 
~e CartanjJasis by taking real combinations of the WVI" 
WVI" and WVI" This completes the proof of Theorem 2. 

IJ. p, Elliott, Proc, R. Soc. London Ser. A 245,128 (1958). 
2G, Racah, Phys. Rev. 62, 438 (1942). 
3B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, 
New York, 1963). 

4R, Gilmore, Lie groups, Lie algebras and some of their Applications (Wiley, 
New York, 1974). 
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This paper contains the rigorous proof of the following statement formulated by Andre and 
Aubry: the Cauchy solutions of the discrete Schrodinger equation with the potential 
qn = g cos(21TnO + ip) grow exponentially for every irrational 0, g > 1 and almost every ipE[O,21T). 
According to known results this fact implies the absence of the absolutely continuous component 
of the spectrum for the corresponding operator. 

PACS numbers: 02.30.Hq 

I. INTRODUCTION 

Reference 1 contained elegant heuristic arguments 
which show that the Lyapunov exponent ofthe almost
Mathieu equation 

!(tPn + 1 + tPn _ I) + g cos(21TnO + ip)tPn = J.tPn (1) 
is positive for g > 1 and any irrational O. According to Refs. 2 
and 3, from the positivity of the Lyapunov exponent follows 
the absence of the absolutely continuous component in the 
spectrum of the operator H (O,g,ip) defined by Eq. (1) in 12(Z). 
Till now such results could be only obtained by imposing the 
conditions not on the amplitude of the potential qn [in Eq. 
(1), q n = g cos(21TnO + ip)], but on its statistical properties. 
Thus, Ref. 4 proved the positivity of the Lyapunov exponent 
for q n which are independent and identically distributed ran
dom variables, and Ref. 3 did it for the sequence qn which is 
an ergodic Markov chain. Therefore the statement formulat
ed in Ref. 1 for an ergodic sequence 

qn = g cos(21TnO + ip) (2) 

not having any mixing properties seems rather unexpected 
and interesting. 

This paper contains the rigorous proof of the statement 
formulated in Ref. 1. Avron and SimonS also announced a 
rigorous proof. However, as we can judge by their short note, 
our proof is different from theirs, though it is also based on 
the principal idea suggested in Ref. 1. 

Note that if the number 0 is well enough approximated 
by rational numbers, so that iffor a certain sequence IPk,q k J 

of integers, 

10 - Pk I q k I <, Cq - \ 

then, as was shown in Ref. 5 on the basis of the results of Ref. 
6, the operator H (O,g,ip) has no eigenfunctions. Combined 
with what was said above, this means that for g > 1 the spec
trum of H (O,g,ip) for such () and almost all ipE[O,21T) is singu
larly continuous. However, the set of such () 's has zero 
Lebesgue measure. 

On the other hand, as is shown in Ref. 7, for the set of 
irrational () 's of full Lebesgue measure, the spectrum of 
H ((),g,ip) for sufficiently small g has a nonempty absolutely 
continuous component. Hence, by virtue of the duality of 
Eq. (1) it follows that for sufficiently largeg, H has a point 
component of a positive Lebesgue measure. 

2. MAIN RESULTS 

Thus, we are to prove the following two theorems. 
Theorem 1: Let Un be the solution ofEq. (1) satisfying 

the condition 

U _I = cos a, Uo = sin a, aE[O,1T]. (3) 

Then the limit 

(4) 

does exist and is nonnegative for almost every ipE[O,21T), for 
almost all J. 'so This limit, for any irrational () and g > 1, is 
strictly positive. 

Theorem 2: Let H ((),g,ip) be the operator in 12(Z) corre
sponding to Eq. (1). Then, for any irrational () and g > 1, its 
spectrum for almost every ipE[O,21T) has no absolutely contin
uous component. 

Theorem 2 is a corollary of Theorem 1. Indeed, in case 
of fixed irrational () and realg, the operator H ((),g,ip), regard
ed as a function of the parameter ipE[O,21T) is metrically tran
sitive. 3 Namely, if the role of the probability space n is 
played by a circle of a unit radius with the probability mea
sure (21T) - 1 dip on it, where dip is the Lebesgue measure, and 
the group of shifts of n coincides with the group oftransfor
mations ip-+q:J + 21TnO, nEZ, then the sequence (2) will be, as 
is readily seen, a metrically transitive one,8 and H according
ly a metrically transitive operator.3 But as was shown in Ref. 
3, positivity on a set of full measure in n of the Lyapunov 
exponent of equation 

(5) 

where q n (cu), OJEn is a metrically transitive sequence, is a 
sufficient condition of the absence of the absolutely contin
uous spectrum of almost every operator H (OJ) defined by Eq. 
(5). 

Thus, the main purpose of this work is to prove 
Theorem 1. But due to the multiplicative ergodic theorem, 12 

the limit (4) exists for any metrically transitive qn in Eq. (5). 
Therefore, we are only to prove the positivity of the limit (4). 
According to the central idea of Ref. 1, the latter fact may be 
proved in the following way. Let N(J.;g) be a normalized 
eigenvalue distribution function (integrated density of states) 
of the operator H ((),g,ip) (see its definition in Ref. 3 and be
low). The existence of such a function for a wide class of 
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metrically transitive operators in '2(Z) including operators 
corresponding to Eq. (5) with an arbitrary metrically transi
tive qn was proved in Ref. 9. Then, as was argued in Ref. 1, 
for an irrational 0, the following equation is true (Aubry 
duality): 

N(A;g) = N(Ag-I,g-I). (6) 

Then, according to Ref. 10, for second-order operators ofthe 
general form ofEq. (5), it should be true that (Thouless for
mula) 

r(A) = f: '" InlA -A 'ldN(A 'I· (7) 

From equalities (6) and (7) it immediately follows that 

r(A;g) = In q + r{Ag-I,g-I). (8) 

Since, as has been mentioned, for any A and g, r{A,g) is non
negative, then it follows from the latter equality with g> 1 
that r{A,g) > O. 

Thus we see that according to Ref. 1 the proof of 
Theorem 1 is reduced to the proof of the Aubry duality (6) 
and demonstration of the validity of the Thouless formula 
(7). The proof of these facts, formulated rigorously in Theo
rems 3 and 4, is carried out in the two remaining sections. 

3. AUBRY DUALITY 

Theorem 3: Let 0 in Eq. (1) be an irrational number. 
Then for any realA andg;60, equality (6) is true. 

We shall give two proofs of the theorem. They both use 
the representation ofthe functionN (A ) in terms of the resolu
tion of identity of the corresponding metrically transitive 
operator (see Ref. 9), which in the case of the operator 
H(f),g,f{J) ofEq. (1) is 

1 121T N (A;g) = - df{J Eoo(A;g,f{J ). 
211" 0 

(9) 

Here E (A;g,f{J ) is the resolution of identity of the operator 
H (f),g,f{J), Eoo = (eo, Eeo) and eo is the vector from '2{Z), de
fined by equations (eo)o = 1, (eO)k = 0 if k ;60. 

Note that without loss of generality, g may be always 
assumed as positive. 

Proof 1: First give the definition of the function N (A ), 
i.e., the integrated density of states. If the operator H, de
fined by Eq. (5), is written in the matrix form H = [hkm J, k, 
mEZ then we may consider, along with it, a sequence of 
"truncated" matrices HOI = [hkm J, Ik I, Iml <no For every 
matrix HOI define a normalized eigenvalue distribution func
tion N n (A ) so that (2n + 1 )N" (A ) is the number of HOI -matrix 
eigenvalues less thanA. As was shown in Ref. 9, there exists a 
nonrandom continuous and nondecreasing function N (A ) 
such that with probability 1 

This function N (A ) will be termed the normalized eigenvalue 
distribution function or the integrated density of states of the 
metrically transitive operator of the form of Eq. (2). 

Approximate the irrational number 0 by a sequence of 
rational numbers p, q, where p and q are relatively prime 
integers, i.e., 0 = limq_", p/q. Consider the operators Hq 
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with periodic potentials, specified by Eq. (I), with the irra
tional number f) replaced by its rational approximationp/q. 
Introduce normalized eigenvalue distribution functions 
Nq (A;g,f{J ) of the operators Hq. 

Lemma 1: The equality 

N (A;g) = lim.!L df{J Nq (A;g,f{J ) f
1T1q 

q_oo 211" _ 1Tlq 

is true. 
Note that for the operators Hq with a periodic potential, 

the following analog of Eq. (9) holds. For any fixed f{J, 
q 

Nq(A;g,f{J) = q-I L (eo, Eq(A;g,f{J + 211"r/q)eo), 
r= 1 

where Eq (A;g,f{J ) is resolution of identity of the operator H q. 
Hence, it immediately follows that 

.!L df{J Nq(A;g,f{J) = - df{J (eo, Eq(A;g,f{J leo)· f
1T1q 

1 f1T 
211" - 1Tlq 211" - 1T 

(10) 

Since, when q_ 00, the sequence of operators Hq strongly 
converges to H: Hq _ H, then Eq (A;g,f{J ) - E (A;g,f{J ) at the 

s s 

continuity points of the last projector. I I Therefore, 

lim (eoEq (A;g,f{J leo) = (eo, E (A;g,f{J leo)· (11) 
q-oo 

From Eqs. (9)-( 11), the validity of the lemma immediately 
follows. 

Lemma 2: For any g;60, 

.!L f1T1q 
df{J Nq (A;g,f{J ) = .!L f1T1q 

df{J Nq (Ag- I ,g-I). 
~ -~ ~ -~ 

Since the operator Hq has a periodic potential, the Plo
quet theorem is applicable, according to which the Hq gener
alized eigenfunctions are 

t/ln=eiKnVn, V"+q=V,,, nEZ,IKI<11"/q. 

Having rewritten the equation for t/l" in terms of VOl' we see 
that Vn is a solution of equation 

!(eiKVn+ I + e-iKVn_ l ) + g cos(211"(p/q)n + f{J )vn = Avn·(12) 

The solvability condition for this equation gives the eigen
values Aa (K,g,f{J),a = 1,2, ... ,q. Using the finite Fourier trans
form for VOl' 

-1/2 f (21Tiln) VOl = q £.." w,exp --, w'+q = WI' 
'=1 q 

we obtain from Eq. (12) the following equation for W,' 

!(e - i'PWI + p + ei'PWI _ p) + g-I cos(21T{/ / q) + K)WI 

=g-IAaW/. 

Taking into account the periodicity of WI and setting / = rp, 
r = 1.2, ...• q, substitute wrp-wr (a different numbering) in 
the latter equation. Then 

~(e - i'PWr+ 1 + ei<PWr _ 1 ) + g-l cos(211"(p/q)r + K)Wr 

=g-lAaWr· 

Now, comparing this equation with Eq. (12), we arrive at the 
equality 

Aa( - f{J,g-t,K) =g-IAa(K,g,f{J). (13) 
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Introducing the function XA (t) equal to 1 for A> t and 0 for 
A<;t, we obtain 

1 [/q n 
Nq(A;g,q:;) = - dK I XA(Aa(K,g,q:;)). 

21T -TT/q a = I 

Hence, remembering Eq. (13), we obtain 

..!L J
TT
/
q 

dq:; Nq(A;g,q:;) 
21T - TT/q 

J
TT/q q 

= (2~)2 _TT/qdq:;dKa~/A(g,Aa(-q:;,q-\K)) 

J

TT/q q 
= ~ dq:;dK I XAr,(Aa(K,g-I,q:;)) 

(21T) - TT/q a = I 

= ..!L J,,/q N
q 
(Ag- I;g- I,q:; )dq:;. 

21T - TT/q 

The latter equality concludes the proof of the lemma. 
Theorem 2 follows evidently from Lemmas 1 and 2. 
Proof 2: Note that the duality relation (6) may be treated 

as equality of positive measures with finite supports. There
fore it is equivalent to equality of the moments of the mea
sures. Therefore, if we denote 

PrIg) = roo 00 A r dN(A;g), r = 0,1, ... , 

then Eq. (6) will be equivalent to the set of equalities 

PrIg) =g' Pr(g-I), r= 0,1,.... (14) 

If we make use ofEq. (9), then for PrIg) one may write the 
following representation: 

1 (2TT 
PrIg) = 21T Jo dq:; [Hr(B,g,q:;)]oo, (15) 

where [H r] 00 is the respective matrix element of the rth 
degree of the operator H (B,g,q:;), specified by Eq. (1). In this 
case, evidently, 

(16) 
n 1.···.nr _ 1 

where hmn are the matrix elements of H (B,g,q:;). Since hmn is 
nonzero only when 1m - nl <; 1, then the sum in Eq. (16) may 
be represented as follows. Denote by 'If r the set of sequences 
E = (E1,. .. ,Er ), where Ej = ± 1,0 and ~j= I Ej = 0, and by 
Ek = ~:= I Ej • Then 

[Hr]oo= I hOE,hE,E,···hE,_,E,· (17) 
EEi'5 r 

Note that the right-hand side of Eq. (17) is a polynomial in g 
and the degree of every term in it is evidently equal to the 
number of zeroes in the set E = (E1,. .. ,Er ). Moreover, if we 
denote by 'If rl the subset of the set 'If r' consisting of the 
sequences EE'lf r which contain exactly I zeroes, and by 
kh ... ,kl the indicesj for which Ej = ° in given sequence E, 
then the coefficient for the degree gl in the sum (17) is 

21
- r .i;" COS(21TEk, B + q:; )"'COS(21TEk,B + q:;). (18) 

In order to find the coefficient of the degree i of the polyno
mial PrIg) ofEq. (15), Eq. (18) should be integrated with re
spect to q:;, i.e., 
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r 

PrIg) = I Prli, 
1=0 

EEWrl 

where.7; is the set of sequences 7 = (7), ... ,71) with 7 m 

= ± 1 and ~~ = 17m = O. Represent the sum under exp I···j 
in equality (19) in a form which contains E and Tin a more 
symmetrical way. To do that, introduce the set.7r consist
ing of sequences 7 = (71, ... ,7r ), where 7 j = ± 1,0 and 
~j = I 7 j = O. Let us now consider the set ('If 3lrl of the pairs 
(E,7) of the sequences E,TE'lf r such that if Ej = ± 1, then 
7j = 0, and if 7j = ± 1, then Ej = 0, and besides EE'lf rl; that 
is, the set E contains I zeroes exactly. Then Eq. (19) may be 
rewritten as 

Pr,I = 2 - r I exp{21TiB ± 7 j Ej }. (20) 
1 •• r)E(;ff.y]" j = 1 

If we introduce Tk = ~;= 17j and remember that, by the de
finitionoftheset7 = (7), ... ,7r ), ~j= 17j = 0, and alsothatthe 
inclusion (E 17)E( 'If 3lrl is equivalentto (E, - 7)E( 'If 3lrl' then 
Eq. (20) may be rewritten as 

Pr,I =2-
r I exp {21TiB ± EJi}, 

1.,r)E(W.y]" j = 1 
(21) 

Since the condition that E contains exactly I zeroes for 
(E,7)E( 'If .7)rl is equivalent to 7 contains r - I zeroes, then we 
have from equalities (20) and (21), 

Pr,I =Pr,r-I' 

Hence follows evidently the validity ofEq, (14) and accord
ingly of Theorem 2. 

4. THOU LESS FORMULA 

Theorem 4: Let H be operators as in Eq. (5) and for a 
certain nonrandom constant C: Iqn I <;C. Equation (7) is then 
true for almost all A values with respect to the Lebesgue 
measure. 

Let us consider the matrices lIn obtained by "trunca
tion" of the basic matrix H, somewhat different from that 
used forHn : Hn = Ui km }, -1<;k,m<;n,h_ I,_1 = sin a, 
h _ 1 0 = - cos a, h _ 1 m = 0, O<;m<;n, hkm = hkm , 

O<;k,m <;n. Let nNn (A )' be the number of the eigenvalues of 
Hn less than A. 

Lemma 3: For every aE[O,1T] with probability 1 at all 
continuity points of N (A ), 

(22) 
n~oo n_oO 

The proof of this lemma may be obtained by consider
ing the moments of the measures dNn (A ) and dN (A ) in the 
same way as it was done in Ref. 9. 

Denote 

.1 n(A)=det(lIn -Un), 

where In is the identity matrix of the nth order. The sequence 
.1 n (A ) is clearly the solution of Eq. (5) with the initial condi
tions (3). Thus, according to the equality (4) with probability 
1 for every fixed A, the limit 
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y(A,a,w) = lim (2n)-1In(~ ~ (A) + ~ ~ _ dA )) (23) 

exists if qn is a metrically transitive sequence and as a func
tion of a takes two values ± y(A ), where 

y(A) = lim sup (2n)-1In(~ ~ + ~ ~ _ tl>O 
n_oo a 

is the Lyapunov exponent ofEq. (5) (see Ref. 7). 
Lemma 4: (a) In-lln(~ ~ + ~ ~_ tll<C(IA I + I), 

where C is a nonrandom positive constant; (b) if a and bare 
positive constants and A is any Borel set of the interval 
[ - a,a 1, then the family of functions of Il, 
IA (Il) = SA InlA -Ill dA, considered in the interval [ - b,b] 
is equicontinuous and uniformly bounded; (c) for any Borel 
set A, the equality 

1 rIA )dA = 1 dA Loooo InlA -A 'ldN(A ') 

is true for all the realizations of the stochastic process for 
which Eq. (22) holds. 

The proofof(a) and (b) is quite elementary. Go on to the 
proof of (c). Note that from the definition of ~ n (A ) andN (A ) it 
follows that 

n-llnl~n(A)1 = f:oo InIA-A'ldNn(A'). (24) 

Let A be an arbitrary bounded Borel set from R. Con
sider decomposition A =AnnA~, where 

An = {A:A.EA,I~n(A)I>I~n_dA)11 andA~ =A -An' 
Then 

In dA n-llnl~n(A )1< In dA n-Iln(~ ~(A) + ~ ~_I (A)) 

< I dA n-llnl~n(A)1 + n- l lm'2.mesA n, 
An 

l~ dA n-Ilnl~n_ dA)1 

< l~ dA n-Iln(~ ~(A) +~ ~_ dA)) 

< ( dA n - I In I~ n _ I (A ) I + n - I Im'2·mes A ~. 
Jil ~ 

Using again decomposition A = AnnA ~ and Eq. (24), via the 
latter inequalities, we readily arrive at the following asymp
totic equality when n- 00 : 

1 dA n-Iln(~ ~ + ~ ~ -I )1/2 = O(n-I) 

+ f: J In InlA -A 'IdA ]dNn(A ') 

+ f: 00 [l~ InlA -A 'IdA ]d 

X [ Nn (A ') + n: 1 dNn _ tlA ')]. (25) 

Note that since Iq n 1< C, the supports of dNn (A ), and there
fore, due to the relation (22), the support of dN (A ) too are 
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contained in the interval [ - 2 - C, 2 + C]. Making use of 
this fact and applying Lemmas 3, 4(a) and (b), and equality 
(23), we obtain from Eq. (25) for n-oo, 

1 dAr(A,a,W) = f:oo [llnIA-A'ldA ]dN(A')' (26) 

In doing so, we used the estimate Iy(A,a,w) I <const 
X (IA I + 1) which follows from Eq. (23) and Lemma 4(a). But 
the right-hand side of Eq. (26) does not depend on a and w 
and the equality y(A,a,w) = - rIA ) is possible only for a 
unique value of a. As a result the rhs ofEq. (26) is nonnega
tive, and with probability I, in the Ihs of this equation, 
y(A,a,w) can be replaced by y(A). Since the support of the 
measure dN (A ) is bounded and the function 
SA 11niA - A '11dA of A' is continuous, then the function 
lIn IA - A ' II is absolutely integrable with respect to the mea
sure dA dN (A ') in the region A X R, and therefore, in the rhs 
of Eq. (26) the integration order may be interchanged. This 
completes the proof. 

From Lemma 4(c) follows immediately the validity of 
Theorem 3. 

Remark 1: The arguments similar to that in the proof of 
Lemma 4(c) show that the Lyapunov exponent correspond
ing to the limiting process n- - 00 coincides with y(A ). 

Remark 2: The Thouless formula (7) is true for all, rath
er than almost all, A values. One can prove that this is so, e.g., 
in the case when the sequence qn in Eq. (5) is an ergodic 
Markov chain with sufficiently smooth structure. 

Remark 3: A formula analogous to Eq. (7), that is, es
tablishing the relation between the Lyapunov exponent and 
the integrated density of states, exists also in the case of an 
equation more general than Eq. (5), 

an tPn + I + an - I tPn - I + bn tPn = AtPn 

with metrically transitive coefficients bn and an being sign
constant. In this case it has the form 

r(A) = - a + f: 00 InlA -A 'ldN(A '), 

where 
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In the 1880's Sophie Kowalewski proposed to study "integrability" of differential equations in 
terms of the analyticity properties of their solutions. The model she studied, the spinning top 
moving under gravity, has an interesting geometric and algebraic structure, which will be 
generalized. The differential geometric properties of such models will be investigated in terms of 
the theory of affinely-connected manifolds and Lie theory. 

PACS numbers: 02.30.Hq, 02.40. - k 

1. HISTORICAL BACKGROUND 

In recent years there has been a revival within the con
text of mathematical physics and applied mathematics of 
19th and early 20th century work on "integrability" of dif
ferential and physical system equations. The purpose of this 
series of papers is to study the differential geometric founda
tions of various methods which have been successfully used 
in either the classical or modern work to distinguish the inte
grable systems from the non integrable ones. Thus, my aim is 
to develop the strategy rather than the tactics of the integra
bility game. 

In the 19th century literature, one can distinguish two 
such strategic approaches. The first arose from mechanics 
and Hamilton-Jacobi theory. Given a mechanical system 
with configuration and momentum coordinates q = (qi) and 
P = (Pj)' l<;i, }<;n,andHamiitonianH(q,p),onetriestofind 
functionsf(q, p) of specified type such that 

(H,f] = 0, (Ll) 

where ( , ] is the usual Poisson bracket. 
For example, if H is of the form (which is the usual type 

encountered in Newtonian mechanics) 

H =g'j(q)PiPj + V(q) 

andfis linear in the momentum variables, 

f=ai(q)p, 

(1.2) 

(1.3) 

the geometric condition that ( 1.1) is satisfied is the following 
one: 

The vector field 

. J 
a'(q)-. 

Jq' 
is a Killing vector field for the Riemannian metric 
gijdq'{Jqj, i.e., generates a one-parameter group of iso
metries of the metric, and the group leaves invariant the 
potential function 

alSupported by Ames Research Center (NASA), Grant NSG-2404; U.S. 
Army Research Office, Contract #ILI61102RH57-02 Math; NSF 
# MCS8003227. 

q---+V(q). (1.4) 

Many of the elementary examples of integrable systems 
discussed in Whittaker's treatise I (he uses the term "soluble" 
rather than "integrable") are of this type. The next more 
complicated examples require consideration off's which are 
polynomials in P of higher degree: 

(1.5) 

Now one can write down directly the conditions that 
(Ll) be satisfied, if H is of the form (1.2) andf of form (1.5). 
For example, if m = 2, among these conditions are those 
which assert that/is a Killing tensor with respect to the 
metric (1.2). One can study solutions of the resulting partial 
differential equations. As described in Part III of this series, 2 

Calogero's work involves a generalization of these classical 
ideas in a certain direction. 

However, we will be concerned in this paper with an
other set of conditions. Find m functions of P and q which are 
linear in p, with the following conditions satisfied: 

H = Iubhahb' 

Ihu,hbl =Fab(hl, .. ·,hn ), 

(1.6) 

(1.7) 

where Fab ( , ... , ) arefunctions ofm real variables, 1 <;a, b<;m. 

(1.8) 

with constants 

(I ab) is a constant symmetric tensor. 
Now condition (1.7) means that the h 's form a function 

group in the sense of Sophus Lie.3 The simplest type offunc
tion groups are the linear ones, when the ha 's satisfy the 
following conditions: 

(1.9) 

with constants A ~b' The ha then form a Lie subalgebra of the 
Lie algebra under Poisson bracket of all functions of configu
ration and momentum variables. (In modern terms, the Lie 
algebra of Coo, real-valued functions on the cotangent bun
dle r d (Q) of the configuration manifold Q.) 
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The second classical strategy for studying integrability 
is the analyticity approach ofWeirstrass, Poincare, Kowa
lewski4 and Painleve.5 (The treatises by Haginara,6 Ince,7 

and Hille8 are the best references to this classical work.) To 
illustrate this point ofview in the class of mechanical systems 
considered above, consider the force-free rotating rigid 
body. This involves the following specialization of the above 
data: 

Q=SO(3,R), 

m =n= 3, (1.10) 

Ii, ~b = c,;b = ~ = E ijk' 

the completely skew-symmetric tensor on three indices 

(1.11) 

Let t---+(q(t ), pIt )) be a solution of Hamilton's equation 
with HamiltonianH given by (1.6) and (1.11). Then, it is well 
known (and can be verified directly from the above formulas) 
that the functions 

(1.12) 

are Jacobi elliptic functions. 
In particular, they can be extended to be meromorphic 

functions of the complex variable 

z = t + iT (1.13) 

and algebraic functions of the initial conditions 

h i(q(O), p(O)). 

The qi(t ) (which are the Euler angles) are then solutions 
oflinear ordinary differential equations, with coefficients de
pending on the h i, with singularities determined by the sin
gularities of the functions (1.12). 

This example (with other examples of integrable me
chanical systems known in the 19th century) led Kowa
lewski4 and Painleve5 to search for the systems with analo
gous analyticity properties for their general solutions. The 
simplest question of this type is then: 

Given a real analytic manifold Q, which real analytic 
functions H on the cotangent bundle have the property 
that there are real analytic maps 

(1.14) 

such that the maps t---+f(x(t )) can be extended to be mer
omorphic functions of the complex variable z = t + iT, 
where t---+x(t ) are the solution curves in Td (Q ) of the 
Hamilton equations with Hamiltonian H. 

It is this type of question which we will be examining in this 
paper, and those to follow. Note particularly Painleve's early 
work in this direction,9 which is a prime candidate for a 
modernization and application to topics of current interest 
in science and technology. 

Another historical thread is the work ofV. Arnold,1O 
which gives an elegant way of describing mechanical systems 
which arise as geodesic equations for left-invariant metrics 
on Lie groups in what came later to be known as "Lax 
form.")) In Ref. 12, Chapter 33, I showed that Arnold's 
work could be formulated in terms of the affine connections 
which can be canonically defined on Lie groups. In this pa-
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per, I plan to develop these ideas further, with the goal of a 
link-up with the analyticity approaches. 

There are, of course, many relations between this work 
and others in this hyperactive field of "integrable systems." I 
will only mention Refs. 13-15, which are particularly rel
evant. 

Finally, I want to mention a general geometric insight 
that arises from this work that might be useful in the current 
search for the mathematical difference between "chaotic" 
and "integrable" systems. Let Xbe a manifold and let ~ be a 
Lie algebra of vector fields on X. (X and/or ~ might be 
infinite-dimensional.) Consider an ordinary differential 
equation for curves t---+A (t) in ~, of the quadratic type 

dA 
-=B(A,A)+D(A). 
dt 

(1.15) 

Each solution t---+A (t ) oft 1.15) generates a flowonX, i.e., 
a one-parameter family of (possibly local) diffeomorphisms 
of X by means of the following ordinary differential equa
tion: 

The curves t---+x(t ) = g(t )(xo) are the solutions of 

dx Tt = A (t )(x(t)). (1.16) 

One obtains in this way a family of curves t---+x(t ) on X, 
which can be identified with the orbits of certain physical 
systems. Carrying out the Kowalewski-Painleve program 
involves studying the analyticity property of the curves 
t---+A (t), t---+g(t), t---+x(t), where t is extended to be a complex 
variable. 

2. MECHANICALSVSTEMS ON AFFINEL V-CONNECTED 
MANIFOLDS 

I will now carryover and generalize slightly a method 
presented in Ref. 12, Chapter 33, for describing mechanical 
systems in terms of affinely-connected manifolds. For the 
sake of simplicity, we shall deal in this paper only with sys
tems of a finite number of degrees of freedom, although 
(since it is done in a coordinate-free way) much can be gener
alized. 

Let Q be a finite-dimensional, Coo, parametrized mani
fold. Let Y(Q ) denote the algebra of Coo, real-valued func
tions on Q. Let r(Q ) be the C 00 vector fields on Q considered 
with the following structures: 

Identified with the cross sectionsr (T (Q )) of the tangent 
bundle T (Q ) to Q, 
An Y(Q )-module structure, 
A real Lie algebra structure (V), V2 )---+[V1, V2] called 
Jacobi (or Lie) bracket, 
A Lie derivative derivation action (V,j)---+V(f) of 
!t'v(f) on ..r(Q ). 

In this paper we shall mainly deal with affine connections in 
the sense of Koszul, as R -bilinear maps 

V: (VI' V2 )---+ V v, V2 

of r(X)X r(X)---+r(X), 

such that 

VjY,(V2 ) =fVv, Vz, 
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v v, (fV2) = VI(f)V2 + fV V, V2 (2.1) 

for fEY(X); VI' V2Er(X). 

Let V be an affine connection on Q. Given a curve 
t-q(t) and a tangent vector field t---+v(t )EQq(t) along the 
curve, we can define l2 a covariant derivative tangent vector 
field 

t---+ V dqldt v(r). 

If VI' V2 are vector fields, and ift-q(t) is an orbit curve 
of VI and if t---+v(t) is the restriction of V2 to the curve, i.e., 
V2(q(t)) = v(t ), then 

Vv(t) = (V dqldt V2 )(t) 

= (V V,(q(t)) V2 )(t ). (2.2) 

Let Td (Q ) be the cotangent bundle to Q; the fiber above 
a point qEQ, denoted as Q :' is the dual space to the fiber of 
T(Q) above q. 

Definition: A mass tensor is a linear bundle map 

M: T(Q)---+Td(Q), (2.3) 

i.e., M assigns to a (q, v), qEQ, VEQq' a covector M (q, V)EQ:. 

Aforce tensor is a map (not necessarily linear) 

F:T(Q)---+Td(Q), (2.4) 

which assigns to a point 

(q, v); qEQ, VEQq 

an element 

F(q, V)EQ:. (2.5) 

Definition: A physical system with Q as configuration 
space is a triple 

(V,M,F) 

consisting of an affine connection V for Q, a mass tensor M, 
and force tensor F. 

A trajectory of the physical system (V, M, F) is a curve 
t-q(t) in Q such that 

(2.6) 

We can identify the affine connections and mass tensors 
which appear in Hamilton's equations with Hamiltonian H 
of "Newtonian" type. Let 

q = (l), l<i,j<n 

be coordinates of Q, 

P=(Pi) 
the corresponding momentum coordinates, and 

H = ~lj(q)Pi Pj + V(q) + ai(q)Pj' 

where 

det(gU) i= 0. 

Let (glj) be the inverse matrix to (g'f). 

ds2 = gljdqidq 

(2.7) 

(2.8) 

(2.9) 

is then a Riemannian metric. Let V be the corresponding 
(torsion-zero) Levi-Civita affine connection. 12 
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At any point qO of Q, one can choose Riemann normal 
coordinates (q'), such that 

glj(qO) = Dlj' (2.10) 

Va laq.( :q )tqO) = 0, (2.11) 

aqu (qO) = 0. 
al (2.12) 

Let us use these normal coordinates and the relation 
(2.10) to express Hamilton's equation for Hamiltonian (2.7) 
in the terms of the Levi-Civita affine connection. Suppose 
t---+(q(t), p(t)) is a solution with 

q(O) = qO. (2.13) 

.:{ qi(t ) = aH 
dt ap' 

hence 

(2.14) 

(2.15) 

where 

·a 
A =a' aq Er(Q). (2.16) 

Now, let 

M: T(Q)---+Td(Q) (2.17) 

be the linear-bundle isomorphism which is the isomorphism 
induced by the Riemann metric ds2

• 

We see that we have proved the following result: 
Theorem 2.1: The solutions of Hamilton's equations 

with Hamiltonian (2.7) are identical with Eqs. (2.6), where V 
is the Levi -Ci vita affine connection, F: T (Q )---+ T d (Q ) is given 
by the following formula: 

F(q, v) = df(q) + Vv(A )(q). (2.18) 

This result is mentioned here mainly to link up the de
velopments to be presented below with the traditional ap
proaches via Hamilton-Jacobi theory mentioned in Sec. 1 
(and which take their modem form in the theory of "sym
plectic manifolds" and "Lagrangian submanifolds"). The 
material we tum to now is more Lie-theoretic in nature and 
is, I believe, better adapted to studying the "analyticity" 
questions of the classical literature. 4,5 

3. FLOWS AND THEIR INFINITESIMAL GENERATORS 

Let Q continue as a manifold with an affine connection 
V. Let r(Q )bethe Lie algebra ofC 00 vector fields on Q. Lett 
be a real variable, O<t < 00, parametrizing a one-dimension
al manifold that we call R +. 

Lett---+V(t )beacurvein r(Q), whichisC = in the sense 
that the mapping 

(t, q)---+(t, V(t )(q)) 

ofR+ xQ---+T(Q) is Coo. 
A curve t---+g(t ) in Q is an orbit of t---+ V (t ) if 
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dq = V(t )(q(t)) 
dt 

for tER+. 

(3.1) 

Assume for simplicity that a solution of (3.1) exists for all t. 
(If this condition is not satisfied, the analysis can be extended 
in the context of Ehresmann's theory of pseudo groups.) 
Solving the ordinary differential equation (3.1) with initial 
condition qo at t = 0 determines a one-parameter family 

t-¢,: Q----+Q 

of diffeomorphisms such that 

¢,(qo) = q(t), 

¢o = identity. 

ForfEY(Q), 

a 
atf(¢,(qo)) = V(t)(¢,(qo))(f) 

= v (t )(f)(¢, (qo)), 

or 

or, since qo is arbitrary, 

V(t )(f) = ¢ ,-1. :t ¢ ~(f) 

for fEY(X). 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The one-parameter family t-¢, of diffeomorphisms of Q is 
called a flow; the curve t----+ V (t ) in r(Q ) is called its infinitesi
mal generator. 

Remark: This is a generalization of material in fluid 
mechanics. The velocity field in the Eulerian picture is 
t----+V(t). It is also basically the Heisenberg picture of quan
tum mechanics. 

Now, return to (3.1). For the purposes of mechanics we 
want to compute the covariant derivative, with respect to the 
affine connection V, of the "velocity" field t----+(dq/dt)(t) of 
the curve t----+q(t ), in terms of the infinitesimal generator 
t----+ V (t ). 

Theorem 3.1: Let t----+q(t ) be a curve in Q, with tangent 
vector field t----+dq/dt. Let t----+V(t) be a curve in r(Q). Let 
t----+v(t) be the vector field along q given by the following for
mula: 

v(t) = V(t )(q(t )). (3.6) 

Then, 

V dqldl v(t) = ( ~}q(t )) + (V dqld' V (t )) (q(t )) (3.7) 

Proof (3.7) is the covariant-derivative version of the 
Leibniz rule for differentiating products. dV / dtis the deriva
tive of the curve t----+ V (t ) as a curve in the vector space r(Q ), 
i.e., for fEY(Q ): 

dV (f) = lim V(! + Lit )(f) - V(! )(f) . (3.8) 
dt .:1,--0 Lit 

The affine connection defines a parallel transport along 
the curve t----+q(t ): 
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V 1· v(t + Lit) - v(t) 
dq/d' V = 1m . 

.:1,--0 Lit 
(3.9) 

To interpret (3.9), i.e., to be able to subtract v(t) from 
v(t + Lit), which lie in different vector spaces, namely Qq(,) 
and Qq(' + .:1,)' it must be understood that they are parallel 
transported along the curve t----+q(t). Formula (3.7) now re
sults from putting (3.9) together with (3.7) in the usual Leib
nizian way. 

Corollary 3.2: If t----+q(t ) is a curve in Q which is an orbit 
of the flow generated by the curve t----+V(t) in r(Q) (in fluid 
mechanics, termed a velocity field), then the acceleration 
vector field 

dq 
t----+a(t) = V dq/dl -

dt 

is given by the following formula: 

a(t) = (~}q(t)) + V dq/d,(V(t ))(q(t)). 

(3.10) 

(3.11) 

This formula (which must go back to Euler) plays a 
basic role in many physical theories. I have used it in 
Chapter 33 of Ref. 6 to derive the Eulerian equation of mo
tion of a rotating rigid body. It could also be used in the 
context of Arnold's work \0 to derive the ideal fluid motion 
equation. 

4. THE EQUATIONS OF MOTION OF A PHYSICAL 
SYSTEM IN EULERIAN FORM 

Continue with the notation of Sec. 3. Let 

M: T(Q)----+Td(Q), 

F: T(Q)----+Td(Q), 

be mass and force tensors, as described above. The (V, M, F) 
determine a physical system. The trajectories are the curves 
t----+q(t) such that: 

(4.1) 

Suppose that t----+V(t) is a curve in r(Q) such that all 
orbits 

t-¢,(qo) = q(t) 

of the flow it generates are trajectories of the physical sys
tem. Then, we have, using Theorem 3.1 

dV Mdt (q, t) + V VI') V(t )(q) = F(V(t )(q)) (4.2) 

for all qEQ. 

These are the Eulerian equations of motion. They are a set of 
ordinary nonlinear differential equations for the curve 
t----+V(t) in r(Q), an infinite-dimensional vector space. 

Now, we can interpret these equations as some sort of 
generalized Lax equations by means of the following 
theorem. 

Theorem 4.1: Let f§ be a Lie algebra of vector fields on 
the manifold X. Let t----+V(t) be a curve in f§ which satisfies 
(4.2). Consider the flow on Q generated by t----+V(t). Then, 
each orbit of this flow, i.e., each curve t----+q(t) which satisfies 
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dq = V(t )(q(t)) 
dt 

(4.3) 

is a solution of Eq. (4.1). Thus, we have set a correspondence 
between the Eulerian equation (4.3) considered as a set of 
ordinary differential equations for curves in ~ and the ordi
nary differential equations whose solutions lie in the mani
fold Q. 

Now, Eqs. (4.2) are precisely of the Lax form ll ifF = 0, 
and if V v V can be expressed as 

VvV= [B, V], (4.4) 

where B is another elemen t of ~ . For the case where V is the 
Levi-Civita affine connection associated with a left-invariant 
Riemannian metric on a semisimple Lie group G (so that 
X = G ), and ~ is the Lie algebra of left-invariant vector 
fields, it is proved in Ref. 12 that (4.4) holds, 

B={3(V), 

where {3: ~ --~ is a linear map. 

5. SOPHIE KOWALEWSKI'S SYSTEM AND EXTENDED 
LAX SYSTEMS 

Sophie Kowalewski's work 7 on the integrability of a 
rotating-under-gravity rigid body is one of the most famous 
works of mathematical physics in the 19th century, linking 
two main theories of the 19th century mathematics-analy
tical mechanics and complex function theory-in a beautiful 
way. This link between "integrability" and "analyticity" is 
still of great interest for physics. 

This paper will begin to link up her work on the connec
tion between "integrability" and "analyticity", and the mod
em work on Lax systems. As I have already point out briefly 
in Ref. 16, her paper suggests a generalization of the Lax 
framework. 

Using the notation of her papers,4 the differential equa
tions are as follows: 

dp 
A dt = (B - C )qr + Mg(goY" - aoY'), 

B ~; = (C - A )rp + Mg(zoY - xoY"), 

dr 
C - = (A - B )pq + Mg(xor' - YoY), 

dt 

d: = ry' - qy", 

dy' " -=Py -ry, 
dt 

dy" 
Tt=qy-pr'· 

(5.1) 

(xo, Yo, zo) are the coordinates of the center of gravity of the 
body. A, B, C, U, g are parameters. p, q, r are the components 
of the angular momentum with respect to an orthonormal 
frame moving on the body. y, y', y" are the direction cosines 
of the moving frame with respect to an orthonormal frame 
fixed in space. The gravitational constant is g. 

When Zo = Yo = Zo = 0, Eqs. (5.1) decouple to the fol
lowing set: 

782 J. Math. Phys., Vol. 25, No.4, April 1984 

dp 
A-=(B-C)qr 

dt ' 

dq 
B-=(C-A)rp 

dt ' 

dr 
C dt = (A -B)Pq, 

d: = ry' - qy", 

d' --..r. = py" _ ry, 
dt 

d " --.L.. = qy - Pr'. 
dt 

(5.2) 

(5.3) 

These may be solved by first solving (5.2), which are the 
Euler equations for a force-free rotating rigid body, and then 
substituting the result into the right-hand side of(5.3), which 
is a set of linear, variable-coefficient ordinary differential 
equations for the (y, y', y"). Thus, if t __ (p(t), q(t), r(t)) is a 
solution of (5.2), it can be extended to a meromorphic func
tion of z = t + iT, whose poles depend on the initial data 
(p(O), q(O), r(0)). (5.3) then is a set oflinear differential equa
tions for t __ (y(t ), r'(t), y"(t ))whosecoefficientsaremeromor
phic. By the usual theorems for linear ordinary differential 
equations and analytical continuation, the solutions of (5.2) 
and (5.3) can be extended to be analytic functions in a Rie
mann surface sitting over the complex z plane with certain 
points removed. In particular, there are no branch cuts nec
essary. It is this property of the force-free rigid body which 
Painleve focussed on in his work5

,9 and that first arose in 
Kowalewski's work. 

Now, Arnold showed 10 how to write (5.2) in what later 
became known as "Lax form." Set 

(p,q,rl~( -: 
r 

° -p 

-q) 
p. 

° 
(5.4) 

Let G be the Lie group SO(3, R) of 3 X 3 real orthogonal 
matrices of determinant + 1. Let ~ be its Lie algebra, 
namely the Lie algebra of 3 X 3 real skew-symmetric matri
ces. Then, if(p, q, r) is interpreted as a point inR 3, a may be 
considered as a linear map 

a: R 3 __ ~. 

Theorem 5.1: There is another linear map (3: R 3 __ ~ 
such that the Eqs. (5.2) take the following form: 

d 
dt alp, q, r) = [(3(p, q, r), a]. (5.5) 

Proof Let us find (3 so that Eqs. (5.2) are equivalent to 
(5.4) 

(313) 
~23 • 

(5.6) 

We require that 
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0 
A-B A-C 
--pq ---rp 

C B 

B-A 
0 

B-C 
(5.7) [P, a] = --pq ---qr 

C A 

C-A C-B 
0 ---rp ---qr 

B A 

If the coefficientsPij of(5.6) are written as linear functions of 
(p, q, r), (5.7) constitutes a set oflinear equations for the 
coefficients that can readily be solved. 

Having found a and p, we can now write (5.1) as a set of 
matrix differential equations. Set 

r~(-~ 
y Y') 0 ~" , (5.8) 

-y' y" 

da (5.9) -= [p(a),a] + [A,r], 
dt 

where A is a constant 3 X 3 skew-symmetric matrix, deter
mined by the constants M, g, x o' Yo, Zo in (5.1). 

dr 
-= [a,r]. 
dt 

These equations are a special case of what I have 
called 16 an extended Lax system, which we will now define 
independently. 

6. EXTENDED LAX SYSTEMS AND QUADRATIC 
DIFFERENTIAL EQUATIONS 

Let [1 be a Lie algebra, Va real vector space, A a linear 
map from V to [1,pamap [1-+[1, Camapfrom [1 toL (V, 
V), the space oflinear maps V -+ V. Thefollowing differential 
equations: 

dA = [ P (A ), A ] + A (v(t)), 
dt 

dv = CIA )(v), 
dt 

(6.1) 

will be said to form an extended Lax system. 
Notice that when the "coupling" A is zero, the system 

(6.1) decouples to the following one: 

dA = [ P (A ), A ], 
dt 

dv 
-=a(A)v, 
dt 

(6.2) 

(6.3) 

i.e., a Lax system (6.2) that is then solved and fed into the 
system (6.3) to obtain a linear, time-varying system. 

We can now combine the two components of the system 
(6.1) in the following way: Let 

.sd" = vector space direct sum of [1 and V, 
(6.4) 

i.e., [1 Ell V. 

Let B be the following bilinear map: .sd" X .sd" -+.sd" 

B(A Ell V, AI Ell vIi = [P(A), AI] Ell CIA )(vIi. (6.5) 

Let D be the following linear map: .sd'-+.sd' 

D(A Ell v) =,1, (v) Ell O. (6.6) 
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Theorem 6.1: With these definitions, the extended Lax 
systems can be written in the following form: 

dA' =B(A ',A ') +D(A') 
dt 

for A 'E.sd' - [1 + V. 

(6.7) 

I will not pursue at the moment the analysis of these 
equations from the Painleve point of view. (That is on the 
agenda for a later paper in this series.) As a first step, I will 
repeat the course followed by Kowalewski in her initial 
work4 and look for solutions which seem likely to be mero
morphic. Thus, if the "general solution" can be proved to 
consist of meromorphic functions, it might be possible to 
prove the Painleve property directly in certain cases. 

7. FORMAL LAURENT SERIES SOLUTIONS OF 
BILINEAR EQUATIONS 

We can now partially algebracize some material in So
phie Kowalewski's papers.4 Let .sd' be a real or complex vec
tor space, 

B: .sd' X .sd' -+.sd' 

a bilinear map. Let 

D: .sd'-+.sd' 

be a linear map. 
Consider the following differential equation: 

dA =B(A,A) +D(A) 
dt 

(7.1) 

(7.2) 

(7.3) 

to be solved for a curve t-+A (t) in.sd'. The most straightfor
ward way of investigating the analyticity of(7.3) is to assume 
a solution exists in the form of a Laurent series, substitute it 
into the differential equations, and investigate the compati
bility of the resulting algebraic equations for the coefficients 
of the series. This was the method used by Kowalewski4 in 
her first approach to the weighted spinning top. 

Let us use this approach on Eq. (7.3). Suppose I-+A (t) is 
a solution of(7.3) of the following form: 

A (t) = t ma(t), (7.4) 

where m is a complex number, and m 'fO, 1, 2, ". 

a(t)=Ao+Alt+ .. ·, Ao'fO 

is a formal power series. Then 

dA = mtm -Ia + tm da , 
dt dt 

B(A, A) = t 2mB(a, a), 

dA -B(A,A) -D(A) = mtm-Ia + tm da 
dt dt 

(7.5) 

(7.6) 

(7.7) 

- t 2mB(A,A) - tmD(a(t)). 
(7.8) 

Theorem 7.1: With the above notation, suppose 

dA dt -B(A,A) -D(A) 

is a formal power series in t containing only nonnegative 
powers. Then, 
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m= -1, 

Ao = B (Ao, Ao)· 

Proof Using (7.7) and (7.8), 

(7.9) 

(7.10) 

dA dt -B(A,A) -D(A) 

= mtm~ I(Ao + tAlt...) 

+ tm(A I + 2tA 2 + ... ) 
- t 2mB (Ao + tA I + ''', Ao + tA I + ... ) 
- tmD(Ao + tAl + ... ). (7.11) 

Using (7.4) and (7.9), (7.10) follows from (7.11), and equating 
to zero the coefficients oft ~2 on the right-hand side of(7.11). 

Let us now insert conditions (7.8)-(7.9) into A (t), and 
find the recursion relations for the coefficients of the power 
series: 

00 

A (t) = I Aj+ It j, 
j~ ~ I 

dA ~ A j~ I 
-= £.., ] j+l t 
dt j~ ~ I 

00 

= I (k+l)Ak-+2 t \ 
k~ ~2 

00 

(7.12) 

(7.13) 

B(A,A)= I t k I [B(Ai),Aj]' (7.14) 
k~~2 i+j~k 

i,j> -1 

dA dt -B(A,A) -D(A) 

= k~2 t k 
[(k + l)Ak+2 - i+j~+2 B(A,A) 

i.j>O 

- k~2 D(A k+ 2)]. (7.15) 

It now follows from (7.15) that: 

Theorem 7.2: The t -I coefficient in 

dA dt - [B(A ),A ]-D(A) 

vanishes if and only if the following condition is satisfied: 

D(Ad + B(Ao, Ad + B (AI' Ao) = O. (7.16) 

Let us now set equal to zero, for k-;,O, the terms in (7.15) 

A2 = B (Ao> A2) + B (AI> Ad + B (A2' Ao) + D (A 2 ) 

(k-l)Ak= I B(Aj>Aj ) 

i+j~ k 

i,j';.>O 

= B(Ao,A k) +B(AI,A k __ I ) 

+· .. +B(Ak,Ao)+D(Ad. (7.17) 

Let us set this up more algebraically. For AoEd, let 
Y A".k be the following linear map: d-d 

YA".dA) = (k - l)A - B(Ao,A) -B(A, Ao) + D(A). 
(7.18) 

Then, we can write the recursion relation (7.9) in the follow
ing way: 
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YA".k(A k) = I [B (Ad,A j ]. (7.19) 
i+j~ k 
i,j~l 

Thus, we have proved the following result: 

Theorem 7.3: Suppose that A o' A 1 are elements of d 
satisfying (7.10) and (7.16). Suppose also that Y A".k' for k-;'2, 
is an onto linear map of d-d. Then, a formal Laurent 
series solution 

A (t) =Aot -I +AI +Alt + ... 
ofEq. (7.2) exists. 

Let us now investigate further a simple situation involv
ing an ansatz for B. 

8. SOLUTIONS ASSOCIATED WITH INVOLUTIVE 
AUTOMORPHISMS OF LIE ALGEBRAS 

Suppose now that d has a Lie algebra structure 

(A 1,A2) + [Al,A2]' (8.1) 

Suppose, in this section, that 

/3:d-d 

is a linear map satisfying the following conditions: 

/3 ([A I' A2]) = [/3 (A I), /3 (A 2)], (8.2) 

i.e., /3 is an automorphism of the Lie algebra structure (8.1). 
Suppose also that 

/3 2 = 1, (8.3) 

i.e., /3 is an involutive automorphism of the Lie algebra struc
ture (8.1). (Recall that such objects play an important role in 
the theory of symmetric spaces.) 

We can decompose d as the direct sum 

d=d++d~ (8.4) 

of linear subspaces such that 

/3 (A ) = ±A 

for AE :!J ±. 

Also, 

[d+, cW'±] Cd±, 

[d-,d±]Cd+. 

(8.5) 

(8.6) 

(8.7) 

We can proceed now to construct the "general solu
tion" of the Arnold-Lax equation, in this case. Suppose 

l_A (t) 

is an analytic solution of 

dA 
- = [ /3 (A ), A ], 
dt 

(8.8) 

where/3 is an involutive automorphism of the Lie algebra.W'. 
Then, 

~ (A + /3 (A )) = [/3 (A ), A ] ± /3 ([ /3 (A ), A ]) 
dt 

= [/3 (A ), A] + [A, /3 (A )] 

=0. 

In other words, 

A +/3(A) 

Robert Hermann 

(8.9) 

(8.10) 

784 



                                                                                                                                    

is independent of t. The projection map 

1T+: .2/-+.2/ +, (8.11) 

is a "conserved quantity" for the differential equation (8.8), 
i.e., the orbits of the vector field 

V (A ) = [P (A ), A ] (8.12) 

on .2/ are contained in the fibers of 1T+ ,and the vector field V 
is tangent to the fibers of 1T+. 

Now, 

~ (A (t)) = [PIA ),A] 
dt 

= [1T+(A ), A]. (8.13) 

Since 1T+ (A ) is independent of t, this is a constant-coefficient 
linear-differential equation, which can be solved explicitly as 
follows: 

A (t) = exp(ad 1T+(A (O))t )(A (0)) 

= A (0) + t [1T+(A (0)), A (0)]. (8.14) 

In particular, note that all solutions of the Arnold-Lax 
equation are analytic in this case. 
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The SchrOdinger-Langevin equation: Special solutions and nonexistence of 
solitary waves 

L. BrOil and H. Lange 
Mathematisches Institut, Universitiit Koln, WeyertaI86-90, D-5000 Koln 41, West Germany 

(Received 9 May 1983; accepted for publication 17 June 1983) 

Two types of solutions of the Schrodinger-Langevin equation are investigated. It is proved that a 
special type of Gaussian solutions exist globally in time for the harmonic oscillator Hamiltonian. 
Furthermore, it is shown that the Schrodinger-Langevin equation can have no solitary wave type 
solutions in the damped free-particle case which lie in L 2. 

PACS numbers: 02.30.Jr, 03.65. - w 

I. INTRODUCTION 

The theory of quantum-mechanical treatment of dissi
pative systems has received attention recently due to the in
terest in heavy ion physics and frictional problems in fission; 
furthermore, we may mention the quantum theory oflasers, 
the theory of detection of photons, and the theory of fission 
of atomic nuclei (see Messer, I Hasse, 2 Dekker,3 Svinin,4.5 
and the literature cited in these references). 

A model to describe a quantal dissipative system acted 
upon by a frictional force was introduced by Griffin and 
Kan,6 and Kostin 7 : It is a nonlinear one-dimensional time
dependent Schrodinger equation 

a {fz2 a
2 

} ifz-if;(x,t) = - --2 + V(x) if;(x,t) 
at 2m ax 

+ fz~ {log t,(x,t) _ flog t,(x,t) )} if;(x,t ) 
21 if;(x,t) \ if;(x,t) 

(1.1) 

with a potential V = V(x) (which may be a stochastic poten
tial, but we consider the nonstochastic case only), and 

flog t,(x,t) ) = foo log t,(x,t) Iif;(x,t W dx 
\ if;(x,t) - 00 if;(x,t) 

is a frictional or damping coefficient. Since (1I2i) log zlz 
= arg z, we prefer to write (1.1) in the form 

iif;, = - a~if; + Vif; + y(arg if; - W(if;))if; (1.2) 

with some obvious normalization, and W(if;) 
= S': 00 arg if; I if; I 2 dx; (1.1) is usually called the Schro

dinger-Langevin equation. In connection with (1.2), we also 
consider the nonlinear Schrodinger equation 

iif;, = - a~ if; + Vif; + yarg if;if;, (1.3) 

which we call the argument-Schrodinger equation or simply 
the argument equation. Equation (1.1) [and (1.3), too] has 
several remarkable properties. First, the L 2-norm of the 
wave function if; is preserved for all time (see Sec. IV for a 
further conservation law). Secondly, eigenfunctions of the 
Hamiltonian H = - (h 2/2m)a~ + V are, in general, (un
damped) solutions to (1.1) [for the phase s(x,t) = - (fz/2i) 
X log if;(x,t )1 ~x,t ) is usually independent of x; see Skager
stam8

•
9
]. Furthermore, the nonlinearity is discontinuous if 

we consider it as a single-valued mapping. 
Several interesting special solutions to (1.1) are known, 

so for the case V = 0, (1.1) has solutions of the form 

if;(x,t) = Neikxexp[ -(x-X(tW/2(aR +ia/)], (1.4) 

where k = koe - Y', X(t) = Xo + (fzkoly)(1 - e - Y'). The real 
functions a R' a/have to satisfy the following coupled sys
tem of first-order differential equations in the time variable, 

aR = ya/2aR a/l(a1 + a;), 

al = fzlm - ya/(a1 - a;)I(a1 + a;) (1.5) 

(see Immele, Kan, and Griffin 10; there seems to be numerical 
evidence that (1.5) has nontrivial solutions existing globally 
in time). 

In the case of the damped harmonic oscillator (i.e., 
V(x) = !mu/x2), the following solutions are known: 

if;(X,t)=xo(x-X(t))exp( - ~wt)exp{ ~ (mXX(t) 

+ + my(X(t)2 - a2) - LLo(S)dS)} , (1.6) 

where 

Xo( y) = (mw/1rli)1/ 4exp( - (mw/2fz) y2), 

Lo(s) = ! mX(t)2 - ! mw2X(t)2, 

X (t) = ae -(1I2Iy' (cos ilt + (yl2il )sin ilt), 

il 2 = w2 
- i Y > O. 

This solution can be generalized to 

if;(x,t) = <Pn (x - X (t ))exp( - i(En Ifz)txX (t)) 

X exp(ig(X (t),x (t ),t )), 

where <P n are eigenfunctions of the Hamiltonian 

H = - (fz2/2m)a~ + ! mw2x2 

of the harmonic oscillator with eigenvalues 

En = (n + ! )fzUJ, X(t) + yX(t) + w2X(t) = 0, 

and g(X,X,t) is given by 

fz dg(X(t),x(t),t) = myX(t)X(t) 
dt 

+ !mw2X2(t) - !mX(tf 

(1.7) 
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(see Skagerstam,8,9 Griffin, and Kan6
); here, also, one must 

have the weak damping assumption 

(1.S) 

Kostin 7 constructs a solution of (1.1) for V = 0 of the form 
,¢(x,t) = ei91tl exp((il/i)[a(t)x + /3 (t)]) which unfortunately 
is not in L 2. If ¢ is a solution of the argument equation with 
S: 00 I¢ 1

2dx = 1, then via a function Ott) with e(t) 
= rW(¢), one gets a solution of(1.2) with 

,¢(x,t) = ei9ltl¢ (x,t) (1.9) 

(and vice versa; see Kostin7
), so it suffices to consider the 

argument equation instead of (Ll) or (1.2). 
In this paper we consider first (Sec. II) Gaussian solu

tions of (1.3) for the harmonic oscillator potential 
V(x) = W

2
X

2 of the form 

,¢(x,t) = ei(altlx' + 13lt)) = eiladtlx' + 13,lt)) e - a,ltlx' - 13 'It I, (1.10) 

with real functions aj , /3j; we show that nontrivial solutions 
of that form exist for all time ifO";;w2";;1!16 (for r = 1). For 
Eq. (Ll), with V(x) = !mw2x2 and arbitrary y, this last condi
tion is the same as w2 ,,;;!r; therefore solutions of the form 
(1.10) are, in some sense, complementary to those Gaussian 
solutions of the shape (1.6) or (1.7) with condition (1.S). 

In Sec. III, we show that the argument equation (1.3) 
(with V = 0; damped free particle) can have no nontrivial 
solitary wave solutions in L 2, i.e., there are no nontrivial 
solutions to (1.3) of the form 

¢(x,t) = ¢(x + ct ), 

withcER, ¢EL 2(R)nC 2(R). EspeciallythereisnoL 2-solution 
of(Ll), (1.2), or (1.3), which is time-independent (and #0), 
but there are stationary solutions of (1.1) of the form 
¢(x,t ) = eW¢o(x). 

We close with some remarks on open problems, gener
alizations, and further properties of the discussed equations 
(Sec. IV). 

II. GAUSSIAN SOLUTIONS 

In this section, we consider the harmonic oscillator ar
gument equation 

i¢, = - ~ ¢ + W 2
X

2¢ + r arg ¢¢, (2.1) 

where we set r = 1 for simplicity. We prove the following 
theorem. 

Theorem 1: The argument equation (2.1) has uniquely 
determined solutions of the form 

¢(x,t) = eila'(t lx' + 13,lt II e - a,I' lx' - 13,lt I 

with 

f: 00 I¢(x,t W dx = 1, a 2(t) > 0 

and 

#const(V tE[O,oo)) 

if 

0,,;;w2
,,;; T6 r. (2.2) 

The real functions aI' a 2 , {31' {32 are in C 00[0,00). 
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Remark: The case a 2 = const, a I = 0 corresponds to 
the special solution of the form (1.7) for n = O. For Eq. (1.3) 
with V = !mw2x2, condition (1.1) reads as w2,,;; r 14. If we go 
back from (1.3) to (1.2), we get solutions of(1.2) in the form 

¢(x,t) = eielt lei(u ,(t lx' + 13,1')) e - u,I'lx' - 13,ltl 

with { f' Joo f' } 8(t)=r )oal(s) _oox2e-la2IsIX'-l132ISldxds+ )/I(s)ds; 

here, also, 

f: 00 I ,¢(x,t W dx = 1. 

Pro%/Theorem 1: Observe r = 1. Ifwe make the "an
satz" ¢(x,t ) = exp(iu(x,t )), u(x,t ) = a(t )x2 + {3 (t ), 
a = a, + ia2, {3 = {31 + i{32; aj , {3j real, we get, from (10), 

U t = iuxx - ~ - W
2
X

l 
- Re u 

and, therefore, 

(ei + Re a + 4a2 + ( 2)x2 + rj3 + Re {3 - 2ia) = 0 

(where the dot means a I at). If we set the coefficients of x 2 

and 1 in the last equation equal to zero and take real and 
imaginary parts, we get 

eil + a l + 4(ai - a~) + w l = 0, 

ei2 + Sa la 2 = 0, 

ill + {3, + 2a2 = 0, 

il2 - 2a l = O. 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Evidently, every solution to the system (2.3)-(2.6) gives a 
desired solution of(2.1); obviously, (2.5) and (2.6) are solvable 
for all r;;.O if a I' a 2 are known. By (2.4) we have 

a 2(t) = C exp( - 8 La I (s)ds ). (2.7) 

with C = altO); from (2.7) we have a 2(t ) > 0, a2(t ) # const if c 
is chosen to be > 0, a I is known, and # O. If we insert (2.7) 
into (2.3) it follows that (2.3) and (2.4) is equivalent to the 
nonlinear integral equation 

or 

al(t) = al(o)exp( - L [4a 1(s) + 1 ]dS) 

+ Lexp( - f [4aI(r) + 1 ]dr) 

X {4c2 exp( -16fal(r)dr)-wl}dS (2.S) 

a1(t)=a1(0)exp( - L[4a I (S)+ l]dS) 

+ 4c2exp( - L [4a,(s) + l]dS) 

xLexp( - f[12a l (r)-I]dr)ds 

-wlLexp( - f[4a I(r)+ l]dr)ds. (2.9) 

Thus it is enough to show that (2.9) has a global solution 
alEC [0, 00) [which is #0 if al(O) #0]; from this we then have 
aI' a 2, {31' tizECOO[O, 00). Now it is clear that the right-hand 
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side of (2.9) defines a contraction in C [O,T] if T is small 
enough; thus (2.9) has a unique local solution in a small time 
interval by the contraction mapping principle, and the solu
tion, wherever it exists, can be constructed as the uniform 
limit of the iteration sequence (an) defined by 

a n+ dt) = al(o)exp( - f [4iin(s) + l]dS) 

+4c2exp( - f [4iin(S) + l]dS) 

X f exp( - f [12anCr) - 1 ]dr )dS 

- U)2fexp( - f [4iin(r) + 1 ]dr )dS, 

ao(t)=al(o)exp( - f[4a I (S)+I]dS) 

al(O) (I-e- t ) 

4a 1(0) + 1 
[if we choose a I (0) > 0]. 

Lemma 1: Under the assumptions of Theorem 1 we 
have for all t;>O, 

where 

U)* = i (I - ~I - 16tu2
), a* = 16tu*, 

CI = al(O) + 4c2/(12U)* + I). 
Proof of Lemma 1 by induction: We have 

(2.10) 

O<ao(t )<al(O)l(4a I (O) + 1)<al(O)<Clea' t
• If(2.1O) is valid 

for ai' j = O, ... ,n, we have (observe U)* <!) 
an + I (t )<al(O)e - II - 4",')t 

+ 4c2 
e(4",' - I)t [e(12",' + I)t _ I] 

12cv* + 1 

,,(a (0) + 4c
2 )e I6

""t = C ea ' t
, 

'" I 12cv* + 1 I 

an + I (t);> - U)2fexp( - f [4iin(r) + 1 ]dr )dS 

2 
;> _ U) e-II-4""lt [ell-4w'tlt _ I] 

1 - 4«1* 
U)2 

;> - --- = -U)*, 
1 - 4«1* 

since U)* is a solution of Z2 - !z + !U)2 = 0. 
By Lemma 1 all local solutions of (2.9) or (2.3)-(2.6) can be 
extended globally in time to solutions on [0,00). 

To get fl¢(x,t Wdx = I, it suffices to consider the case 
t = 0, since it is well known (see Sec. IV) that 
Sl¢(x,t Wdx = const for every H 2-solution of (1.3) [and of 
(1.1) and (1.2) also]. But for t = 0, we have 

f: ~ I ¢(x,OWdx = e - 2!32(Olf: ~ e - a,(O)x'dx = 1 

if /3z(O) is chosen appropriately. 

III. NONEXISTENCE OF SOLITARY WAVE SOLUTIONS 

The main result in this section is the following theorem: 
Theorem 2: The Schrodinger-Langevin equation (1.3) 
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has no nontrivial solitary wave type solutions of the form 

¢(x,t) = r(x + ct )exp{ i¢ (x + dt) J, 
where 

(3.1) 

c2 + d 2 > 0, r;>O, r EC 2(R)nL 2(R), ¢EC 2(R), r,¢ real 

and 

VECI(R). 
Remark: Naturally for solutions of type (3.1), only the 

case V = const is of interest; we have treated the noncon
stant case only for completeness. At the end of this section 
we give some remarks on the stationary case c = d = 0. 

Before we start the proof of the theorem, we need some 
preparations. In Eq. (1.3) we consider only the case r = 1 for 
simplicity. Substituting (3.1) into (1.3), we arrive at 

er' + 2r'¢' + ¢"r = 0, (3.2) 

d¢'r - r" + r (V(x) + ¢,2 + ¢) = 0, (3.3) 

and if we set r = eU (for r> 0), we get 

cu' + 2u'¢' + ¢" = 0, (3.4) 

d¢' - u" - U'2 + V(x) + ¢,2 + ¢ = 0. (3.5) 

From (3.2)-(3.5), we can conclude that r, u, ¢EC 4(R) (under 
the assumptions of the theorem). 

Lemma 2: Letf(x);>O for x;>a and limx_~ f(x) = 00. 
Then for any solution of 

r" = f(x)r, r;>O, r EC 2(R)nL 2(R), 

we have 
(i) r is a bounded decreasing function for x;>a, 
(ii) limx~oo r(x) = 0. 
Proof For x;>a we have r"(x);>O, hence r(x);>r (y) 

+ r'(y)(x - y) for all x;>y;>a. Because of r E L 2(R), this im
plies r'(y)<O for ally;>a; thus we have (i). Now (ii) is trivial, as 
we know from (i) that limx~~ r(x) exists. 

Remark: Actually we have limlxl~oo r(x) = ° for any 
r E L 2(R)nC I(R); see Benjamin, Bona, and Mahony. II 

Lemma 3: If r is in C 2(R)n L 2(R) and r" = (ax + b )r for 
all x, then r = ° (a,b = const). 

Proof For a = 0, the statement is trivial. For a -=1= 0, ev
ery solution of r" = (ax + b )r can be represented as 

r(x) = clAi((ax + b )la2/3) + c2Bi((ax + b )la2/3
) (3.6) 

with the Airy functions Ai and Bi (see Abramowitz-Ste
gun I2). We may assume a> ° (otherwise we substitute 
x_ - x). Then by Lemma 2 we have that r is bounded for 
x;>xo = - b la. Since Ai(z) is bounded then for cz-=l=O, we 
would have that Bi(z) is bounded for big z;>O, a contradic
tion. Hence we must have C2 = 0. If CI -=1=0 (3.6) implies that 
Ai(z) is an L 2-function, which is not the case since we have 12 

Ai(z) = 1T- 1I2 Izl- I / 4 sin(; + 1T14) + 0 (lzl-7/4) 

for 

z<o, Izl-oo, 

where 

; = ~lzl3/2· 

Hence Ai(z)E L 2(R) would imply that 
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roo sin2( j Izl
3/2 + ! 'IT) dz 

1 Izl
l/2 

would converge. But this is not the case since, by Holder's 
inequality, 

L
oo sin2( jz3/2 + ! 'IT) 

1/2 dz 
Zo z 

(1 00 dx )-1 
X -:ti3 = 00 

z, X 

Lemma 4: If r E L 2(K), r(x) > 0 for all xEER, then we 
have lIrEtL 2(K) and 

L
x ds 2 
~>CIX, 

o r(s) 

for all XEK, x>O, where C1 is some constant> O. 
Proof: We have, by Holder's inequality, 

rb ( rb )112 b - a = Ja dx<, Ja ~(x)dx 

(lb dx ) 112 (lb dx ) 112 X -- <,C2 --
a ~(X) a ~(X) 

and, therefore, 

rb 
dx ( b - a )2 

Ja ~(X) > ~ , 

from which the assertion follows. 
Proof of Theorem 2: 
(i) At first we may assume that r(x) > 0 for all xEK, for if 

r(to) = 0, we must have r'(to) = 0 since r(x»O. But then, by 
the uniqueness of solutions of equations of the form 

r" =f(x)r 

[withf(x) = d<p ' + <p'2 + <p + V from Eq. (3.3) where we 
have set t = 0], we get r = O. 

(ii) Assume d = O. Then (3.3) reads as 

r" = (V(x) + <p,2 + <p Jr. (3.7) 

If we differentiate (3.6) with respect to x and t, we find 
r''' = (V(x) + <p,2 + <p )r' + r d Idx(V(x) + <p'2 + <p) and 
cr''' = c(V(x) + <p ,2 + <p )r', hence r(x)d I 
dx(V(x) + <p,2 + <p) = o and V(x) + <p,2 + <p = const = b. By 
(3.7) this means r" = br and, hence, r E L 2 only if r = O. 

(iii) Now let d i'0. 
Lemma 5: There exist constants a, b,EK such that 

V(x) = a(1 - cld)x + b, 

and for ci'd we have 

r" = (ax + {3)r 

with some constants a, {3ER. 
Pro%/the Lemma: Ifwe differentiate (3.5) with re

spect to x and t and compare the results, we get 

V'(x) = (1 - cld)[u'" + 2u'u"]; (3.8) 

thus for c = d the result follows. If ci'd, by differentiating 
(3.7) with respect to tone gets u"" + 2U"2 + 2u'u'" = 0, and 
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by integrating with respect to z = x + ct, this gives 

u", + 2u'u" = a (3.9) 

and 

u" + U,2 = az + {3 (3.10) 

with some constants a, {3. From (3.8) and (3.9) we get the 
first, and by (3.10) and r = eU

, the second statement of the 
lemma. 

By Lemmas 3 and 5, we see that the assertion of 
Theorem 2 is true for ci'd. Now let c = d i'0. Then by 
Lemma 5, we must have V(x) = const = b, and using the 
transformation <p--+<p - b, we may assume V(x)-O. 

Solving (3.2) for <p', one arrives at 

<p '(z) = A I~(z) - c/2 (AEK); 

thus (3.3) reads as 

r" =f(z)r, f(z) = £ - c
2 

- (~)z + r _1 ds + b. 
r4(z) 4 2 Jo r(s) 

(3.11) 

Now if A = 0, the result follows by Lemma 3. If A > 0, we 
have by Lemma 4 limHoo f(z) = 00; hence by Lemma 2, 
limz~oo r(z) = O. But using (3.11) and Lemma 4, it follows 
that 

limHoo r"(z»limz_oo r(z) ~2 = 00, 
r (z) 

from which we must conclude that limz-oo r(z) = 00, a con
tradiction. Along the same lines we get a contradiction in the 
case A < 0 by the substitution z_ - z. 

Remark: In the stationary case (c = d = 0), we have 
<p '(z) = A I~(z)andr" = (V(x) + <p,2 + <p Jr. Ifwe assume an 
additional growth condition on the potential V(x), namely, 

lim ! V(x) + alxl 2J = 00 
Ixl-oo 

(3.12) 

for every a > 0, then the arguments used above lead to A = O. 
Hence the stationary solutions of the argument equation 
(1.3) may be characterized as those solutions of 

r" = (V(x) + d)r (3.13) 

which lie in L 2(K) (here d is a constant). The solvability of 
(3.12) in L 2(K) naturally depends on the potential V(x). For 
example, if V(x) = ax + b, Lemma 3 shows the nonexistence 
ofL 2-solutions, whereas for V(x) = x2

, wehaveL 2-solutions 
of the argument equation, for instance t,b(x) = exp( - x 2/2 
-i). 

IV. CONCLUDING REMARKS 

We close with some hints on open problems and some 
further remarks and properties of the equations discussed. 

(a) The main open problem in connection with Eqs. 
(Ll), (1.2), or (1.3) is a reasonable global existence result for 
the Cauchy problem. The difficulty arises from the fact that 
the function t,b-arg t,b is discontinuous if we consider it in 
the complex plane as a single-valued function. Nevertheless, 
equations of the argument type have some interesting mono
tonicity properties. Thus if we consider (1.3) with negative r 
(choose r = - 1), and write the equation in the form 
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tPt + TtP = 0, TtP = i( - ~ tP + VtP - arg tPtP), 

(D (T) = {t/JE L 2(K)1 - ~ tP + Vt/JE L 2(K) j), 

the operator T gives rise to a monotone operator S = T + AI 
in the sense of 

Re(StP - S1>, tP - 1> »0 
(V1>, t/JE D (T)) if A> 1 and V = real. But evidently S is not 
maximal monotone, since T is not demicontinuous. 

The monotonicity proof does not work for r> 0, but if 
one cuts off the function arg z in a small sector with angle 
€ > ° around the positive real axis in such a way that the 
resulting function arge(z) is continuous for z¥=O, arge(z)z is 
continuous on C, and limE---+O arge(z) = arg z (for all 
ZE C \ { ° J ), then one can show along the same lines as above 
that the approximative operator 

Se = Te +AJ 

[with an appropriately chosen Ae > ° and 
Te tP = i( - ~ tP + VtP + arge(tP)tP), V = real] is maximal 
monotone and coercitive. Thus the initial-value problem 

itP, = -~tP+ VtP + arge(tP)tP, 

tP(x,O) = tPo(x) 

has a unique solution tP e (x,t ) in the sense of monotone opera
tor theory (see H. Brezis13

). These monotonicity properties 
will be treated more rigorously in a forthcoming paper. 

(b) The following conservation laws for (1.3) (with 
r = 1) are known in the case V(x) = UJ

2
X

2
: 

f:001tP(X,tWdx=const, (4.1) 

d Joc Joc dt _ oc {ltPx(x,t W + UJ
2
X

2
1 tP(x,t W Jdx = - 2 _ oc 1>;"z dx, 

(4.2) 

where 1> = arg tP, r = ItPl. This can be proved formally (and 
justified rigorously) by multiplying (1.3) with If, - IfXX' x2If, 
respectively, taking complex conjugates and adding up; after 
some partial integrations one arrives at (4.1) and (4.2). 
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(c) Mathematically it is not known whether any of the 
known special solutions of the equations discussed are stable 
in any sense. 

(d) Although there are no L 2-solutions to (1.3) of soli
tary wave type, (1.3) has generalized solitary wave type solu
tions, namely, for instance, if we set C = - Co, Co> 0, 
A = cb/3, and 

{
N.Ai(AZ - al)' for z>O, 

r(z) = 
0, for z';;O, 

1> (z) = (coI2)z + CI , 

where CI = c~/3al + c~/4, and - al is the first negative zero 
of Ai(z). Then tP(x,t) = r(x - cot )ei<P Ix - co') (where N> 0 may 
be chosen to satisfy SltPI 2dx = 1) is a generalized solitary 
wave solution which we may call pseudosolitary-wave; we 
have t/JE L 2(K)nC (K); tP satisfies the argument equation (with 
V = 0, r = 1) on ]R2 except on the line where x = cot; actual
ly it is a distribution solution of 

itP, = - J; tP + arg tPtP + po 
(0 = Dirac distribution), where p characterizes the jump of 
r' at z = x - cot = O. 
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Symmetry reduction is studied for the relativistically invariant scalar partial differential equation 
H (Ou,(Vu )2,U) = 0 in (n + 1 )-dimensional Minkowski space M (n, 1). The introduction of k 
symmetry variables SI' '" ,Sk as invariants of a subgroup G of the Poincare group P(n,I), having 
generic orbits of codimension k<n in M (n, 1), reduces the equation to a POE in k variables. All 
codimension-l symmetry variables in M (n, 1) (n arbitrary), reducing the equation studied to an 
ODE are found, as well as all codimension-2 and -3 variables for the low-dimensional cases 
n = 2,3. The type of equation studied includes many cases of physical interest, in particular 
nonlinear Klein-Gordon equations (such as the sine-Gordon equation) and Hamilton-Jacobi 
equations. 

P ACS numbers: 02.30.Jr, 02.20. + b, 11.30.Cp 

1. INTRODUCTION 

The purpose of this paper is a systematic study ofsym
metry reduction for a relativistically invariant first- or sec
ond-order nonlinear partial differential equation in (n + 1)
dimensional Minkowski space M (n, I), involving one scalar 
field. Such equations are of the general form 

H(Du, (VU)2,U) = 0, (Ll) 

where H is some sufficiently smooth given function of the 
indicated variables and the dependent variable 
u = u(XO'x l , '" ,xn ) is a scalar function ofa point x inM (n, 1). 
The Laplace-Beltrami (or d'Alembert) and the gradient 
square operators are respectively 

Du = u - u - ... 
XoXo XI X \ - uxnxn ' 

(1.2) 
(VU)2 = (uxY - (ux\)2 - ... - (uxY' 

By reduction we mean the introduction of new indepen
dent variables 

SI(X), ... ,sdx), 1 <h;;n 

such that the Ansatz 

u(x) = U(SI' .,. ,sd 

(1.3) 

(1.4) 

reduces Eq. (1.1) to a k-dimensional partial differential equa
tion involving the variables Si only, or in particular, for 
k = 1, to an ordinary differential equation. 

The main result of this paper is that the variables Si(X) 
can be systematically generated as "symmetry variables," 
i.e., invariants of subgroups G of the symmetry group of the 
equation, in this case, the Poincare group P (n,I) in n + 1 
dimensions. More specifically, subgroups G having generic 
orbits of codimension k in M (n, 1), will have k functionally 
independent invariants SI' ... ,Sk, depending on the coordi
nates of a point xEM (n,I). These invariants can serve as the 
coordinates (1.3), (1.4) and will provide the desired dimen
sional reduction. 

_I Supported in part by the Natural Sciences and Engineering Research 
Council of Canada and by an FCAC Grant of the "Gouvernement du 
Quebec." 

blOn leave from the Department of Physics, Institute of Geophysics, War· 
saw University. Warsaw. Poland. 

Equation (1.1) is sufficiently general to encompass 
many cases of considerable physical interest. For example, 
nonlinear Klein-Gordon equations 

Du = F(U,(VU)2) (1.5) 

occur in many physical problems with a variety of nonlinear
ities on the right hand side. As obvious examples, let us men
tion the sine-Gordon equation with F = sin u (arising in 
studies of Josephson junctions, self-induced transparency, in 
relation to the Thirring model and nonlinear (J model in ele
mentary particle theory and elsewhere), the Liouville equa
tion with F = eU

, various field theories in which F is a polyn
omial in u, and many others. 1-6 The relativistically invariant 
Hamilton-Jacobi equation 

(VU)2 + V(u) = E, (1.6) 

figuring in relativistic classical mechanics and general rela
tivity theory is also of this form. [A potential V(u) depending 
on the action u but not directly on the space-time coordi
nates arises in the eikonal approximation of the nonlinear 
Klein-Gordon equations.] 

The motivation for reducing an equation to one in fewer 
dimensions is quite obvious: Ordinary differential equations 
are usually easier to solve than partial differential equations, 
lower-dimensional POE's are easier to treat than higher-di
mensional ones. The reduction to ODE's is of particular in
terest since these can very often be explicitly integrated in 
terms of known functions, or at least their singularity struc
ture can be investigated using well-known methods. In parti
cular, it is possible to determine whether these ODE's are of 
the Painleve type,7-1O i.e., whether all their critical points are 
fixed (independent ofthe initial conditions). This is of inter
est both from the viewpoint of solving these ODE's and from 
that of the "Painleve conjecture,,,3.11 namely, that a POE is 
integrable by inverse scattering techniques only if all ODE's 
that it reduces to are of the Painleve type. 

The solutions obtained by symmetry reduction are of 
interest in their own right, and they can in some cases also be 
used to generate more general solutions of the original POE, 
e.g., as input functions in Backlund transformations. 2

-6 

The idea of symmetry reduction is a very old one and 
goes back at least to Lie. (It is useful to recall that the theory 
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of Lie groups was originally developed in connection with 
the theory of differential equations. [2-14) More recently, this 
subject has been treated in several books I5

-[7 and is a stan
dard technique for obtaining solutions of nonlinear equa
tions, e.g., the sine-Gordon equation, 18 the nonlinear Schro
dinger equation, [9.20 the Yang-Mills equations, 2 [-23 and, of 
course, the Einstein equations of general relativity. 24-26 

Our contribution is that we make a systematic use of the 
subgroup structure ofthe invariance group of the equation to 
generate, in some sense, all symmetry variables providing 
the desired reduction. In the case ofEq. (1.1) the symmetry 
group is the Poincare group P (n, 1) (the inhomogeneous Lor
entz group) in n + 1 dimensions. (This is true for arbitrary 
functions H, but in special cases the symmetry group may be 
larger.) 

In Sec. 2, we formulate the problem and show how re
duction of dimensions is obtained by introducing the appro
priate symmetry variables S \0 ••• ,S k' In Sec. 3 we find the 
invariants of all subgroups of P (n, 1) having orbits of codi
mension 1 and hence reducing Eq. (1.1) to an ODE. Section 4 
is devoted to the physically interesting cases of (2 + 1)- and 
(3 + I)-dimensional Minkowski space, and we obtain all 
possible symmetry reductions to lower dimensional POE's 
(as well as ODE's). The obtained ODE's are investigated for 
special cases of interest in Sec. 5, where we also discuss some 
of the lower order POE's. The conclusions are summarized 
in Sec. 6. 

2. FORMULATION OF THE PROBLEM OF SYMMETRY 
REDUCTION 

Let us consider Eq. (Ll), 

H(Du,(Vu)2,u) = 0, 

with 0 and (V.)2 as in (1.2). This equation is invariant under 
the Poincare group P (n, 1) (the inhomogeneous Lorentz 
group), i.e., if u(x) is a solution of (1.1), then so is 

[Tfg)u](x) = u(x') = u(Ax + a), (2.1) 

whereg = (A ,a)EJ>(n, I) is a Poincare transformation, 

(2.2) 

(the superscript T denotes matrix transposition). 
A basis for the Lie algebra pin, 1) of the Lie group P (n, 1) 

is given by the infinitesimal Lorentz transformations Mpv 
and infinitesimal translations Pp ' satisfying the commuta
tion relations 

[Mpv, Mpa] = gJLP Mva - gyP MJLa + gJLa Mpv - gva M pJL ' 

[MJLv'Pa ] = - gva PJL + gJLa Py, (2.3) 

[PJL,Py ] =0, 

/l,v=O,I, ... ,n, goo = 1, gao = -1, a = 1, .,. ,n, 

gJLY = 0 for wI-v. 
When acting on scalar functions u(x), xEM (n, 1), the infinite
simal operators (2.3) can be represented by the following dif
ferential operators: 
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Mab = XaOb - xboa (rotations), 

Moa = - xoOa - xaoo (Lorentz boosts), 

PI" = 01" (translations), (2.4) 

a,b = 1, ... ,n, f.1 = 0,1, ... ,n, 

In particular, we shall call the operators 

Xa =Moa -M[a = -(XO+x1)oa -xa(oo-o[), 

a=2, ... ,n, (2.5) 

"light cone translations," and they play an important role. 
Let us now turn to the question of reduction for Eq. 

(Ll). We introduce the variables 
SI(X), ... ,sdx), 1 <;h;;n - 1, as in (1.3). The conditions im
posed on S;(x) are expressed in the following lemma. 

Lemma 1: The Ansatz u(x) = U(SI' .. , ,sd will reduce 
theequationH(Du,(Vu)2,u) = OtoaPOEin the I <;k<;n var
iables S;(xo, x [, ... ,xn ) if and only if these variables satisfy 
partial differential equations of the form 

DSa = aa(sl'''' ,skI, 
(VSa,vSb) = (Jab (S[' ... ,SkI, 

1 <;a,b<;k, (2.6) 

where au and (Jab are arbitrary functions of the indicated 
variables. In other words, the functions DSa and (VSo,VSb ) 

are constants on level sets of ! S [, ... ,s k l· 
Proof Substitute U(SI' .. , ,sd into (1.1). We have 

k k 

Du = I USaS.(VSo,VSb) + I US-a DSa , 
a,b = I a = 1 

(2.7) 
k 

(VU)2 = I Us-aUs-JVSa,vSb)' 
a,b~ I 

In (2.7) the derivatives USa and US-uSb depend on SI' ... ,Sk 
only; hence Du and (VU)2 will depend on these variables 
alone if and only if (2.6) is satisfied. 

Comments: (1) If S[' ... ,Sk satisfy (2.6), then 

S ~ = ¢Ja(Sp ... ,SkI with det(o¢Ja1oSb) #0 satisfy the same 
type of equations (with different aa and (Jab)' The functions 
So are arbitrary sufficiently smooth functions, and this arbi
trariness can be used to simplify Eq. (2.6). 

(2) If k = I, Eq. (1.1) is reduced to an ODE. In this case 
(2.6) can be simplified by an appropriate choice of ¢J in 
S = ¢J (S[) to the form 

Ds=a(s), (VS)2=K, K=O,I, or -1. (2.8) 

The problem of reduction of the number ofindependent 
variables for Eq. (1.1) has thus been reduced to the problem 
of generating solutions of Eq. (2.6) [or in particular (2.8)]. 

The method of symmetry reduction for Eq. (1.1) gener
ates functions !s;(xJl satisfying Eq. (2.6) in a simple and 
straightforward manner. Consider a subgroup of the Poin
care group G CP (n, 1) having generic orbits of codimension k 
in Minkowski space M (n, 1). Such a subgroup will have k 
independent invariants in M (n, 1), i.e., k functionally inde
pendent functions of x = (xo• XI' .. , ,xnJ satisfying 

So (x) = So (gx), for gEG, a = 1, ... , k. (2.9) 

These invariants can be obtained as solutions of a system of 
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first-order linear partial-differential equations. To obtain 
these equations, consider the Lie algebra L of the Lie group 
G. Let { Xl' ... , Xm J be a set of operators providing a basis of 
L. Each Xi is thus some linear combination of the operators 
(2.4). The condition that some function t/J(xo, x I' ... ,xn) be 
invariant under the action of G is equivalent to the require
ment that t/J(xo, XI' ... ,xn) satisfy 

Xit/J(XO' XI' ... ,xn) = 0, i = 1, ... , m. (2.10) 

The general solution of(2.1O) will be an arbitrary function of 
k functionally independent solutions of (2.10), 

(2.11) 

where k is the codimension of the generic orbits of G in 
M(n,I). 

We can now present a theorem on symmetry reduction. 
Theorem 1: Let Sa (Xo, XI' ... ,xn),a = 1, ... ,k, beasetof 

k functionally independent invariants of a subgroup G of the 
Poincare group P (n, 1), having generic orbits of codimension 
k, i.e., k functionally independent solutions of Eq. (2.10) for 
XiEL =LG. The Ansatz u = u(S I' ... ,S k) will then reduce 
the studied Eq. (1.1) to a partial differential equation in 
SI' ... ,Sk (i.e., an ODE if k = 1). 

Proof We must prove that the variables So i = 1, ... ,k, 
obtained as solutions of (2.10), will satisfy Eqs. (2.6) of 
Lemma 1. The operators 0 and (V·,V·) are invariant under 
P(n,l) [and, in particular, under GCP(n,I)), hence 

(2.12) 

since XSa = 0 for all XELG. The group G, by assumption, 
has generic orbits of codimension k in M (n, 1). The general 
solution of(2.1O) is a function of SI' ... ,Sk; hence (2.12) im
plies that Os and (VSa,vSb) are functions of SI' ... ,Sk' as 
required by (2.6). 

Definition: We shall call variables Sa' a = 1, ... ,k that 
are invariants ofa subgroup GCP(n, 1) with generic orbits of 
codimension k in M (n, 1) "codimension-k symmetry varia
bles." 

We should stress that we do not claim that the introduc
tion of codimension k symmetry variables is the only way to 
reduce (1.1) to a k-dimensional POE. A more general formu
lation of symmetry reduction involving transformations of 
both the dependent and independent variables could be used. 
Besides this, we shall give examples below of "degenerate 
codimension k symmetry variables" that reduce (1.1) to a 
POE in k-l dimensions. There is, however, a systematic way 
of performing symmetry reduction in this limited sense for 
Eq. (1.1). We simply let Grun through all subgroups ofP (n,l) 
that have generic orbits of the required dimension, calculate 
their invariants Sa' and use the Ansatz u = U(SI' ... ,Sk) to 
reduce the equation. 

For low-dimensional cases all subgroups of the Poin
care group are known [for P (2, 1) andP (3, I)). 27-30 A complete 
subgroup classification for n;;.4 is a formidable task. Luckily 
this is not necessary since the relation between groups and 
their orbits is not one-to-one. What is needed are the maxi-
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mal subgroups GM that have a given type of orbits, i.e., a 
given set of invariants {SI' '" ,Sk J. 

The most interesting case of symmetry reduction is re
duction to an ODE, involving orbits of codimension 1. In 
Sec. 3 we shall solve this problem completely for general 
M (n, 1) Minkowski spaces; i.e., we find all codimension-l 
symmetry variables. 

3. SYMMETRY REDUCTION TO ORDINARY 
DIFFERENTIAL EQUATIONS 

In this section we shall derive a complete list of all codi
mension 1 symmetry variables in Minkowski space M (n, I) 
for arbitrary n. As a by-product we also find all codimen
sion-l symmetry variables for the Euclidean space E (n). In 
more technical terms, we derive a complete list of differen
tiable invariants determining hypersurface foliations in E (n) 
and M (n, 1), whose leaves are the generic orbits of an iso
metry subgroup. We are concerned with identifying the gen
eric orbits of these subgroups, or equivalently their differen
tiable invariants. In the process we identify, for each set of 
such invariants, the maximal subgroup of the isometry 
group that leaves the set invariant. The results are of local 
nature which allows us to work completely on the level of Lie 
algebras, rather than Lie groups. 

The following notational conventions will be used. Eu
clidean n space E (n) will be identified with Rn with typical 

element x = (XI' ... ,xn) and metric (x,y) = ~7= I XiYi' The 
corresponding Euclidean isometry group will be denoted 

P(n,O) = O(n)&Tn' 

signifying the semidirect product of the orthogonal group 
O(n) with the translation group Tn. The corresponding Lie 
algebra is denotedp(n,O) = o(n)Ei-tn. 

Similarly, (n + I)-dimensional Minkowski spaceM (n, I) 
is identified with Rn + I with typical element x = (xo,x), 
xoER, xERn

, and Minkowski metric (x,y) = xoYo - xy. The 
isometry group is the Poincare group P (n, 1) = O(n, 1)& Tn I 

with Lie algebrap(n,l)Ei-tn•l ; a standard basis for p(n,l) is . 
given by (2.3), (2.4). 

The principal results of this section are summarized in 
the following two theorems, concerning codimension-l sym
metry variables in Euclidean and Minkowski spaces, respec
tively. 

Theorem 2 (Euclidean case): Let GCP(n,O) be a Lie 
group with generic orbits of dimension n - 1 (hypersurfaces) 
in E (n). These orbits are the level sets of an invariant of the 
type 

(3.1) 

where PVk denotes orthogonal projection onto a fixed k-di
mensional subspace Vd 1 <h;;n) and aEan denotes a translat
ed origin. The orbits are hyperplanes for k = 1, spherical 
cylinders for 2<k<n - 1 and spheres for k = n. 

Comment: We can choose an orthonormal basis 
(AI, ... ,Ad, (A;oAd = 0ik for the space Vk • The invariant 
(3.1) can then be written as 
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TABLE I. Codimension I symmetry variables for the Euclidean space E (n). 

Standards General Invariance 
No. variable S, variable S group G (Vsf DS 

X, (x-s,A),A2 = 1 P(n-I,O) 0 
2 (x~ + ... +xi)1I2 [Ix - s, A,)2 + ... + (x - s, Ak)2)'12 O(k)®P(n - k, 0) (k-l)/S 

2<,k<,n -I 
3 (x~ + ... +x~)'12 [Ix - s, A,)2 + ... + (x - s, Ann ' /2 O(n) (n -IJs 

a,b = 1, ... ,k, l<k<n. (3.1') 

By a Euclidean transformation we can simplify the vari
able (3.1') to a "standard" form, namely, 

5t(X) = (xi + ... + x~)1/2, k = 1, ... ,no (3.2) 
Each 5 t represents a P (n,O) conjugacy class of codimension-
1 symmetry variables. 

We summarize the results on codimension-l symmetry 
variables for the Euclidean space E (n) in Table I. We list the 
standard variables 5, = 5 t, the general variable 5 = 5 k' the 
maximal group G C P (n,O), leaving 5 invariant and also the 
values of 

05= - + ... + - 5=--, (
aZ aZ) k-l 

ax~ ax~ 5 

(V5)Z = (a5 )2 + ... + (~)2 = 1. 
ax , aXn 

The Euclidean invariant equation 

H(OU,(VU)2,U) = ° 
reduces to the ODE 

l<k<n, 

(3.3) 

(3.4) 

H(u ss + [(k - 1)15] Us'u~,u) = 0, l<k<n. (3.5) 

The proof of Theorem 2 will be given below. The results 
for Minkowski space M (n, 1) are less obvious. 

Theorem 3 (Minkowski space): Let GCP(n,l) be a Lie 
group with generic orbits of dimension n (hypersurfaces) in 
M(n, 1). These orbits are then the level sets of one of the fol
lowing types of invariants: 

(i) 5vk.,,(x)=IIPv.(.x-alll, 

where Pv, denotes the orthogonal projection onto a fixed k
dimensional subspace Vk (1 <k<n + 1) in which the induced 
metric is of maximal rank and aElRn + I is a translated origin; 

(ii) 5~.a(X) = (N,x - a); 

(iii) 5A.,N,,, (x) = (A,x - a) + (N,x - a)2; 

(iv) 5~,N,a)(x) = (A,x - a) + a In(N,x - a), a#O. 

In (i), ... ,(iv), we have N, A,aElRn + I, aElR, 

(N,N) = 0, (A,A) = - 1, (N,A) = 0. 

Comments: (1) Case (i) is the analog of the Euclidean 
invariants of Theorem 2 and includes hyperboloids, hyper
bolic and spherical cylinders, and hyperplanes. Case (ii) is a 
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hyperplane determined by an isotropic (lightlike) vector N. 
Cases (iii) and (iv) have no Euclidean analog. 

(2) We can choose an orthonormal basis for Vk to make 
the invariant (i) more explicit. Each class of invariants is 
invariant under the Poincare group P (n, 1) so we can again 
use "standard" invariants 5 S to represent each conjugacy 
class. In this case the 5' can be chosen as follows: 

rk=(xi+···+x~+d'/2 or 

Tk = (x~ - xi - ... - X~)II2, 

1] =xo + XI' 

;=x2 +!(XO+xI!2, 

if = X 2 + a In(xo + xI!, a#O. 

(3,6a) 

(3.6b) 

(3,6c) 

(3.6d) 

The results on codimension-l symmetry variables in 
M (n, 1) are summarized in Table II. In column 4 we give the 
Lie algebra of the Lie group G C P (n, 1), leaving the corre
sponding standard variable 5s invariant. The Poincare-in
variant Eq. (1.1) reduces to the ODE 

H (K[ uss + (k /5 jus ] ,KU~,U) = 0, 

K = 0, ± 1, k = 0,1, ... ,n, (3.7) 

with k and K given in Table II for each case. 
To prove these theorems, a number of preparatory re

sults will first be established. The translation algebra t may 
be identified with the space E (n) or M(n,l) itself. Under this 
identification, the adjoint action ofO(n) [resp. O(n, 1)] is equi
variant to the adjoint action on t. We shall denote the subal
gebra corresponding to a subspace ECE(n) [or ECM(n,l)] 
as t E C t and speak of the Euclidean or Minkowski metric on 
t and the induced bilinear form on t E. Let L denote the Lie 
algebra of GCP(n,O) or GCP(n,l) and denote by 

tL-Lnt<L (3.8) 

the ideal of "pure" translations. The following lemma allows 
us to reduce the problem of determining invariants to the 
case where tL is totally isotropic (i.e., the induced bilinear 
form vanishes); that is, for E(n), tL = ° and, for M(n,I), 
dim tL = ° or 1. To avoid repetition, when results are equal
ly applicable to E (n) and M (n, 1), we shall denote both spaces 
byM. 

Lemma 2: There exists an orthogonal projection 
PE:M--+E and a corresponding projected algebra Lp con
tained in the infinitesimal isometry algebra for the projected 
metric such that the L-invariant functions on M are those of 
the form ¢loPE' where ¢l is a Lp-invariant function on E and 
t L is totally isotropic. 

p 
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Proof Suppose t L is not totally isotropic. Decompose it 
into a direct sum: 

"'" "- tL =tN +tF, 
"'" 

"'C ~ 
0 0 0 0 0 0 I "'C 

where t N is the null space ofthe induced bilinear fonn on t L 

N 
and t F is an arbitrarily chosen complement corresponding to 

"'" 0 a subspace FCM. Define EI=Fl and denote orthogonal e:. 
projection relative to Fby 

PEl :M---+EI' 

For each element XEL, regarded as a vector field on M, 
we define a projection Xp onto E by 

Xp(q) PEl X (q), qEEI' 

" 
where the value X (q) at q is identified with an element of the 

....; 
space itself. Then Xp is an infinitesimal isometry for the in-
duced metric on E 1• Any L-invariant function on M is in 

.<:) particular F-invariant and hence of the form t/J0PE, where t/J 
" oj 

is a function on E 1• Since it is X-invariant, we also have + ....; 
~ ~ ~ X(t/J0PE\)q =PElX(q)t/Jl q =0. I 

.<:) 

~ 
" 

oj 6 Hence t/J is PE\X invariant for all XEL, and therefore Lp 
~ 

.<:) II 
invariant where Lp-!PE\X, XEL l is the algebra generated N ~ + oj C!:l. 

II I ~ 6 
ci' by allPE\X(q). Conversely, given such an Lp-invariant func-

.<:) ~ oj + r:! r:! tion t/J, t/J0PE\ is annihilated by allX(q), for qEEI CM. Since 
r:!: N 

~ 
::t, :i N an arbitrary point pEM may be obtained by a translation T 

0 + I + parallel to F, translating X (P) to a point q in E I gives another I + 
r:! 
~ i -i "'C "'C 

vector X(q) = Ad TX(q) which annihilates t/J0PEI . " II II 
"-l N Q,,' Q,,' Q,,' C!:l. .<:) 

Now, if the projected algebra Lp has vanishing transla-os ci' oj ... II .D 
C!:l. 

, , 
i tional part tLp' then E = EI and the result is established. If " :i :i OIl "'C t:f '" ";j -.i " 

.,: I I ~" not, the procedure is repeated with respect to (Lp,EIl and so 
u c: ~: Q,,; i i i Q,," on until it terminates. os Q,,' ·c 
os 

" '" '" ~t, Lemma 2 reduces the problem of finding all codimen-> ~t, ~t, ~t, .5 ;:; ~" ~" sion-l symmetry variables in M (n, 1) to that of finding the 
invariants of all subgroups G of P (k, 1) in M (k, 1) 
(k = 0,1, 00' ,n), involving either no free translations at all or 

....:.. 
a one-dimensional subgroup of lightlike translations . 

0 

.:f. II The remaining lemmas deal with the case t L = 0, which 
N 

always holds in the Euclidean case and may hold in the Min-~ ,~ 

" 0 .... kowski case. The other possibility, with dim tL = 1 for the u il-.6 os ~ c.. ::t, II S 
N Minkowski case will be treated separately. We define the '" " ~ 

;;f\~ 
~ '-..: projection 1T:L---+o{n) or o(n, 1) by the value of the first compo-'" N 

~ , t,- ,1:I:i' 
0 0 I~",I~ ~ '-": '<:>+ ""'C nent in the semidirect sum decomposition of p(n,O) or pIn, 1). ~ II ,1:I:i' I"'C I J f c: :g ... 1>< 
~ 

N N N 
,~ I II f ~ II -: Then 1T is a Lie algebra homomorphism and its image defines 

"'" '-..: '-": '-..: ::t,-., - " +1 + ~ -:0 .-: bo -;. 0 a subalgebra -5 e:o _ -'-..: II 0'-": II ... " os ~ ;><ij;( ~ II '>: ~H! ;..Q ~H~ ~CC!. .8 Ii .~ 
I~I; L a-1m 1TCo(n) or o(n,!). (3.9) 

'" " ;> 
'3- \3- '3- '3.. ~13.. ci' 1......--..1'3.. ci' 

" Under the assumption tL = ker 1T = 0, the map is 1-1 and ::c os ·c hence its inverse on La os 
;> 

~ 1T- 1:La---+L 1 ., N 
E N 

determines a linear map E N>:~ 
>. - I '" r:L---+t >: N + 

+ ~ 
N~ c: >: 

0 0 

+ + such that 'u; '0"'" ~ " c: ..5 0 

" ... ., 
~ 

N>:-e os- ~ ::t 1T- 1(X) = X + r(X), XELa, ]~ + ,'I I '8 + + + II 
U S os 0 

~ 
0 >:N ~ ':B:: "'C It (3.10) on ;> >: >: 

== r[X, Y] = [r(X), Y] + [X,r( Y)] • 
~ 
...l 

Such a map is referred to in representation theory as a cocy-j;Q 

-< 0 
~ ~ 

cleo Any two algebras L,Z related by conjugation f-o Z - N ..... .q- or> '" .-
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L = eYJ.e - Y, YEt, 

have the same image under 

rr(L ) = rr(l ) = La 

and have their cocyles related by 

7(X)=r(X) + [y,x], XELa. (3.11) 

Any two cocyles r,7 so related are cohomologous, the addi
tive group of equivalence classes [r] under the relation (3.11) 
forming the first cohomology group 

HI(La,t) = I[r]]. 

The coboundaries are the trivial cocycles r Y of the form 

ry(X) = [y,x], (3.12) 

which are cohomologous to zero. 
We may decompose La according to Levi's theorem 

into a semidirect sum 

(3.13) 

where S is semisimple and R is the radical (maximal solvable 
ideal). A particular case of Whitehead's theorem on Lie alge
bra cohomology implies31

: 

Lemma 3 (Whitehead): The restriction rls is cohomolo
gous to zero. 

A general result concerning the structure of Lie alge
bras32 implies that the commutator [La,R ] contains only nil
potent matrices, from which follows: 

Lemma 4: If LaCo(n), then La = SEllA (direct sum). (ii) 
If LaCo(n, 1), then either La = S EllA,A abelian or R contains 
k (k> 1) elements conjugate to the subalgebra I Maa - Mia] , 
a = 2, ... ,k + 1 of "light-cone translations." 

The first assertion follows from the above result since 
O(n), being compact, contains no nilpotent elements and the 
second from the fact that any abelian subalgebra of o(n, 1) 
consisting of nilpotent elements is conjugate to 
I Mai - MJi ], i = 2, ... ,k + 1.33 

We are now in a position to state and prove our princi
pal lemma, which, together with Lemma 2 implies Theorem 
2 and reduces Theorem 3 to the case where either dim t L = 1 
or La contains k> 1 light-cone translations. 

Lemma 5: If tL = ° and either LaCo(n) or La contains 
no light-cone translations, there either exists an orthogonal 
direct sum decomposition 

M=EffJE 1 

such that IIPE(x - a)11 2 is an invariant of L, or L is abelian. 
Proof By Lemma 4, we have an orthogonal direct sum 

decomposition 

Lo=SffJA 

with S semisimple and A abelian. Since SCo(n) or o(n,l), 
there exists an orthogonal direct sum decomposition of M 
into irreducible subspaces under S. Let E denote the sum of 
those subspaces upon which S acts nontrivially, and E 1 the 
orthogonal complement upon which S vanishes. Thus 

tE' C t consists of those elements which commute with all 
elements in S. By Lemma 3, we can assume the restriction of 
r to S vanishes: 

rls =0 
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since conjugation of the algebra L simply corresponds to a 
motion of the entire space M. Hence by the cocycle condition 
(3.10) and the commutativity of S and A we have 

[X,r(a)] = r[X,a] = 0, 't/XES, aEA 

and therefore 

1m rCtE'. 

(3.14) 

(3.15) 

It also follows from the commutativity of S and A and the 
Jacobi identity that 

[X,[r(a),Y]] = 0, 't/XES, aEA, YEt El (3.16) 

and hence Eland E are invariant under A. Consequently, L 
is of the form 

L = S Ell I a + r(a), aEA ], 

where 

S:ECE, S IE1 = 0, 

a:ECE, a:E1CE\ 

r(a)IE = 0, r(a):E1CE1. 

(3.17) 

(3.18) 

Since each component S,a,r(a) separately preserves the or
thogonal decomposition E Ell Eland the restriction of L to E 
involves no translations, the length squared of vectors in E is 
invariant under L, and hence so is the projected length 
squared IIPE (xJlI 2

• Since the elimination of coboundaries in 
rls involved a translation, the corresponding invariant is 
generally of the form IIPE(x - a)112. 

In the case where E = ° this provides no invariant, but 
this means S acts trivially on all of M and hence vanishes, 
and therefore L is abelian. 

Theorem 2 follows from this result for dim M>3, since 
any abelian subgroup ofO(n) has dimension <n12 and hence 
cannot have codimension 1 orbits. Similarly, abelian sub
groups of O(n, 1) with no nilpotent elements have dimension 
<In + 1)12. For dim M = 2, the theorems are verified by 
explicitly considering all one-dimensional subalgebras. 

To complete the proof of Theorem 3, we must examine 
separately the two remaining cases. 

Case 1: tL = 0, dim N = k> 1, where 
N = IMaa - Mia J, a = 2, ... ,k + 1, is the set of nilpotent 
elements in the radical of La (up to a redefinition of L by 
conjugation). The general form of elements in rr- I(N) is 

rr- I(Maa - Mia) Xa = Maa - Mia + r(Maa - Mia) 
k+l 

=Moa - Mia + L aabPb 
b=2 

n 

+ L fJaiPi 
i=k+2 

+Aa(Po+P1)+Ba(Pa-Pl). (3.19) 

Since 

(3.20) 

we may take Ba = ° up to a coboundary. Since N is abelian, 
we must, for k>2, in view of the commutation relations 

(3.21) 

have Aa = 0. Since rr-1(N) must be an ideal in L, L must be 
contained within the normalizer nor(rr-1(N)) in pIn, 1). 
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For the case k = 1, we either haveA 2 = 0 or, up to con
jugation by elements of the form exp [A;(Mo; - M Ii )] and 
rotations, we have 

X2 = Moz - MI2 + a 2PZ + A (Po + PI)' 

The term a 2P2 is a coboundary and may be set equal to zero, 
and a further conjugation by a dilatation exp aMol may be 
used to normalize A = 1 so that 

X 2 = Moz - MI2 + Po + PI' (3.22) 

The normalizer of X2 is nor/X2 l = {X2,PO - PI' Mij'P; j, 
i, j = 3, ... ,n, and hence X z + !(xo + x d2 is an invariant. 

Returning to the general case with Aa = 0 (and k> 1), 
we have 

k+ I n 

Xa = MOo - Mia + L aabPb + L f3a;p;. (3.23) 
b~2 ;~k+2 

where, up to a coboundary, 
k+1 

L aaa =0. 
a~2 

(3.24) 

Henceforth, we use the summation convention and, unless 
stated otherwise, indicate by { a,b,c} and { i, j,k } indices with 
range 

2<.a,b,c<.k + 1, k + 2<J,j,k<.n. (3.25) 

An arbitrary element of the normalizer has the form 

Y=AMol +Bij Mij + CabMab + A; (Mo; -MIi) 

+ B;P; + CaPa + raXa 
+ r(po - Pd + s(Po + PI)' (3.26) 

where 

Ca =f3a;A;. 

aabCbc - Cababc = !Aaac - saac' 

f3ajBj; - Cacf3ci = l).f3a;· 

It follows from Eqs. (3.27b), (3.27c), and (3.24) that 

s=O 

(3.27a) 

(3.27b) 

(3.27c) 

and either (i) A = 0 for all Y in the normalizer or (ii) aab = 0 

andf3a; = O. 
In the first case, (XO + Xl) is an invariant. In the second 

case, we have 

Xa = MOo - Mia (3.28) 

and, by (3.27a), Ca = 0 and hence the entire normalizer con
sists of elements of the form 

Y=AMol + BijMij + CabMab + A; (Mo; -MIi) 
+ B;P; + r(Po - PI) (3.29) 

plus any linear combinations of Xa ·s. Invariant functions 
under all Xa are of the form 

'" _ '" ( 0 + I (2 2 2 )1/2 ) 'f'-'f'X X,XO-XI-"'-Xk + 1 ,xk+2""'Xn , 

(3.30) 

Considering actions upon functions of the last n - k - 1 
variables only 

(3.31) 

the elements Po - PI' MOl, Mab,andXa act trivially (i.e., an
nihilatef), and the elements Mo; - Mii are identical to P; 
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multiplied by - (xo + XI) regarded as a parameter. We 
therefore need only consider the action of terms like 

Y = Bij Mij + B;Pj (3.32) 

[where Ri = B; - (XO + xl)A.j]. which are contained in the 
Euclidean group of the reduced space (Xk + 2' ... ,xn ). There 
are, by assumption, no pure translations P; or pure light
cone translations MOi - M li • Hence we may apply the same 
argument as in Lemma 5 to conclude that either there exists 
an orthogonal splitting E EB E 1 such that the terms RjP; act 
trivially on the E component while the remaining terms, 
which are rotations, preserve the orthogonal decomposition, 
or the terms { Y } form an abelian algebra. In the first case, we 
have an invariant IIPE (x)ll z. In the latter, ifn - k - 1>3, we 
have at least two invariants. If n - k - 1 = 2, there can be 
only one term Y [since it is isomorphic to a subalgebra of 
O(n - k - 1 )], and hence in the original space there are at 
least two invariants. If n - k - 1 = 1 or 0, there is no Yand 
hence the only terms in the normalizer are {Xa 1 plus one 
element of the form (3.24) with A #0. By conjugation with 
group elements of the form exp [,u; (Mo; - M Ii )] and 
exp[a(Po - Pd], the terms A; (MOi - M Ii ) and r(Po - Pd may 
be transformed to zero and the remaining part leaves 
(x~ - xi - ••• - x~ + I ) invariant. This completes the anal
ysis for Case 1. 

Case 2: dim t L = 1. We may, up to conjugation, assume 
that tL = {Po - Pd. Since this must be an ideal, Lis con
tainedinthenormalizer:nor{Po-Pd = {Mol,Moa -Mia' 
Mab,Pa,PO - PI,PO + PI}' a = 2, ... ,no Denote, as before, 
projection onto the first component of pIn, I) = o(n, 1 j(tt by 

1T:L~(n, 1) and Lo=Im 1T. 

LetL 'CL be the subspace consisting of elements with trans
lational part of the formf3aPa + f3(Po + PI)' This will not 
generally be a subalgebra, but may be identified with the 
quotientL I{Po - Pd. Sinceker 1T = (Po - Pd, therestric
tion 1T1 L is invertible on Lo and again defines a linear map 
r:L '-tby 

1T- I :x-X + r(X)EL', XELo, 

such that 

T[X,Y] = [r(X),Y] + [X,T(Yj], mod (Po-Pd. 

This is not precisely a cocycle in the sense previously de
fined, but may be treated similarly since conjugation by an 
element YEt has the effect 

r(X)_T(X) + [y,x]. 

We now consider again the ideal NCLo consisting of nil po
tent elements in the radical, which again may be identified 
with light-cone translations: 

N= {M -M} k Oa la a = 2, ... , + I • 

If N = 0, the same arguments as in the proof of Lemma 4 
apply, since (Po - PI J, being an invariant subspace under 
the action of L o' must be in the component tEl C t upon 
which the semisimple part S acts trivially. The case when the 
semisimple part vanishes again leads to two or more invar
iants because of the maximal dimension of abelian subgroups 
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ofO(n, 1) whose radical has no nilpotent elements when n>3. 
The case n = 2 is treated separately in the following section. 
For dim N = k> 1, the argument follows similar lines to case 
1. 

Again, the subcase k = 1 must be considered separate-
ly. Up to conjugation, there exist three possibilities, namely: 

(a) 1T-
I(N) = (M02 - MI2 + Po + Pd, 

(b) 1T-
I(N) = (M02 - MI2 + P3L 

(c) 1T-
I(N) = (Moz - MI2J. 

Since 1T-
I(N) + (Po - PI J must be an ideal in L, we have 

Lenor( 1T-
I(N),Po - PI J. 

For case (a), 

nor(1T- I(N),Po - Pd = (Mij'P;,P2,x,PO - Pd, 

where X = M02 - MI2 + Po + PI' 3<,i,j<.n. Invariant 
functions under (X,P 0 - PI J have the form 

¢ = ¢ (X2 + !(xo + xlf, X3, ... , xn)· 

By the Euclidean argument, ifthere are any elements involv
ing (Mij ,Pi J they eitherleave invariant a function of the type 
IIPE (xlII 2

, whereEis a subspace of (X3' ... ,xn ), or they form 
an abelian algebra. If n > 4, this latter gives rise to more than 
one invariant. If n = 4, we can have an element 

M34 + aP3 + bP4, 

which up to a conjugation is just Mw and hence (x; + x~) is 
an invariant. For n = 3 there can be no rotations and hence 
no translation, since we have assumed (Po - PI J is the only 
pure translation. Therefore, X3 is an invariant. 

For case (b), 

nor(1T- I(N),Po - PI J 

= (Mij,Mo; - M li ,Mo3 - M 13,P;,x,P2 ,P3,Po - PI J, 
where 4<'i,j<.n and 

X = M02 - M12 + P3, 

and therefore (XO + Xl) is an invariant. 
In case (c), we may assume without loss of generality 

that Pz is also present, since invariants of (1T-
I(N ),Po - Pil 

are also annihilated by Pz' Hence, applying Lemma 1, we 
may by orthogonal projection reduce the problem to one in 
fewer dimensions. 

If k>2 and 1T- I(N) = (Moa - Mia la~2 .. k + p we 
may similarly add to L, without loss of generality, Pa and 
thereby reduce the dimension again by orthogonal projec
tion. As in Case 1, Eqs. (3.27a) and (3.27b) determining the 
normalizer are still valid and imply, for 

Xa = Moa - MIa + aabPb + fia;P;' 

with either aab #0 or fia; #0, that (xo + Xl) is an invariant. 

4. SYMMETRY REDUCTION IN M(2, 1) AND M(3,1) 

In the previous section we have given a list of all codi
mension-l symmetry variables in E (n) and M (n, 1). To com
plete the proof of Theorem 3, we must show that it is valid for 
the low-dimensional case Df M (2, 1) [the results being trivial 
for M (1,1)]. In addition, we obtain all codimension 2 symme
try variables in M (2, 1) and codimension-l, -2, and -3 symme-
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try variables in M (3,1). We also discuss a new phenomenon, 
namely "degenerate codimension k variables" that reduce 
Eq. (1.1) to a (k - 1 )-dimensional PDE. In particular, degen
erate codimension-2 variables provide additional reductions 
to ODE's. 

A. Symmetry variables in M(2,1) 

The basis (2.3) for p(2,1) consists of six operators 

(MOI,Moz,Mz3,PO,PI,pzJ. (4.1) 

The subalgebras of p(2, 1) are known. 3o In keeping with the 
general considerations of Sec. 3, we organize the subalgebras 
according to the number of free translations they contain. 

i. Three translations /PO'pl'p2} 

The action of (PO,PI,PZJ on M(2,t) is transitive; hence 
there is no invariant: PJ.I. ¢ (xo,x I'X2) = 0 for fL = 0,1,2 implies 
¢ = const. 

ii. Two translations 

The space spanned by the two translations can have 
signature (+ +), (+ -), or ( + 0) (degenerate case): 

(+ +) (PI,PZ J, Ss = Xo, (4.2a) 

(+ -) (PO,P2 J, Ss = XI' (4.2b) 

( + 0) (Po - PI,P2L Ss = Xo + XI' 

The invariant can in general be written as 

S =AJ.l.xJ.I. =AoXo -AIXI -A2X2 

(4.2c) 

with A 2 = 1, - 1, or 0, respectively. The maximal subalge
bras ofp(2,1) having these invariants are (M12,PI ,P2 J, 
(M02 ,PO,P2 J ' and (M02 - MwPz,Po - PI J, respectively. 

iii. One translation 

(a) Signature ( + ): Pz: The equation Pz¢ (xo, XI' x 2) 
= J z¢ (xo, XI' x 2) = 0 implies ¢ = ¢ (xo,xd (4.3) 

and (xo,xd are codimension-2 symmetry variables. To re
duce the codimension to 1, we must look into the normalizer 
of Pz inp(2,1): 

nor P2 = (MOI,PO,PI,P2J. (4.4) 

The algebra L by assumption contains no further transla
tions, so the only element we can add to Pz is 

M=MoI +aJ.l.PJ.I.' 

Using conjugacy by Po and PI' we reduce L in this case to 

L = (Mol,PzJ. (4.5) 

The conditions M ol¢ = 0, P2¢ = 0 imply ¢ = ¢ (S), 

S = (x~ - xi )1/2
• (4.6) 

(b) Signature ( - ): Po: The equation Po¢ (Xo, Xl' X2 ) = 0 
implies 

¢ = ¢ (Xl> x 2), (4.7) 

and we find that (xl,XZ) are codimension-2 symmetry varia
bles. We have 

(4.8) 

Grundland, Harnad, and Winternitz 798 



                                                                                                                                    

and the only (up to conjugacy) subalgebra of nor Po contain
ing Po as the only translation is 

{M 12,PO}' (4.9) 

The only independent invariant of (4.9) is 

S= (x~ +X~)I/Z. (4.10) 

(c) Signature (0): Po - PI: Equation (Po - PI)¢ = 0 pro
vides the result 

(4.11) 

and the codimension-2 invariants (xo + xl,XZ). We have 

nor(po - PI) = {Mol,Moz - M 12,PO + PI,PZ,PO - PI}' 
(4.12) 

Up to conjugacy under P (2,1) nor (Po - PI) has five different 
types of sub algebras containing (Po - Pd, as the only trans
lation. Let us consider each of them separately 

(c l) {X;) = {Mol +aPz,Moz-M12,PO-Pd, aER. 
(4.13) 

The corresponding Lie group acts transitively on M (2, 1) and 
correspondingly X;¢ = 0 implies ¢ = const. 

(cz) {Mol,Po - PI}' (4.14) 

The invariant of (4.14) is Xz' 

(c3 ) {Mal + aP2,PO - PI}' a #0. (4.15) 

The equations 

(Mal + aP2)¢J = [ - (xoa, + x,ao) + aazj¢ = 0, 

(Po - PM = (ao - al)¢ = 0 (4.16) 

imply ¢ = ¢ (S ), 

S = X z + a In(xo + x d 
providing us with the invariant (3.6d). 

(c4 ) {M02 - M 12,PO - PI}' 

(4.17) 

(4.18) 

This algebra yields an invariant that is already known, 
namely TJ = Xo + XI' 

(cj ) {Moz -MIZ + Po + PI,PO - PI}' (4.19) 

The equations 

(Moz - M12 + Po + PM 

= [ - (xo +XI)a2 -x2(aO - al ) + ao + ad¢ = 0, 
(4.20) 

(Po - PM = (ao - ad¢ = 0 

imply ¢ = ¢ (S ), where 

S = X 2 + !(xo + X I)2, 

i.e., we obtain the invariant (3.6c). 

iv. No free translations 

(4.21) 

Among the subalgebras of p(2, 1) with no free transla
tions, only two have generic orbits of codimension 1, namely, 
the 0(2,1) algebra IMol,M02,M12} and its subalgebra 
{Mol.Moz - M 12 }. Both have the same orbits and hence lead 
to the same codimension-l symmetry variable, namely, 

(4.22) 
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We see that the complete list of "standard" codimension-I 
symmetry variables in M (2, 1) consists of 

XO, XI' Xo + XI> (x~ - xi )112, (xi + x~ )112, 

(X~ - xi - x~ ) t 12, (4.23) 

X2 + a In(xo + X,), X2 + !(xo + xd2, 

in complete agreement with Table II and Theorem 3 (the 
proof of which is hereby completed). 

Let us continue with the study of codimension-2 sym
metry variables in M (2,1). It remains to discuss one-dimen
sional subalgebras of 0(2, I), possibly extended by transla
tions. Six cases occur, and we list them together with their 
invariants: 

Mo,: p = (x~ - xi)I12, X 2; 

M 12: r=(xi+x~)I12, xo; 

M02-M12:l7=(x~ -xi _X~)I12, XO+x I; 

MOl + aP2:p = (x~ - xi )'/2, 

S = Xz + a In(xo + xd, a#O; 

M12 + aPo: r = (xi + x~ )112, 

¢=xo+aarcsin[xi/(xi +X~)1/2], a#O; 

M02 - M12 + Po + PI: a = X2 + !(xo + xl, 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

{3 = Xo - x, + (Xo + X,)X 2 + t(xo + x,t (4.29) 

To summarize: (4.3), (4.7), (4.11), and (4.24)-(4.29) pro-
vide a complete list of representatives of all P (2, 1) conjugacy 
classes of codimension-2 symmetry variables in M (2, 1). The 
reduced two-dimensional PDE's are obtained by substitut
ing the obtained variables into (2.7), where (St,Sz) is identified 
with one of the obtained pairs of variables and n = 2. Final
ly, the expressions (2.7) are substituted back in Eq. (1.1). The 
results are summarized in Table III. 

Each pair of "standard" variables (S "S2) listed in col
umn 2 of Table III represents a P (2, 1) conjugacy class of 
variables. These are obtained by translating the origin 0 to an 
arbitrary point BEM (2, 1) and Lorentz-transforming the 
standard triad (eO,e"e2) to the general triad (Ao,A 1,A2) satisfy
ing (A!,Av) = g!'v' For instance, the pair (4.28) represents the 
class 

SI = [(X - B,AI)Z + (x - B,Az)ZjI/2, 

(A;,Aj) = - {jij' i,j = 1,2, 

S2 = (Ao,x - B) 
+ a arcsin {(AI,x - B )I [(x - B,Al + (x - B,A2)2jI/2). 

(4.30) 

The reduced equations will be discussed in Sec. 5. Notice 
that in Table III the last two pairs (SI,S2) each include a 
variable that never occurs on its own as a codimension-l 
invariant. 

B. Symmetry variables in M(3,1) 

The procedure for M(3,1) is exactly the same as for 
M (2, 1 ). We make use ofthe classification of all subalgebras of 
p(3, 1) (see Refs. 27-29), identify those with orbits of codi
mension 1,2, and 3, respectively, and calculate their invar
iants. The codimension-l symmetry variables are those giv-
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TABLE III. Codimension 2 symmetry variables in M (2. 1). 

No. Standard variables 5,. 52 Algebra (Vs,f (Vs2f (Vs,. Vs2) Os, 052 

1 XI' X 2 Po -1 -1 0 0 0 
2 XO'X 1 P2 1 -1 0 0 0 
3 Xo + x,. X2 PO-PI 0 -1 0 0 0 
4 x 2• (x~ - X~)' 12 MOl -1 1 0 0 1/52 
5 Xo. (x~ + x~ )' /2 M12 -1 0 0 -1/52 
6 Xo + x,. (x~ - x~ - X~ )'/2 M02 -M12 0 5,/52 0 2152 
7 x2 + a In(xo + x d. (x~ - x~ )' /2. a#O Mo, +aP2 -1 a/52 0 1/52 
8 x2 + a arcsin [ XI/(X~ + x~)'12]. (x~ + x~)'/2 MI2 +aPo 1 - a2/s; -1 0 0 - 1/5, 
9 x, + i(xo + xd'. Xo - XI + (xo + xl)x, + Mxo + xl M02 -M12 + Po + P, -1 45, 0 0 0 

en in Table II (once we particularize to n = 3), as stated in 
Theorem 3. We shall just give one example of a subalgebra 
L Cp(3, 1) having generic orbits of codimension 2 and then 
summarize the results on all codimension-2 and -3 symmetry 
variables in tables. 

Consider the subalgebra (aM23 + Mo I ,Po - PI J, a#O. 
The equation 

(Po - p])</J (xo, XI' X2 , x3) = (~ - ~) </J = 0 (4.31) 
axo aX I 

implies </J = </J (xo + XI' X2, X3)' The equation 

(aM23 + Mol)</J (7], xz, X3) 

(4.32) 

7]==Xo + XI' 

is solved by completing (4.32) to a complete differential, i.e., 
requiring 

dX3 = _ dxz d7] (4.33) 
axz aX3 -7] 

This in turn is integrated to yield 

5 I = arcsin [xz/(x~ + X~) 1/2] + a In(xo + X d, 
(4.34) 

Sz = (x~ + x~ )112, 

i.e., the general solutionof(4.31) and (4.32)is</J (51,52)' withs l 

and Sz as in (4.34). 
In order to obtain the reduced equation, we calculate 

(VS])z = - (1/s~), (VSz)Z = - 1, (VSI,vSz) = 0, 

(4.35) 

051 = 0, OSz = - 1/Sz' 

Equation (1.1) hence reduces to 

I 2 2) 0 -Uk -Ue,U = . 
S~" " 

(4.36) 

A complete list of representatives of P(3,1) classes of 
codimension-2 and codimension-3 symmetry variables in 
M(3,1) are given in Tables IV and V, respectively. 

Notice that a certain structure emerges. In Table IV 
entries 1-9 are identical with those in Table III. The reason 
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for this is that the presence of a spacelike translation (say P3 ) 

in the in variance algebra L immediately reduces the M (3, 1) 
problem to an M (2, 1) one. Entries 10 and 11 are codimen
sion-2 symmetry variables in E (3) (as is entry 1); the M (3, 1) 
problem is reduced to an E (3) one by the presence of Po in the 
algebra L. Entries 12 and 13 correspond to the introduction 
of codimension-l symmetry variables in each component of 
the tensor productM(I, 1) ® E (2). Similarly, 14,15, 16(as well 
as 1, .,. ,5) can be interpreted as codimension-l variables in 
S (1) XM (2.1), whereS (1) is a spacelike line. The entry 17 (as 
well as 2,3) corresponds to codimension-l variables in 
T(I) XE (3), where T(I)isa timelikeline. The entries 18,19,20 
(as well as 1, 3, 13, 15, and 16) are actually codimension-2 
variables in L (0 + +), a three-dimensional space with de
generate metric annihilated by a lightlike translation, say 
(Po - Pd· The only new codimension-2 variables that do not 
involve a direct product decomposition of M (3, 1) are given 
by entries 21,22, and 23. Notice, however, that variables that 
do not occur as codimension-l symmetry variables in M (3,1) 
or codimension-2 variables in E (3) or M (2, 1) figure in entries 
18, 19,20, and 22. [The variables in 18-20 would figure in an 
analysis of codimension-2 variables in L (0 + + ).] 

Table V contains no new types of variables with respect 
to Table IV, but the triplets of codimension-3 variables are 
by no means obvious ones. 

C. Degenerate symmetry variables 

We have seen that the introduction of the codimension
k symmetry variables (51' ... ,Sk)' as invariants ofa subgroup 
G C P (n, 1) with orbits of codimension k, assures that Eqs. 
(2.6) of Lemma 1 are satisfied and that hence Eq. (1.1) is 
reduced to a PDE in k variables (in particular an ODE if 
k = 1). 

On the quotient space the invariants (Si J define a local 
coordinate system. The matrix of scalar products of their 
gradients 

aij(s) = (VLVsj ), 

together with their Laplacian 

f3j (s) = Dsj , 

determines the reduced operators Du and (Vuf If there ex
ists a kernel (null space) for the linear system (aij' f3j ) which is 
integrable, in the sense that it may be associated with a coor
dinate (i.e., a hypersurface foliation), the reduced equation 
will involve no derivatives with respect to that coordinate. A 
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TABLE IV. Codimension 2 symmetry variables in M(3. I). 

No. Variables 51> 52 

I x.,x2 

2 XO,X. 

3 XO +x,.x2 
4 x2• (ro - ~ )'/2 
5 xo. (~ + xi )'/2 
6 Xo + x,. (x~ - ~ - r,)"2 
1 x2 + a In(xo + x,). (ro - x~ )'/2 
8 xo+aarcsin[x,/(x~ +xi)'/2].(x~ +xi)'/2 
9 X2 + !(xo + x,)>, Xo - x, + (xo + XdX2 + !(xo + X,)3 

10 X3'(~ +r,)'/2 
II x3+aarcsin[x,/(x~ +r,)'/2].(x~ +r,)'/2 
12 (ro _x~)'/2. (xi +xi)'/2 
13 Xo + x,. (r, + ~)'/2 
14 x3• (ro - x~ - r,)'/2 
15 x3• x2 + !(xo + xl 
16 x3• X2 + a In(xo + x,) 
11 Xo. (~ +xi +~)'/2 
18 Xo + x,. X2 + €(xo + X')x3 
19 €(xo + x,) + arcsin [ x2/(r, + xi )'/2]. (r, + xi)'/2 
20 a In(xo + x,) + arcsin [ x 2/(xi + x~)'/2]. (xi + xi)'/2 
21 xo+x,.(x~ -~ -xi _xi)'f2 

22 Xo +x,.xi(xo+x,) + (I-xo-x,)(x~ -~ -xi) 
23 x2+aln(xo +x,).(ro _~ _~)'12 

Algebra 

Mo3.Po' P3 
M 23• P2• P3 
M03 - M 13• Po - p,. P3 
Mo"P3 
M'2, P3 
M02 -M12• P3 
Mo, +aP2• P3 
M'2 + aPo.P3 
M02 - M'2 + Po + p,. P3 

M'2' Po 
MI2 + aP3• Po 
Mo,.M23 
M23• Po -P, 

Mo,. Mo2• M'2 
M02 -MI2 + Po +P,. Po - P, 
Mo, + aP2• Po - P, 
Mw M23• M31 
M02 - M'2 + EP3• Po - P, 
M23 - (E/2)(Po + P,). Po - P, 
aM23 + Mo,. Po - P, 

M23• M02 - M'2' M03 - MI3 
M02 - M'2' M03 - MI3 + P3 
Mo, + aP2• M03 - MI3 

('iTs,f (VSZ)2 (VSJ • VS2 ) OS, 052 

-I -I 0 0 0 
-I 0 0 0 

0 -I 0 0 0 
-I I 0 0 1/52 

-I 0 0 - 1/52 
0 5,/52 0 2152 

-I al52 0 1/52 
-I 0 0 -1/52 

-I 45, 0 0 0 

-I -1 0 0 -1/52 
- 1 - a2/5~ -1 0 0 - 1/52 

1 -I 0 115, -1/52 
0 -1 0 0 -1/52 

-I 1 0 0 2/52 
-1 -1 0 0 0 
-I -1 0 0 0 

I -1 0 0 - 2/52 
0 -1-5~ 0 0 0 

- 4/5~ -1 0 0 -1/52 
-1I5i -1 0 0 -1/52 

0 5,/52 0 3152 
0 - 452(25, + I) - 25,(5, + I) 0 - 6(25, + I) 

-I 1 al52 0 2152 
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necessary condition for this to occur is that the induced met
ric on the generic orbits be degenerate. 

We plan to return to this phenomenon in the future in 
greater detail. Here we shall just discuss the consequences of 
such a degeneracy in the low-dimensional cases of M (2, 1) 
andM(3,1). 

For a codimension k = 1 variables, Eq. (2.8) are always 
satisfied. In the degenerate case, namely, 17 = Xo + XI [or 
more generally 17 = (A, x), A 2 = 0] we have a stronger condi
tion, namely, 

01] = 0, (V1]f = O. (4.37) 

Equation (1.1) thus reduces to a functional equation (in
volving no derivatives) 

H(O,O,u(1])) = 0. 

This usually gives only trivial results, e.g., for the sine-Gor
don equation, 

Ou = sin u, 

the ansatz U = u(1]), 1] = Xo + XI yields sin u = 0; i.e., 
u(1]) = m1T(mEZ). 

(4.38) 

For higher codimensions, degenerate symmetry varia
bles lead to much more interesting results. 

Let us first consider the codimension k = 2 case. We 
denote 5 I = 17 and 52 = 5· The derivatives U" ,U"'I ,U 'IS' drop 
out of the reduced equation if 

(V1])2 = 0, (V1], V Sl = 0, 01] = O. (4.39) 

Instead of a PDE in two variables we obtain an ODE in 5 
only. The variable 1] either drops out altogether [if (V 5 )2 and 
D5 depend on 5 only] or remains as a parameter . 

This suggests the possibility of a new type of reduction 
to ODE's, namely, the introduction of "degenerate codi
mension-2 symmetry variables." To do this, we look for a 
new variable 

7 = cP (1],5) 

satisfying 

(V7)2 = cP ~(V5 f = C I, 

(4.40) 

07 = cpss(V5)2 + cps-Os = C2, 

(4.41) 

where C I and C2 are constants. If such a r exists, then accord
ing to Lemma 1 it will reduce Eq. (1.1) to an ODE in 7 alone. 
This phenomenon can also be studied directly in terms of 
symmetry reduction, applied, however, to Eq. (2.6) rather 
than (1.1) directly. 

Without going into details, let us just find all degenerate 
codimension-2 variables in M (2, 1) and M (3, 1). Looking at 
Table III, we see that conditions (4.39) are satisfied in one 
case only, namely, the variables 1] = Xo + X I and 5 = X2 of 
case no. 3. Equations (4.41) in this case reduce to 

(Vrf = - cP ~ = C I , 07 = - CPg = C2• (4.42) 

The solution of (4.42) is 

(4.43) 

(we have put C I = - 1 and obtain C2 = 0), where ¢ is an 
arbitrary function. Putting U = u(r), we reduce (1.1) to the 
ODE 

H( - U m - u;,u) = O. (4.44) 

Grundland, Harnad, and Winternitz 802 



                                                                                                                                    

Now let us turn to Table IV, listing the codimension-2 
symmetry variables in M (3, 1). Conditions (4.39) are satisfied 
by the variables nos. 3, 13, and 18. Case no. 3 is identical with 
the one discussed above, and we obtain the same variable 
(4.43). For no. 13 we have 1] = Xo + XI'S = (x~ + x~ )112, and 
(4.41) reduces to 

(V1")2= _rp2= -1, 01"= -rp",,-(1/S)rp,,=c2. 

(4.45) 
The first equation implies 1" = S + ¢(1]), but then 
01" = - 1/S and the second of Eqs. (4.45) cannot be satis
fied. 

In case no. 18 we have 1] = Xo + XI' 
S = X2 + E(Xo + XdX3' and Eqs. (4.41) yield 

(V1")Z = - rp ~(1 + 1]Z) = - 1, 

01" = - rps.;(l + 1]2) = Cz· 

The solution is 

(4.46) 

1" = [X2 + E(Xo + XI)X3]1[ 1 + (xo + XI)l] 1/2 + ¢(xo + XI)' 

(4.47) 

where ¢ is again an arbitrary function and Cl = O. The ansatz 
U = u(1") reduces Eq. (Ll) to (4.44). 

The variable (4.43) will reduce (1. 1) to an ODEinM (n, 1) 
for any n;;.2, and the variable (4.47), for any n;;'3. Further 
degenerate codimension-2 symmetry variables will exist for 
n;;.4. 

Finally, let us consider "degenerate codimension-3 
symmetry variables" that reduce (Ll) to a PDE in two di
mensions (rather than 3). In this case we must require that 
one of the three codimension-3 invariants, say SI = 1], drop 
out of the reduced equation, i.e., 

(V1])2 = 0, 01] = 0, (V1],VS;) = 0, i,k = 2,3. (4.48) 

Looking at Table V for M (3, 1), we see that conditions (4.48) 
are satisfied in case 3 only. Equations (4.48) in this case allow 
us to introduce new variables, involving arbitrary functions 
of the "lightlike" variable 1], that will reduce (1.1) to a PDE 
in two variables. Without going into a systematic study here, 
we give two examples of such variables. The obvious general
ization of (4.43) is 

a = Xl + f(xo + XI)' f3 = X3 + g(xo + xd. (4.49) 

Equation (1.1) in these variables reduces to 

H( - Uaa - uPP ' - u~ - u~,u) = O. 

Similarly, if we put 

S = x2 cos rp (xo + X d + X3 sin rp (xo + X d, 
p = (x~ + X~)1/2, 

we find that (Ll) reduces to 

H( - U,," - upp - (S Ip)u"p - (1/p)up' 

- u~ - u~ - 2(S Ip)u"up'u) = O. 

Equivalently, instead of (4.5 1) we can introduce 

S = arcsin [ xl/(xi + X~)1/2] + rp (xo + XI)' 

p = (x~ + X~)I/l, 
reducing (Ll) to 
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(4.50) 

(4.51) 

(4.52) 

(4.51') 

H( - (1/pl)U"" - Upp - (1/p)up, - (1/pl)U~ - u~,u) = O. 
(4.52') 

5. DISCUSSION OF THE REDUCED EQUATIONS 

A. The ordinary differential equations 

We have seen in the preceding sections that symmetry 
reduction of Eq.{ Ll) via codimension-l or degenerate codi
mension-2 variables leads to a single type of ODE, namely, 
Eq. (3.7): 

H (K[ u",; + (k IS jus ] ,KUl,U) = O. 

Let us discuss some special cases of this equation. To be 
more specific, let us consider the nonlinear Klein-Gordon 
equation (LS), with the right-hand side depending on u 
alone: 

Ou =F(u). (5.1) 

Puting u = u{S ), where S is one of the variables in Table II, or 
(4.43) (for n;;.2), or (4.47) (for n;;.3), we obtain 

uss + (kIS)us =EF(u), E= ±1, k=O,I, ... ,n 
(5.2) 

(we exclude the degenerate variable S = Xo + XI for which 
K = 0). For k = 0 Eq. (5.2) reduces to quadratures: 

f du 
S +So= , 

~2Ef~J(u') du' 
(5.3) 

where So and Uo are constants and S is one of the variables 

XO, XI' Xl + rp (xo + XI)' 

[Xl + E(Xo + XdX3]1[ 1 + (xo + XI)l] 1/2 + rp (xo + XI)' 
(5.4) 

[or a variable obtained by applying a Lorentz transformation 
to one of the variables (5.4)]. 

For k;;.l a direct integration is impossible. In each par
ticular case, we can investigate properties of solutions, in 
particular, their singularity structure. Let us, for example, 
consider the sine-Gordon equation (4.38) in M (n, 1) and re
duce it to 

Us.; + (k IS )us = E sin u, k = 1,2, .. , ,n, (5.5) 

where 

S=(xi+"'+X~+I)l/l, E=-I, 

or (5.6) 

S = (x~ - xi - ... - xi) 112, E = + 1. 

We can now determine whether (5.5) has the "Painleve prop
erty,,,7-11 i.e., whether it has any moving singularities other 
than poles. To do this, we follow a procedure due to 
Ablowitz et al. II First, we transform (5.5) into a form that is 
algebraic in the dependent variable and its derivatives by 
putting 

u = 2ilny (5.7) 

so that (5.5) reduces to 

yji = y2 - (k IS)yy + !E(/- 1). (5.8) 

We now look for a solution in the form 
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00 

y = I a r (5 - 50)'- a, (5.9) 
r = 0 

where ar are constants. The necessary condition for (5.8) to 
be ofPainleve type is that the general solution have the form 
(5.9), where a is a positive integer. This means that (5.9) 
should involve two arbitrary constants: 50 (the position of 
the pole) and one of the coefficients a r in the expansion (relat
ed to the residue at the pole). Substituting (5.9) into (5.8) and 
comparing different powers of (5 - 50)' we find 

a=I (5.10) 

(from a leading order analysis) and obtain a recursion rela
tion of the form 

(5.11) 
At r = 2 we obtain a "resonance," II i.e., (5.11) is either satis
fied identically and a2 is arbitrary, or we obtain a contradic
tion if 

(5.12) 

In this second case, Eq. (5.8) is not ofthe Painleve type. 
Evaluating the first few terms in (5.9) using (5.8), we find 

ao = 2JE, a l = - kJE15, 

(5.13) 
0·a2 = k(k - 1). 

Thus, Eq. (5.8) is ofPainleve type only for k = 0, or k = 1. 
For k = ° we already know the solution, since in this case 
(5.5) is 

U g = Esin u, 

i.e., the exact pendulum equation34 and (5.3) reduces either 
to soliton like solutions of the sine-Gordon equation, or to 
periodic or quasiperiodic solutions, depending on the choice 
of integration constants uo,50 in (5.3) for F(u) = sin U.

18
,35 

For k = 1, (5.8) is an equation satisfied by one of the 
Painleve transcendants, namely, a special case of PIlI' 7-10 Its 
properties have recently been studied.36

•
37 

Let us stress that the above analysis provides new solu
tions for the sine-Gordon equation in n + 1 dimensions. 
Thus for k = ° we obtain 

U = 4 arctan ae<05 - !(l - E)1T, Eo = ± 1, 

U = 2 arccos [dn(5 + a,m)] + ~(I + E)1T, ° <m < 1, 

(5.14) 

U = 2 arccos [ cn( 5 : a ,m )] + ~(I + E)1T, 0< m < 1, 

a = const, E = ± 1. 

These solutions are known for n = 1 and 

5 = (x - vt )I~. The novelty is in the fact that 5 can be 
any of the variables (5.4). 

The Painleve transcendant PIlI (5 ) is a solution of the 
sine-Gordon equation for 5 as in (5.6), k = 1. 

For k>2, (5.8) is not ofPainleve type and will hence 
have moving critical points. Following a known proce
dure, II we search for a solution of the form 
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00 

+ b2(5 - 50)ln(5 - 50) + I ar + d5 - 50)' + ... (5.15) 
r=2 

in the neighborhood of a singularity 50 (the dots stand for 
terms involving further logarithms). Substituting (5.15) into 
Eq. (5.8), we find 

a l = - kJE150' 

b2 = 2k(k - l)13JE5~ (5.16) 

with 50 and a2 arbitrary and ar expressible in terms of 50' a2, 
and k for r>3. Thus, for k>2 the general solution has a loga
rithmic branchpoint at 5 = 50 and is hence not of the Painle
ve type. 

According to the Painleve conjecture,3 this would im
ply that the sine-Gordon equation in M (n, 1) is not integrable 
forn>2 [since, e.g., forn = 2,kin(5.5)canbeequaltoO, I,or 
2]. 

Equation (5.2) for other functionsF(u) can be treated in 
a completely analogous way. 

B. Partial differential equations in two variables 

For definiteness, let us restrict ourselves to the nonlin
ear Klein-Gordon equation 

Du = F(u,(Vu)2). (5.17) 

Let us first look at the codimension-2 variables inM (2, 1), i.e., 
at Table III. 

The degenerate case no. 3 in Table III leads to an ODE. 
Case no. 1 is an elliptic POE in canonical form. The entries 
nos. 2, 4, ... ,7 are all directly recognizable as hyperbolic 
equations on the entire (51,52) surface. Equations 2, 4, and 5 
are already in canonical form. Number 6 can be simplified by 
putting 

a = 51 = Xo + XI' 

{3=51/5~ =(xo+xIl/(x~ -xi -x~). (5.18) 
We then obtain the reduced equation 

ua{3 + (l/a)u{3 

= - (l/2{32)F(u, - 2f32uau(3 ). (5.19) 

Number 7 is hyperbolic; to reduce it to canonical form, we 
would have to solve transcendental equations for the charac
teristics. 

For no. 8 the discriminant of the reduced equation is 
Ll (51,52) = 4(1 - a2/5~). The equation 

(1 - a2/5~)us.sJ - U5252 - (l/52)u 52 

= F(u,(1 - a2/5~)utJ - uU (5.20) 

is hyperbolic for 5 ~ > a2
, elliptic for 5 ~ < a2

, and parabolic 
on the circle 5 ~ = a2

• 

Forno. 9 the discriminant isLl (51,52) = 1651' Thus, the 
equation 

- U5151 + 451Us252 = F(u, - Uti + 45IU~2) (5.21) 

is hyperbolic for 51 > 0, elliptic for 51 < 0, and parabolic for 
51 =0. 

In M (3, 1) we have altogether 23 types of codimension-2 
symmetry variables, listed in Table IV. Of these three, name
ly, nos. 3, 13, and 18 lead to ODE's. Seven systems, namely, 
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1, 10, 11, 15, 16, 19, and 20 lead to elliptic equations. Notice 
that systems 1, 10, and 11 correspond to a reduction of 
M(3,1)toE(3). Systems 15 and 16 are both of the form (4.49); 
19 and 20, of the form (4.51'). These degenerate codimen
sion-3 variables also lead to elliptic equations [see (4.50) and 
(4.52')]' 

Hyperbolic type equations are obtained for system no. 
2, which really "lives" in an M( 1, 1) space, systems 4,5,6, 7, 
livinginM(2,I), 12, 14, and 17, living in the direct product of 
a Euclidean and Minkowskian space, and also for systems 
21,22, and 23, living in all of M(3,I). 

The only two systems in M (3, 1) that lead to equations 
that are hyperbolic in part of the ($ 1,$2) plane, elliptic in 
another and parabolic on the boundary, are systems 8 and 9, 
for which !$I,$2jlies entirely in an M (2,1) subspace. 

C. Partial differential equations in three variables 

Let us again consider the nonlinear Klein-Gordon 
equation (5.17), this time in M(3,1), and look through the 
codimension-3 symmetry variables of Table V. 

Coordinates no. 3 lead to an elliptic PDE in two varia
bles only; all the other ones to three-dimensional equations. 

Among the reduced three-dimensional equations only 
one is elliptic, namely, no. 1. Systems, 2, 4,5,6,7,8, 10, and 
11 correspond to hyperbolic equations. For the system 9 the 
reduced equation is ellipticfor $ ~ < 1, hyperbolicfor $ ~ > 1, 
and elliptic on the surface $ ~ = 1. Similarly, for system 12 
the reduced equation is parabolic on the surface 52 = 0, ellip
tic for $2 < 0, and hyperbolic for $2> 0. Equation 13 is para
bolic for 51 = ° and hyperbolic for $1 #0. 

6. CONCLUSIONS AND OUTLOOK 

The results of this article can be briefly summarized as 
follows: 

(1) TheequationH (Du,(Vuj2,u) = Oin Minkowski space 
M (n,l) can be reduced to a differential equation ink indepen
dentvariables51' ... ,5k (l.;;;k.;;;n), where51' ... ,$k arek func
tionally independent invariants of a group GCP (n, 1) having 
generic orbits of codimension k in M (n, 1). 

(2) All codimension 1 symmetry variables reducing (1.1) 
to an ODE are listed in Table II for M (n, 1), n arbitrary. 

(3) All codimension-2 and -3 symmetry variables, re
ducing (1.1) to a two- or three-dimensional PDE, respective
ly, are listed in Tables III, IV, and V for n = 2 and 3. 

(4) All degenerate codimension-2 symmetry variables in 
M (2, 1) and M (3, 1) were found; they reduce (l.l) to an ODE 
and involve arbitrary functions of a null coordinate 
1/1 (xo + Xl) [Eqs. (4.43) and (4.47)]. 

(5) The ODE's obtained by symmetry reduction are al
ways of the form 

H(K(Us-s + (k 15)Ut ),K(Ut f,u) = 0, 

K= ±I,O, k=O,I, ... ,n. 

The entire analysis of Sec. 2 is valid for arbitrary Rie
mannian or pseudo-Riemannian manifolds, with an appro
priate redefinition of the invariant operators 0 and (V·f: 
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1 a ik r::. a Du =---g yg-u, 
Jg aXk aXi 

(V )
2 _ ik au au u -g ---, 

aX i aXk 
whereg ik is the metric tensor andg = Idetgik I. It is thus 
possible to extend the analysis of this paper to nonlinear 
equations invariant under the isometry groups of such Rie
mannian or pseudo-Riemannian spaces. 

We plan to apply the method of reducing nonlinear 
PDE's to lower-dimensional equations, developed in this ar
ticle, to other types of spaces and equations. The question of 
degenerate symmetry variables and the corresponding re
ductions involving arbitrary functions will receive a more 
detailed treatment in the near future. 
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It is proved that any potential of a single layer u is identically equal to a potential of a double layer 
w in the bounded domain, g, and a necessary and sufficient condition for u=w in n = R 3 \9, 
the exterior domain, is given. 

PACS numbers: 02.30.Jr 

I. INTRODUCTION 

Let 9J C R3 be a bounded domain with a smooth closed 
boundary F (an obstacle) and n = R3 \9J be the exterior 
domain. Let 

u(u) = ig(x,t)U dt, wlj.t) = i ag(x,t );tt(t )dt, 
r ran, 

g = exp(ik Ix - yl),k>O; (1) 
41Tlx - yl 

n, is the exterior unit normal to F at point t. The following 
questions are discussed in this paper: given a potential u (u), 
can one find a potential wlj.t) such that u=w in 9J? u=w in 
n? 

Since the potentials solve Helmholtz's equation in 9J 
and in n, the above question is connected with the represen
tation of solutions to Helmholtz's equation. Some basic 
properties of the potentials and some results on the represen
tation of solutions to Helmholtz's equation are given in Ref. 
1. These questions are also of interest in the singularity and 
eigenmode expansions methods.2 Below, N (A ) = ! f A I 
= 0 I denotes the nullity of a linear operator A, 

(u,u) = f rUv ds,Qu = f rg(s,t )ait )dt,Hq = W 2
•
q (F) is the 

Sobolev space. 

II. RESULTS 

Theorem 1: For any wlj.t) [u(u)], there exists a u(u) [wlj.t)] 
such that u(u)=wlj.t) in 9J. The u(u) [wlj.t)] is uniquely de
fined. 

Theorem 2: A necessary and sufficient condition for a 
u(u) to be identically equalto a wlj.t) inn is (u, vj ) = 0, 1 <j<r', 
where! Vj I forms a basis of N(l + A), AI=f r(ag(s,t)1 
ans )/(t )dt. A necessary and sufficient condition for a wlj.t) to 
be identically equal to a u(u) in n is Ij.t,uj ) = 0,1 <j<r, where 
! uj I forms a basis of N(l - A). 

Corollary 1: If a problem (V2 + k 2)U = 0 in 9J, k;;.O, 
u+ = lis solvable, then the solution can be represented as 
u = u(u) and also as u = wlj.t). 

III. PROOFS 
A. Auxiliary results 

Let us denote by v ± , au ± Ian the limit values on F 
from the interior ( + ) and exterior ( - ) of a function and its 
normal derivative. It is well known 1 that 

Au+u 

2 

A' , w± = fl,fl 
2 ' 

(2) 

where the operator A is defined in Theorem 2, and A 'fl 
= f r (ag(s, t )/an,) flIt )dt. Note that A * = A', where the 

star denotes the adjoint in operator H = L 2(F ) and the bar 
denotes complex conjugation. 

Lemma 1: If(V2 + k 2)U = 0 in n, u = 0, or au-I 

an = 0 on F, k>O, and Ixl(aulalxl- iku)-O as Ixl-ClO, 
then U=O. 

Lemma 2: Let the problem 

au+ 
(V2 + k 2)U = 0 in 9J, -- = 0 

an 
(3) 

have r' linearly independent solutions uj , I <j<r'. Then the 
equation 

A~+fl=O ~ 

has precisely r' linearly independent solutions flj = uj + , 

1 <j<r', uj = w( flj). Let the problem 

(V2 +k 2)u=Oin9J, u+=O (5) 

have r linearly independent solutions ¢j' I <j<r. Then the 
equation 

Au-u=O (6) 

has precisely r linearly independent solutions uj = a¢ j + 1 
an, ¢j = u(uj ). 

Lemma 3: If (5) has only the trivial solution, then 
Q:Hq _Hq + 1 is an isomorphism. 

Lemma 4: If (5) has r linearly independent solutions, 
then equation Qu = lis solvable iff (J,uj ) = 0, 1 <j<r. 

Lemmas 1 and 2 are proved, e.g., in Ref. 1. Lemmas 3 
and 4 are proved in the Appendix. 

B. Proof of Theorem 1 

(i) Assume first that (*) problem (5) has only the trivial 
(zero) solution. Ifu(u) = wlj.t) in 9J, then (2) implies that (**) 
A 'fl - fl = 2u(u). Ifwlj.t) is given, then the above equation is 
an equation for u. This equation is uniquely solvable (by 
Lemma 3) because of (*). If u is its solution, then the corre
sponding u(u) satisfies (***)u+(u) = w+lj.t) and, again by (*), 
u(u)-wlj.t) in 9J. Ifu(u) is given, then (**) isan equation for fl. 
If this equation is solvable, then the corresponding wlj.t) sat
isfies (***), and, by (*), u(u)=wlj.t) in 9J. It remains to be 
proved that (**) is solvable for fl. By Fredholm's alternative, 
it is so if (u(u), vj ) = 0, where Vj are all linearly independent 
solutions to the equation Av - v = O. [Notice that 

A = (A 'l*]. By Lemma 2, thefunctionsvj = uj = """"a¢--:--7/-/:-::a:-n, 
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v ± (aj ) = 0 = v ± (vj ). Therefore 

(v+(a),vj ) = (a,v+(Vj)) = O. (OrS rv+(a)(J<p / IJn)ds = S r 
(av+ lan)<p / ds = 0). Thus (**) is solvable. In the proof of 
the solvability of (**), the assumption (*) was not used. 

(ii) Assume now that (5) has r> 0 linearly independent 
solutions. Ifv(a) is given then w(P), whereJ.l solves (**), satis
fies (***). Therefore w(P) = via) + ~; = I Cj <Pj (x) in 9, where 
cj = const. By Lemma 2, Eq. (6) has precisely r linearly inde
pendent solutions. Thus the equations A *1j - 1j = 0, 

A '1/ - 1/ = 0 (7) 

have precisely r linearly independent solutions. Let 1/j' 
1 <J<r, be r such solutions of (7), w(1/j) be the corresponding 
potentials. Then w(1/j) = <Pj are r linearly independent solu
tions to (5). Thereforev(a) = w(p - ~;= ICj1/j). Thusifv(a)is 
given, one can find a J.l' = J.l - ~; = I cj 1/j such that 
w(p')=v(a) in 9. This J.l is uniquely defined by the require
ment w(p')=v(a) in 9. 

Consider now the case when w(P) is given and v(a) is to 
be found such that w(p)=v(a) in 9. In this case (**) is an 
equation for a ofthe type Qa = f =(A 'J.l - J.l )/2. By Lemma 
4, this equation is solvable iff (J,aj ) = 0, where aj , 1 <J<r 
solve (6). One has (A 'J.l - J.l,aj) = (p,(A - I)aj) = O. Thus 
(**) is solvable for a. As above, the requirement w(p)=v(a) in 
9 defines a uniquely. Theorem 1 is proved. 

C. Proof of Theorem 2 

(i) Assume that (5) has only the trivial solution. Given 
w(P), one can find the unique a from the equation 

(8) 

Because of Lemma 1, w(p)-v(a) in n. Suppose now that via) 
is given. Then J.l is to be found from (8). If this equation is 
solvable, then as above, wlJ.t)=v(a) in fl. Equation (8) is solv
able for J.l iff (v-(a),vj ) = 0,1 <J<r, whereAvj + Vj = O. No
ticethatAvj + Vj = 0, v(vj ) solve (3). If(3) has only the trivial 
solution, then (8) is uniquely solvable for J.l, and v(a)=w(p) in 
n. If(3) has r'linearly independent solutions, then (4) has r' 
linearly independent solutions, and, by Fredholm's alterna
tive, the equation AV + v = 0 has r' linearly independent so
lutions: vj , v(vj ) solve (3), v(Vj) = w(Pj) in 9. Therefore 

(v-(a),vj ) = (a,v-(vj )) = (a,w+(pj)) 
-,-,-~----c~-;-

= (a,w + (Pj)) = (a, !(A ' - I )J.lj ) 

= - (a,jij)' 

Thus (a,jij) = 0, 1 <J<r' is a necessary and sufficient condi
tion for a potential v(a) to be identically equal to w(P) in n in 
the case when (3) has r' linearly independent solutions. 

(ii) Assume that (5) has r linearly independent solutions. 
Given w(P) one has to find a from (8). By Lemma 4, (8) is 

solvable for a iff (A 'J.l + J.l,aj ) = 0, 1 <J<r, i.e. (p, (A + I)aj ) 
= 0, or (p,aj) = 0, 1 <J<r, because aj = Aaj . Ifv(a) is given, 

the analysis does not depend on the assumption about the 
number of the linearly independent solutions of (5) and is 
given above in part (i). In the case when problem (5) [(3)] has a 
nontrivial solution and w(P) [v(a)] is given, the density a(p) is 
not uniquely defined. But the difference between two densi
tiesaandu(p andit) generates v=Oinn (p_Oinn ) because 
of Lemma 1. 
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ProofofCorollary 1: If the Dirichlet problem in Corol
lary 1 is solvable, then its solution by Green's formula is of 
the form u(x) = v(a) + w(P).ByTheorem l,v(a)[w(p)] can be 
substituted by w(fl) [v(U)]. Thus u = w(p + it) = via + u). 

APPENDIX 

A. Proof of Lemma 3 

If problem (5) has only the trivial solution then 
N(Q) = 10J and Qisinjective. The fact that Q:Hq-+Hq + I is 
bounded follows from the known results about the smooth
ness of solutions to Helmholtz's equation. Indeed, if aEHq , 
then 

av+ --£Hq, VVEHq + 1/2(D), vEHq + 3/2(D), v ± EHq + I. 

an 

Here, the well-known trace theorem is used: uEHq (D ) 
~u + EHq - 112 IF). It remains to be proved that Range Q 
-R(Q) = Hq + I . Take any fEHq. Solve the problem 

(v2 + k2)V = 0 in n, 
au- ( av .) Tn = J, Ixl alxl - lkv ~, Ixl-+oo. (AI) 

The solution exists, is unique, and can be found as v(a) be
cause problem (5) [and therefore Eq. (6)] has only the trivial 
solution, and (*)Aa - a = 2 f Since A is a smoothing opera
tor, a has the same smoothness asJ, i.e., aEHq. Therefore 
Qa = V-E~+ I . It is now easy to show that R(Q) = Hq+ I. 
Take any hEHq + I and solve the exterior Dirichlet problem 
with the data u- = h. Calculate au-lan=fEHq. Find (the 
unique) a from (*). By the uniqueness theorem (Lemma 1), 
v(a) = u in n, Qa = v- = u- = h. Thus Q:Hq-+Hq+ I is a 
linear, injective, surjective, and continuous mapping. From 
the Banach theorem (about inverse operator) it follows that 
Q -1:Hq + I -+Hq is continuous. Lemma 3 is proved. 

B. Proof of Lemma 4 

If Qa = J, Qaj = 0, then (J,aj ) = (Qa,aj) = (a, Qaj ) 
= O. This proves the necessity. The operator Q:Hq -+Hq + I 

is a Fredholm operator and ind Q = 0, ind Q =index Q 
-dimN(Q) - dimN(Q*) = dimN(Q) - codimR(Q). 
Therefore there are r = dim N (Q) necessary and sufficient 
conditions of the type (J,hj)q + 1 = 0, 1 <J<r, where (u,v)q 
is the inner product in ~ . Suppose that the r conditions 
(J,bj)o = 0 are necessary forfER(Q). Since Hq CHo, q>O, 
and 11·110< 11·llq , one has (J,bj)o = (J,aj)q. Let 
L, = span(hl, ... ,h,), M, = span(al, ... ,a,). ThenL, = Mr· 
Indeed, suppose there exists am a,. Then the number of the 
necessary conditions forf to belong to R(Q ) would be at least 
r + 1, namely, (J,hj)q = 0, 1 <J<r, and (J,am)q = O. This 
contradiction proves that Lr = M,. Thus the conditions 
(J,aj ) = 0, 1 <J<r, where I aj l; = I form a basis of N (Q), are 
necessary and sufficient for fER(Q ). 
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c. Solution of the scattering problem via an 
Indetermlned equation 

Consider the problem 

(\72 + k 2)U = 0 in n, k > 0, 

u- = f, Ixl(aulalxl- iku~, Ixl-oo. (A2) 

The existence and uniqueness of the solution to this problem 
were studied extensively and a complete analysis is given in 
Ref. l.1t follows from the arguments in Sec. IIIthat if(S) has 
only the trivial solution, then (A2) is (uniquely) solvable by a 
potential of the single layer u = v(u), while if(3) has only the 
trivial solution then (A2) is (uniquely) solvable by a potential 
of the double layer u = w(P). Since it is known! that (A2) is 
(uniquely) solvable for any k>O, one sees from Green's for
mula that the representation (*)u = v(u) + w(P) holds for all 
k~O. The aim ofthis Section is to give a short proof of the 
existence ofthe solution to (A2) following Ref. 3, p. 98. The 
idea in Ref. 3 is very elegant. Let us look for a solution to (A2) 
of the form (*). Then 

Qu + (A 'J.L + J.L)l2 = f, J.L + A 'J.L + 2Qu = 2/ (A3) 

This is an equation in H = L 2(r) for the two unknown func
tions J.L and u. 

Lemma A }3: Let A and B be compact operators on a 
Hilbert space H, and N (I + A *)nN (B *) = 10}. Then the 
equation (I + A lJl + Bu = f is solvable for any fEH. 

Let us postpone a proof of this lemma and show that Eq. 
(A3) is solvable. In our case, B_2Q, A_A I. Thus one should 
check that N (I + A '*)nN (Q *) = 10}. Assume that 
uEN(I + A '*), u:;60, and consider v(u). By assumption, 
v-(u) = O. Thus v(u)=O in n. On the other hand, A '* = A 
and u + Au = 0 implies that av+ Ian = O. Since 
(\72 + k 2)V = 0 in D, v+ = av+ Ian = 0, one concludes that 
V=O in D. Thus from (2) it follows that u = O. From Lemma 
Al it now follows that Eq. (A3) is solvable for any fEH. 
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ProofofLemmaA 1: Let T _I + A. Since A is compact, 
R (T)isclosedanddim N(T*) = codim R(T) < 00. It is clear 
that a necessary and sufficient condition for the dense solv
ability of the equation TJ.L + Bu =fisN(T*)nN(B *) = 10}. 
The dense solvability means the solvability for allfin a dense 
set of H. It remains to be proved that this condition is suffi
cient for everywhere solvability (solvability for any fEH). Let 
Pbe a projection onto R(T) in H. Then 

TJ.L + PBu = P f (A4) 

(I-P )Bu = (I - P)J, (A5) 

If (AS) is solvable then (A4) and 

TJ.L +Bu= f (A6) 

are solvable. Indeed, let usolve (AS) and let TJ.L = P(f - Bu). 
Since the right-hand side belongs to R( T), this equation has a 
solutionJ.L. The pair (P,u) solves (A6): 
TJ.L +Bu=Pf-PBu+Bu=Pf+ (I -P)f=/ Let us 
show that (AS) is everywhere solvable if N(T*)nN(B *) 
= 10}. This condition implies dense solvability of (A6) and 

therefore dense solvability of the equivalent to (A6), system 
(A4), (AS); in particular, dense solvability of (AS). But (AS) is 
an equation in the finite-dimensional space (I - P )H. If such 
an equation is densely solvable, then it is everywhere solv
able. But then, as was shown above, Eqs. (A4) and (A6) are 
everywhere solvable. Lemma A I is proved. 

Remark. All we used in the proof are the following as
sumptions: (i) R (T) is closed, and (ii) dim N(T*) < 00. 

'v. Kupradze, Randwertaufgaben der Schwingungs theorie und integralg
leichungen (VEB Verlag, Berlin, 1956). 

2 A. G. Ramm, Theory and applications of some new classes of integral equa
tions (Springer-Verlag, New York, 1980); "Mathematical foundations of 
the singularity and eigenmode expansion methods," I. Math. Anal. Appl. 
86,562-591 (1982). 

3S. G. Krein, Linear equation in a Banach space (Fizmatgiz, Moscow, 1971) 
(in Russian). 
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On the solution of the two-dimensional Helmholtz equation 
G. S. Singh and L. S. Kothari 
Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India 

(Received 17 March 1983; accepted for publication 6 May 1983) 

The solution of the two-dimensional Helmholtz equation has been obtained in the annular region 
having eccentric circular boundaries. It is shown that in the limit of eccentricity zero, the solution 
reduces to that corresponding to the case of concentric circular boundaries. 

PACS numbers: 02.30.Jr 

I. INTRODUCTION 

The two-dimensional Helmholtz equation appears in 
many physical problems, like acoustical waveguides, vibra
tion of membranes, diffusion of neutrons in thermal nuclear 
reactors under a one-group approximation, etc. This paper 
deals with the solution of this equation in an annular region 
enclosed between a circular outer boundary and an eccentric 
circular inner boundary. This would apply to the case of a 
cylindrical reactor with an eccentric cylindrical control rod, 
vibrations of a membrane having eccentric circular boundar
ies, and waveguide problems with eccentric-annular cross 
sections. 

The approximate solution for the control rod problem 
in reactor physics has been obtained 1 for the special case 
when the eccentricity is large and the cross section of the 
control rod is small as compared to the eccentricity. The 
numerical solution of the waveguide problems has been ob
tained using various techniques2 which require a large size 
digital computer. Recently the vibrations of membranes for 
the aforesaid geometry has been discussed by Nagaya3 by 
using the Fourier expansion method. We follow essentially 
Nagaya's approach and obtain a solution of the two-dimen
sional Helmholtz equation in a mathematically compact and 
computationally simple form. 

II. SOLUTION 

We consider the region bounded by the circles of radii a 
and b centered at 0 and 0', respectively, as shown in Fig. 1. 
Let the centers of the two circles be separated by a distance d. 
Let the polar coordinates of any poin t P in the ann ular region 
be (r,O ) and (r' ,0 ') with respect to 0 and 0 '. 

The two-dimensional Helmholtz equation in the polar 
coordinates referred to the origin at 0 is 

- + -- + -- +kz l/J(r,O) =0. [ 
a2 1 a 1 az ] 

ar r ar r a0 2 (1 ) 

Here k is the unknown parameter to be determined along 
with the function l/J(r,O ). 

The symmetric part of the solution of Eq. (1) can be 
written in the form 

00 

l/Js(r,O)= L Em [AmJm(kr)+BmYm(kr)] cosmO, (2) 
m=O 

where Am and Bm are the constants of integration, J m (kr) 
and Y m (kr) are the Bessel functions of the first and the sec
ond kind, respectively, and 

Em = 2 - (jm,O 

with (jm,o as the Kronecker delta function. 
The application of the boundary condition 

l/J,(a,O) = 0 

for all values of ° gives 
00 

l/Js(r,O)= L EmAm[Jm(kr) 
m=O 

- Fm(ka)Ym(kr)] cos mO, 

where we have written 

(3) 

(4) 

(5) 

(6) 

The variables rand ° can be expressed in terms of r' and 
0' by simple coordinate transformations. However, the use 
of the boundary condition 

(7) 

for all values of 0' in Eq. (5) does not lead to any appropriate 
equation for determining k. Hence we first expand4 the func
tion W, (r,O ) into a cosine Fourier series in 0': 

where the Fourier coefficients are given by 

x cos mO cos nO' dO'. (9) 

Now the use of the boundary condition (7) in Eq. (8) yields 
simultaneous equations in Am's and the nontrivial solution 
of these equations requires that 

(10) 

This is the basic equation3 whose solution would give 

y 

FIG. I. The annular region enclosed between the circular boundaries rand 
r'. 
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various values of k so the corresponding Am's could then be 
determined. We find that in order to determine Qmn defined 
by Eq. (9) as such one has to proceed numerically since r and 
(J are functions of r' and (J '. Here we show that by using the 
addition theorem of the Bessel functions one gets an analyti
cal form for Qmn . 

We have to evaluate Qmn for r' = b. Moreover, in the 
problems of interest we will always have the condition that 
the radius of the external circle is greater than the eccentric
ity, i.e., b > d. Now since (J = a + (J' (from triangle POO ' in 
Fig. 1), we make use of the expressions5 

00 

Zm(kr)~; ma = L Zm+p(kb }lp(kd) ~c; p(J', (11) 
p= - 00 

whereZm(x) may be Jm (x) or Ym(x). 
Combining Eqs.(9) and (11), we obtain 

XJp(kd )1'
T 

cos(m + p)(J' cos n(J' d(J'. (12) 

The evaluation of the integration appearing in Eq. (12) 
finally yields 

Qmn = [In(kb) - Fm(ka)Yn(kb)] 

X [In_m(kd) + (-tJn+m(kd)], (13) 

with m and n taking the integral values from 0 to 00. 

Now let us consider the antisymmetric part of the solu
tion of Eq. (1) given by 

00 

"'a(r,(J)=2 L [CmJm(kr)+DmYm(kr)] sinm(J, (14) 
m=O 

where Cm and Dm are the constants of integration. 
Proceeding in a way exactly similar to the symmetric 

case but considering the sine Fourier series expansion in (J', 
the counterpart ofEq. (13) is obtained in the form 

Qmn = [In(kb) - Fm(ka)Yn(kb)] 

X [In_m(kd) + (-t+ iJn+m(kd)], (15) 

with m and n taking the integral values from 1 to 00. 
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III. DISCUSSION 

It can be observed that the expressions given by Eqs. 
(13) and (15) differ in the ranges of m and n. It apparently 
seems that the signs appearing before I n + m (kd ) in the sec
ond square brackets are also different. But if we consider the 
full matrices in two cases, then the signs under consideration 
in the expressions for the corresponding elements of two ma
trices become the same as m starts from 0 in the symmetric 
case and from 1 in the antisymmetric case. 

Now let us consider the limiting behavior of our solu
tions in the special case when the eccentricity d goes to zero. 
In this case we must have 

(16) 

so that Eq. (10) does not vanish identically. Hence the condi
tion for the solution of Eq. (1) simply becomes 

(17) 

which coincides with the equation obtained for solution in 
the concentric case.6 

We wish to mention that we have firstly solved Eq. (1) 
with the origin at the center of the smaller circle and then 
transferred the solution to the origin at the center of the 
larger circle. If we could have proceeded the other way, 
Y m (x) would have been dropped from the very beginning as 
this function is not finite at x = O. But the solution could not 
have been obtained in the closed analytical form that we 
have got. Moreover the limiting case (d = 0) of this solution 
would have corresponded to the system with only one circu
lar boundary. 

's. Glasstone and M. C. Edlund. The Elements of Nuclear Reactor Theory 
(MacMillan, London. 1952). Chap. XI. 

2See references in Ref. 3. 
3K. Nagaya. J. Sound Vib. 50, 545 (1977). 
'The factor ~ which appears in Eq. (8) had been missed in Eq. (10) of Ref. 3. 
However. this does not affect the discussions of that paper. 

5G. N. Watson, Treatise on the Theory of Bessel Functions (Cambridge U. P .• 
London. 1958). Chap. XI. 

6See• for example. for the concentric control rod problem. Ref. 1, p. 318. 
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Convergence of a crossing-symmetric perturbation series for 
the four-point vertex 

E. D. Davisa) and W. D. Heiss 
Physics Department and Nuclear Physics Research Unit. University of the Witwatersrand, Johannesburg, 
South Africa 

(Received 30 June 1983; accepted for publication 2 December 1983) 

A finite radius of convergence is established for a perturbation expansion of the crossing
symmetric vertex function in a discrete model. 

PACS numbers: 02.30.Mv, 11.50.Jg 

The convergence of perturbation expansions in field 
theory is not often ranked as a priority among physicists. In 
quantum electrodynamics the question appears nearly irre
levant, since the success of the low-order terms allows one to 
adhere to the hope that the expansion is at least asymptoti
cally convergent. 1 In strongly-interacting systems the ques
tion is usually not raised2

,3 owing the relative success of par
tial summations such as the traditional random-phase 
approximation or its extensions.4

.
5 However, when it is nec

essary to go beyond partial summations, the question 
whether the relevant physical quantities are regular at zero 
interaction strength is pertinent to virtually any approxima
tion procedure. 

A perturbation expression for a unitary crossing
symmetric vertex function r is given by 

r=ro+ n~lmtl({ro ;~t.t,u CGG);[ro), (1) 

where ro is the irreducible part of rand G is the one-body 
Green's function. The significance of the remaining symbols 
is explained elsewhere. 6 The crossing symmetry of this series 
is not preserved by any partial summations.7 It is our aim to 
find an approximate expression when the simplest possible 
forms for rO and G are adopted, i.e., ro, henceforth to be 
denoted by A, is both static and label independent, while G 
contains only one left-hand and one right-hand pole each 
with diagonal residues. Under these circumstances Eq. (1) is 
a formal power series in the variable A. It is known8 that the 
perturbation expansion of the exact and therefore crossing 
symmetric r for a soluble model9 has a finite nonzero radius 
of convergence. In this paper we report a nonzero radius of 
convergence for the more general case outlined above. 

Denoting by an the coefficient of An, it is obviously 
sufficient to show Ian I <cn , where c is some constant. By Eq. 
(1), an is thesumofm n Feynman diagrams, where, from Ref. 
6, 

mn = ~ nil(~)k - l(n - 1) (n - 1). 
n - 1 k~ 13k k - 1 

Since mn is bounded by exponential growth, it has to be 
shown that any nth-order Feynman diagram in this pertur
bation series is bounded by exponential growth. 

Expressed in Goldstone diagramslO an nth-order Feyn
man diagram is a sum with n! terms. Thus one has to consid
er its Goldstone diagrams individually and show that, 

a) Supported in part by a bursary from C.S.I.R., Pretoria, South Africa. 

although their number is not bounded by exponential 
growth, the sum of their moduli is. 

Consider the diagram in Fig. 1. When evaluated as a 
Goldstone diagram, the result for its modulus is 

X II s' {

r-l 1 }/ 
k~ I (03 - E

k
) 2,-k 

where Sk is the number of propagations in the k th column of 
the diagram, tk = k (t - 0) + 0 = Ek + t + O,t and 0 being 
the pole positions of G, and 02' 03' and s are appropriate 
energy variables.4 To establish the growth of E in terms of n, 
attention must be focused on t k' E k' and the S k 's (which are 
subjectto the constraint ~ir~/ Sk = n - 1). For fixed values 
of the energy variables, we find the estimate 

2r - I 1 
= c3 II --s-' 

k ~ I (Pk ) k 

(2) 

where Co is dependent on the energy variables. The promi
nent feature of Eq. (2) is that, because Sk;;;' 1 for any k, the 
denominator grows as (r W or faster; this growth is entirely 
due to the pole positions in the expression for the Goldstone 
diagram. 

Columns - 1 2 r' 1 r r+' 
I I I I I I I 
I I I I I I I 

1 II )1. I. • i. i II I 
Ladders I 1, ! I ! I I I 

I ~~:~IT:'----------r: ~;-hi)~1 
• 2: K~: .,---__ -.0.. t ........ · t ........ · 1,.......' t-;-:i '\ 

3 I I 'r':----------·,I-·T'-·rl·~I~:~: 
: : Ie : : : I '\ 

I I I I 
I I I I I 
I I • I I I 
I I· 1 1 
I I I I 1.1 
I I I \ I: I 

I "I I I I 

r' 2 I I <:: i':':' '. 
r·1 I I ! " I • I • i . 

I I K I I I • 

I I I :: I' . 
I I I I I 
I I I I I I 

~rrtJer I I I I I 

of ladders 
In rolLlTln - 2 r -1 r r+1 

2r'221'1 
I I 
I I 
I I 
I I 
I I 
I I 

I I I 
I 1 I 
1 I I 

I I 
1 I 
1 I 

I I 
I I 
I I 
I I 

"""J I 
.11 I 
II I 
:~ 
I:: I 
i I'J . .: : 
I I I 
I 1 I 
I I , 

2 1 

FIG.!. A typical nth-order Feynman diagram in the perturbation series 
given in Eq. (1). The lines composed ofiong thin dashes demarcate the 
columns into which the diagram may be conveniently divided. 
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This observation prompts the conjecture that conver
gence can be established by exploiting the growth rate of the 
pole positions in the expressions for Goldstone diagrams. To 
demonstrate this we will consider the sum S over that class of 
Goldstone diagrams, corresponding to the Feynman dia
gram in Fig. 1, for which Eq. (2) is valid. It will be assumed 
that r - n (so that the number of diagrams in S is not bounded 
by exponential growth) and, for convenience, that each lad
der carries the same number of interactions denoted by 
q + 2. [Note q is 0(1).] 

This class of Goldstone diagrams is generated from the 
one drawn by changing the positions of interactions on any 
ladder relative to interactions on other ladders without 
changing either the relative positioning of interactions with
in a ladder or the number of ladders in any column. Such 
changes can be specified by stating: (a) the time ordering of 
the interactions at the ends of the ladders (the "end points" 
of ladders); (b) the number of interactions on each ladder 
within each column which intersects it; (c) the relative posi
tioning of all interactions within a column. 

Before an expression for S can be written down cogni
zance must be taken of the following result: each Goldstone 
diagram for which (a) and (b) above are identical has the same 
expression denoted by g. The number of such diagrams is 

2r- \ 

m= II C(Xik,Xik,···,xi k),whereC(x\, ... ,xp)isthe 
k = 1 I 2 Ok 

multinomial coefficient, x ik is the number of interactions on 
the ith ladder within the k th column in each of these dia
grams and ii' i2 , •• • ,iOk are the indices of those ladders which 

intersect the k th column. It follows that 

S= IImlgl, 
(a) (b) 

where 1:(a) and 1:(b) are summations over the various possibi
lities under (a) and (b) above. 

To estimate S we insert for Igl Eq. (2). Now it can be 
shown that, for any permissible values of the x· k 's, 

Ij 

C (Xi k, ... , Xi k) CSk 
I Ok :5_\_, 
(PdSk (Pk(k 

wherec\ is a constant, Rk is any number of 0 (1) and thePk's 
are defined in Eq. (2). Ifwe combine this result with another, 

namely that ifSk is 0(1) then C (Xi k""'X, k) S ([\)S., we 
I 10k 

realize that to estimate C (Xi,k , ... ,xiOkk ) 1 (Pk ) Sk it is suffi

cient to consider those distributions of the interactions in 
which each Sk is 0 (1). To ensure deducing an upper bound, 
we consider those distributions of this kind for which Eq. (2) 
attains its maximum; in these distributions, which occur 
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when the ladders are time ordered as in the diagram consid
ered, Sk = q + 1 if k = 1,2, .. . ,rI2 or k = 3r12, 3rl 
2 + 1, .. . ,2r - 1, otherwise Sk = 1. Thus 

r c~ mlgl <- ---=-
(rW {(rI2)!FQ' 

where C2 = COc\. 

(3) 

Since Eq. (3) is independent of the summations in S, it 
only remains to find upper bounds to the numbers of terms in 
the summations, nla) and n(b)' For the sake of brevity, we 
merely quote the result that nib) < (c3r)Qr , C3 being another 
constant. On the other hand, nla) is simply the number of 
time orderings of the endpoints of the ladders compatible 
with the restriction that the number ofladders in any column 
is not changed. Clearly nla) = (r!f. 

Combining these results we conclude that S is indeed 
bounded by exponential growth. In obtaining this result the 
essence of the proof of convergence has been presented. The 
Feynman diagram considered is typical of those generated in 
the perturbation series given in Eq. (1). Satisfactory upper 
bounds for arbitrary sums of Goldstone diagrams of any of 
these Feynman diagrams are set by adopting appropriate but 
straightforward modifications of the ideas employed above. 

In conclusion we note that this proof of convergence 
remains valid when we relax the restrictions on rO and Gin 
that G can have an arbitrary number of poles and rO can be 
energy dependent (as the exact expression would be). We 
emphasize, however, that the crucial prerequisite for our 
proof is the discreteness of the single-particle spectrum. 
While it is therefore relevant for models used in nuclear 
structure calculations, it does not shed light on situations 
where a continuum occurs. 
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The integral formulas of the one-to-one correspondence between the one-particle state F sJ,. (p) 
with nonzero mass p2 = E 2 - p2, helicity ( - S';;;A .;;;s), and the state F" (k )(v = ± s, ± (s - 1 ), ... ,0 
or ± (!) with mass equal to zero (k 2 = w2 

- k 2 = 0) is obtained. 

PACS numbers: 02.30.Qy 

It is the aim of this paper to obtain an integral transfor
mation, which gives the relationship between one-particle 
states with nonzero mass and mass equal to zero. We shall 
base our calculations on the results of Refs. 1 and 2. In the 
latter, the realization of the representation Tx ( g), 
X = (0- + 1 + V,o- + 1 - v), gESO(3, 1) in the space of the ho
mogeneous function I" (k;o-) of degree 0- on the light cone 
[k,k] = w 2 

- k 2 = 0, W > 0 is considered. 
Expansion of the function FsJ.. (p) on the double sheeted 

hyperboloidp2 = [p,p] = E2 - p2, E>O in terms ofirredu
cible unitary representations of the Lorentz group is given by 
the formula from Ref. 1. 

1 Joo + s 
FsJ.. (p) = 8r _ 00 m/2~ -s ~AJMXDsJ..;JM(x)(h (p)) 

Xl(p2 + m 2)dp, (1) 

where DsJ..;JM (x)(h( p)) are the matrix elements of the principal 
series of the unitary representations Tx (g), X = ((ip + m)/ 
2,(ip - m)/2), gESO (3,1); h (p) is the boost operator 
- p = ph (p), p = (1,0,0,0). 

The inverse transformation has the form 

(2) 

where dp is the invariant measure over the double sheeted 
hyperboloid. 

An expansion of the function F" (k ) on the light cone 
[k,k] = w2 

- k 2 = 0, W > 0 can be obtained from Eq. (1) by 
taking the limit p2 -0. In this limit, the sum over the index 
m/2 in Eq. (1) is nonzero when m/2=v = A. 

One can obtain the same results by a method based on 
the idea that the space of the functions F" (k ) has the sub
spaces of the homogeneous functions I" (k;o-) of degree 0-: 

I,,(tk;o-) = r I,,(k;o-), t> O. An expansion of the square-inte
grable function F" (k ) in terms of the functions I" (k;o-) is 
given by the Mellin transformation3

: 

I,,(k;p) = Sa"" FJtk}t -ip/2dt, (3) 

where I" (k; p) is the homogeneous function of degree 
0- = - 1 + ip/2. The homogeneous function I" (k;o-) is also 
determined by its values I" (n;o-) on the unit sphere 
[n n] = ni + n~ + n~ = 1. Let D"M IJ) (r(O,n)) be the orthon
ormal canonical basis in the space of the functions I" (n;o-): 

Iv(n;o-) = L AJMXD"M(J)(r(O,n)). (4) 
JM 

Action of the representation operator Tx ( g), gESO(3, 1) on 
this basis is given by 

Tx(g)D"MIJ)(r) = (Wg/w)G D"MIJ)(rg) 

= L D"M,IJ')(r)DJ'M';JM(x)(g)· (5) 
J'M' 

From Eq. (5) we have 

DJ'M';JMX(g) = f (~r D~M,IJ')(r)D"MJ(rg)dr, (6) 

where dr is the invariant volume over the group rotation. 
Substituting (6) into (1), and summing over the indices J, M 
by taking into account Eq. (4), we get 

FsJ,.(p) = ~J+ "" f fl,,(n;p)(E _pn)-l-ip /2 

41T - "" ,,=-s 

XD~J.. IS)(rh ~'IP))drUp2 + v)dp. (7) 

Equation (7) may be rewritten in the form 

1 J+"" +s 
FsJ..(p) = 81T4 _ "" ,,~_/,,(k;p)o([ pk] - 1) 

X D ~J.. Is) ( r h ~ I( p) ) (a p2 + v)dp dk, 

where dk is the invariant measure on the upper cone 
[k,k] = O,w > O. Thus after the integration over variablep by 
Eq. (3), we derive the required transformation: 

FsJ..(p) = ~f "XsF,,(k)[ -o"([pk] -1) 

+ vo([pk] - I)]D~J..IS)(rh ~'IP))dk. (8) 

Analogously, we find that the inverse transformation is 

F,,(k) = f J..Xs FsJ..(p)o([pk] - 1)D"J.. (S)(rh ~ 'IP))dp. 

(9) 

The equation [pk] = 1 defines a two-dimensional surface
horosphere in the Lobachevsky space3 [p p] = p2. There
fore, Eq. (7) gives a one-to-one correspondence between the 
function F sJ,. (p) and its integral over the horosphere. Thus 
the problem of the integral geometry in Lobachevsky space 
for a nondegenerate representation of the Lorentz group is 
solved. In the maximally degenerate case, i.e., S = 0 from (8) 
and (9), one gets a Gel'fand-Grayev integral transforma
tion.3 

Generalization ofEqs. (8) and (9) for the SO (n, 1) group 
is straightforward. 
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connection with its problems of the theory representations, Generalized 
functions No.5 (Moscow, 1962). 
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Planar coherent states with domains in the complex plane are defined by means of ladder 
operators acting in a separable Hilbert space. Some properties of the states are derived and 
examples provided to indicate areas of possible applications. 
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1. INTRODUCTION 

Field coherent states were first applied to the theory of 
the quantum radiation field by Glauber l in 1963. The con
cept of an over-complete function with a homogeneous 
manifold of the Heisenberg group for its domain was a fruit
ful one and during the next decade generalizations were 
made to the group SU(2) by Radcliffe,2 and by Arrechi et al., 3 

and to arbitrary Lie groups by Perelomov.4 During the last 
ten years most of the applications5

,6,7 of coherent states have 
been developed within the context of the theory of Lie 
groups. 

On the other hand, coherent states may be formulated 
independently of the Lie theory. The purpose of the present 
discussion is to provide one such development. Planar coher
ent states with domains in the complex plane are defined by 
means of ladder operators acting in an arbitrary separable 
Hilbert space. Examples are provided to indicate areas of 
possible applications, and some properties of the states are 
derived. One advantage of this approach lies in its making 
problems in the theory of coherent states more accessible to 
the standard tools of analysis. 

2. LADDER OPERATORS 

Let L be a complex separable Hilbert space and fix an 
orthonormal basis r = 1/0/1/2"") in L. For each sequence 
C = I C _I'CO'C I'''') of complex numbers with C _ I = 0, we 
may define a raising operator A r in L by setting 
A rfn = c,.fn + I' for n = 0,1,2, ... , and then extending A r to 
the linear subspace L r generated by r in the usual manner 
by linearity. Similarly, we may define a lowering operator Ae 
onLr by the relationsAJn = en _ In _ I for n = 0,1,2, ... . Ae 
annihilates/o and for this reason/o is called the vacuum 
associated with A e and A r· Together A e and A r are referred 
to as ladder operators associated with the sequence c. 

By construction A r is the adjoint of Ae on L r . The 
products AeA r and A rAe are, consequently, self-adjoint 
there and possess the elements of r as characteristic vectors: 
for n = 0,1,2, ... , AeA rfn = ICn I 'in and A ;AJn = ICn _ I lfn· 
Since the commutator of Ac and A J is, in general, not a 
restriction of some multiple of the identity operator 1 L on L, 
the Lie algebra generated by the ladder operators associated 
with a given sequence C will not be isomorphic to that asso
ciated with the Heisenberg group. 

Operators of the formH = r + sAeA r + tA JAe, with r, 
s, and t complex numbers, are of physical interest, 8 and will 
be considered later. Such operators have as eigenvalue equa
tions 

(1 ) 

for n = 0,1,2, .... Conversely, ifH is a closed symmetric oper
ator on L with point spectrum, then the set of orthonormal 
characteristic vectors belonging to H may be chosen to be the 
set r and the equations (1) solved ( though not uniquely) for 
the parameters r, s, and t, and for the sequence c. H may then 
be written on L r as a quadratic polynomial in the ladder 
operators associated with the sequence c. 

3. PLANAR COHERENT STATES 

Let f..l be a positive u-finite measure on the Borel sets of 
an open domain G in the complex plane, and let F (z) be a 
continuous function from G into the unit sphere in L. We 
define the projection operator F (z) associated with F (z) by 
F (zlf = (F (z)/) F (z), for allf in L. Since the inner product 
(g,F(z)/) in L iSf..l-measurable on G for all/andg inL, the 
Bochner integral S G F(z) df..l(z) exists. If this integral is equal 
to the identity operator on L, then F (z) is said to possess the 
over-completeness property and F (z) is called a planar coher
ent state on G based on the measure f..l. 

One standard method of constructing planar coherent 
states is by exponentiation ofladder operators. For example, 
let G be the unit disc D = I Z€c: Izl < 1), and let C be a se

quence with general term C = ~(n + 1) (n + 2). We consider 

[exp(zA J) ]/0 = nto(:~) (A ;)nlo = nto bn zn In· (2) 

The sequence b is given by 
n-I 

bn = (n!)-I IT cj (3) 
j~O 

for n = 0,1,2, .... The empty product is taken as unity. Here 
bn = (n + 1)1/2 so that the series (2) has radius of conver
gence R = 1, and therefore, defines an analytic function on 
D. As a consequence, the function 

F(z) = (1 - Iz12) f (n + 1)1/2z n In (4) 
n=O 

is a planar coherent state with respect to the measure 
df..l(z) = 2r(1 - r)-2 drd<p. Here we take z = r exp (21Ttip), 
while both dr and d<p are Lebesque measures on [0,1). It is 
clear that planar coherent states of the form (2) need not exist 
for arbitrary sequences c, nor need there be a measure f..l 
which can act as a base for exp (zA J lfo. The fundamental link 
between the sequence c, the planar coherent state F(z), and 
the measure f..l in this example is that the measure 2r dr is a 
probability measure on [0,1) and that its moment sequence is 
intimately related to the sequence b in (3). This observation 
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serves as motivation for the following discussion. We restrict 
our considerations to two domains G: the unit disk D and 
then the entire plane. 

Let v be a probability measure on the Borel sets of the 
unit interval. Assume that v possesses finite nonzero mo
ments v n of all orders and that the cumulative distribution 
function associated with v is strictly less than one on [0,1). If 
we define a sequence C by 

Cn = (n + 1) (v2n lv2n+2)1I2, (5) 

then the series (2) does define an analytic function on D. 
Indeed, in this case the sequence b in (3) has general term 
bn = (v2n )-1/2 and consequently the radius of convergence 
R of (2) is given by 

= inf{S: f dv(r) = I} = 1. 

For eachzinD the norm of(2) depends only on Izl2 and will 
be denoted by N -2(lzI2). 

It is now clear that the function 

F(z) = N(lzI2)exp(zA Jlfo 
is a planar coherent state on D based on the measure 

d/1(z) = N -2(r)dv(r)dip. 

(6a) 

(6b) 

Conversely, let a sequence C be given such that the se
quence [vO,V2,V4 ... ) with general term 
V2n = (nWlcoCI,,,Cn _ I 1- 2 has an extension to a completely 
monotone sequence [vO,VI ,V2, ... ) with the property that 
limn~oo inf(vn )1!n = 1. The Hausdorff moment theorem 
now guarantees the existence of a unique measure v on the 
unit interval such that the function (6a) is a planar coherent 
state on D based on the measure (6b). 

When G is the entire plane, we may also consider states 
of the form (2). Let v be a probability measure on the Borel 
sets of [0, + 00), then for the state (6a) to be over complete 
the sequence C must be given by (5). In this case, moreover, 
the radius of convergence of the series (2) is infinite because 
the norm of the function h (r) = r in the Lebesgue space 
L 2n (v) has for its limit, as n becomes infinite, the essential 
supremum of h on [0, + 00), and this is infinite. We thus have 
that (6a) is a planar coherent state based on the measure (6b). 
The converse proceeds as in the case ofGbeing the unit disk, 
except that here we consider only sequences [vO,V2,V4, ... ) 

which have extensions to positive definite sequences 
[vO,VI ,V2, ... ). The Stieltjes moment theorem may now be ap
plied to yield the existence of a probability measure v in 
[0, + 00) such that (6a) is a planar coherent state on the plane 
based on the measure (6b). 

The first illustrations are planar coherent states on D. 
Let dv(r) be the uniform measure on [0,1). Its moments are 
v n = (n + 1) -I and the associated sequence C is specified by 
Cn = 21/2(2n + 1)-1/2(n + 1)3/2. The corresponding planar 
coherent state is 

00 

F(z) = (1 - Iz12) (1 + IzI2)-1/2 I (2n + 1)1/2zn In (7) 
n=O 

and is based on the measure d/1(z) = (1 + r)( 1 - r) - 2dr dip. 
Similarly, use of the beta distributions on [0,1) with param-
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eters a > 0 and f3> 1 yields the planar coherent state 

F(z) = [2FIIl,a+f3;.8;lzI2)]-1/2 

oc [B (/3 n + f3 + a) ] 1/2 XI' znln 
n ~ ° B (a + f3,n + f3 ) 

based on the measure 

(8) 

d/1(z) = 2B -1(a,f3 bFI(I,a + f3;.8;r)(l - r)a - I r fl - I dr dip. 
Here B (r,s) is the beta function depending on the parameters 
rand s, and 2FI(r,s;t;x) the Gauss hypergeometric function. 
The introductory example (4) is a special case of (8) with 
a=f3=1. 

To obtain examples of states defined on the entire plane, 
we may utilize the gamma distributions on [0, + 00) with 
parameters a > 0 and f3> 1. In this case the planar coherent 
state is 

F(z) = N. (lzI2)r 1/2(/3) f a - n r -1/2(2n + f3)zn In (9) 
n=O 

with a base measure 
d/1(z) = N; 2 (r) r -1(/3 )afl rfl- I e - ar dr dip. The normali
zation factor N. may be expressed in terms of Kummer 
functions: 

N;2 (r) = !LFI(l,f3,rla) + IFI(l,f3, - ria)]. 

Related states are those given by 

F(z) = IFI -112( 1,f3;:) r 1/2(/3) 

00 

X I a - n12r - 1I2(n + f3) Zn In (10) 
n=O 

and based on the measure d/1(Z) = 2IFI(I,f3;rla)r -1(/3) 
a fl rfJ-1 e - aT"' dr dip. Again we require a > 0 and f3> 1. These 
states are historically important because that state with 
a = f3 = 1 was the state studied by Glauber in connection 
with his work on the quantum radiation field. 

Next, let H be an operator on L. If H has a pure point 
spectrum with eigenvalues Pn = Po + pn (P#O), then 
H = Po + pA; Ac, where the ladder operators are defined 
with respect to an orthonormal basis of eigenvalues of Hand 
with respect to the sequence C whose nth term is 
Cn = (n + 1)112. The associated planar coherent state is the 
state (10) with a = f3 = 1. The typical physical application 
for this state is to systems of quantum oscillators. Here L is 
the space of complex square-integrable functions on the real 
line which vanish at infinity. H is the usual Schrodinger op
erator: - (1f/2m) (alax)2 + ~mlU2x2. The energy spectrum 
is En = (hlUI21T) (n + !), n = 0,1,2, ... , so that the planar co
herent state has explicit form: 

F(z,x) = e:lUY/4eXp( _ ~lzl2 _ 1T~lU X2) 

X nto2 - n/2(n!)-lzn Hn [( 21T:lU Y12
x], 

where Hn (u), n = 0,1,2, ... , are the Hermite polynomials. 

When H has eigenvalues Pn = Po + pn + qn2, with 
bothp and q positive, then a solution ofEq. (1) yields the 
sequence C with the general term Cn = (n + 1)1/2(n + 1 + pi 
q)I/2; we consequently obtain the planar coherent state (6a) 
onD: 
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F(z) = (1 - IZIZ)I/Z( 1 +~) 

X nto [ (~)B (n + 1'~)] -liZ zn In (11) 

based on themeasuredJl(z) = 2(p/q)r(1 - r)-Zdrdrp. This is 
a special case ofEq. (8) for /3 = 1 and a = p/q. One area of 
application ofthis state may be the case when L is the space 
of continuous real-valued functions on [ - 1, + 1] and when 
H is the Legendre operator (xZ - 1) (d Z / dxz) + 2x 
(d /dx) with the Legendre polynomials as eigenfunctions. 
Another application may be to the quantum rigid rotator. 
Here L is the space of complex square integrable functions 
on [0, + (0) which vanish at infinity; H is the radial operator 
(-IP/2m)(Jz/Jr) + (h Zn(n + l)/8rmr); and the ortho
normal system r is the collection of Bessel functions. 

When the Hilbert space L is finite-dimensional, the 
expression (2) for [exp(zA J)] 10 is a polynomial in z; conse
quently, the discussion dealing with the state (6) needs only 
straightforward modifications. As an example, consider a 
quantum particle with integral or half-integral spin Sand 
with spin operators S I' Sz, and S3' These operators form a Lie 
algebra with productsSISz - SZSI = lS3 (cyclic). S has spec
trum n - S, n = 0, 1,2, ... ,2S and has for eigenfunctions the 
spherical harmonics y~ - S (fJ,rp), where fJ and rp are the usu
al angle variables in spherical coordinates. The linear combi
nationS t = l2-

I/Z(SI + tSZ) is a raising operator forS3 with 
source sequence C given by 
Cn = [SIS + 1) - (n - S)(n - S + 1)]1IZ,forn = 0,1, ... ,2S. 
The corresponding planar coherent state is defined on C: 

(12) 

and is based on the measure dJl(z) = 2(2S + 1)r(1 + r)-Z 
dr drp. This is not, however, the only planar coherent state 
that may be associated with this quantum system. Ifwe take 
the finite sequence C with terms 
c = (n + 1)I/Zn = 0,1, ... ,2S - 1, then we obtain the state 

F(z;fJ,rp) = N -I/Z(lzIZ)exp( - ~lzIZ) 
ZS XL (n!)-I/Zzn y~-S(fJ,rp) (13) 

n=O 

based on the measure dJl(z) = 2rN (r)dr drp. The normaliza
tion factor is 

" rS+ I 

N(r) = 1 - (2S + I)! IFI(2S + 1;2S + 2;r). 

Finally we note that not all operators with point spectra 
possess a planar coherent state based on a measure 
dJl = N -Z(r)dv(r)drp, where v is a probability measure con
centrated on [0,1). Indeed, the spectrum of the hydrogen 
atom is of the formpn = po(n + l)-Z, n = 0,1,2, ... ; and for 

all choices ofr, s, and tin (1) we obtain that lim (Icn In-I) < 1. 

If an appropriate measure v were to exist [;[0,1), its mo
ments would have to obey the condition (5) and this would 

imply that lim [VZn + Z (VZn )-1] > 1, so that there could be 
n~oo 

no extension to a completely monotone sequence of mo
ments. 
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4. PROPERTIES OF PLANAR COHERENT STATES 

For each planar coherent state F (z) defined on a domain 
G and based on the measure Jl, an overlap function K (w,z) 
maybedefinedonG X GbyK(w,z) = (F(w),F(z)).WhenF(z)is 
given by (6a), then the overlap function is 
K(w,z) = N -Z(wz)N(lwIZ)N(lzIZ). K(w,z) possesses the 
property of reproducing under convolutions: 

f G K (w,z)K (z,u)dJl(z) = K (w,u). 

We note also that K (O,z) = N (Izlz) is never zero for any 
value of z so thatlo is not orthogonal toF (z) for any z. A more 
general question is that of "exact" orthogonality for planar 
coherent states: Given a nonzero element w of G, find z in G 
such that K (w,z) = 0. It seems to be the case that on each 
domain G there are planar coherent states for which solu
tions may exist to this problem and also states for which 
there are no solutions. For example, no solutions exist on the 
unit disk for the state (7). On the other hand, if L is two
dimensional with basis (10/1 L then 

F(z) = (1 + 21z1211 Vo + {iziI) is a planar coherent state on 
D based on the measure dJl(z) = (1 + 2r)Z dr drp and for each 
w = s exp(21T,q;) such that ~ < s < 1, z = - (ls) -lexp(21T'Q;) 
makes K (w,z) = 0. Similarly on C, the overlap 
K (s exp(21T'Q;),z) for the state (9) with a = /3 = 1 vanishes 
whenever z = ,S-I(k + ~)exp(21T'Q;), k = 0, ± 1, ± 2, .... In 
contrast, the problem has no solutions when the planar co
herent state is given by (10) with a = /3 = 1. When the pa
rameters take arbitrary values in the special cases (8), (9), and 
(10), solutions are not easy to obtain and the question in 
general is unresolved. 

Instead of exact "orthogonality," approximate ortho
gonality is sometimes considered. I For each nonzero win G a 
subset V w of the boundary of G is sought such that as z in G 
approaches Vw , the overlap K (w,z) tends to zero. The unit 
circle for states (4), (7), and (8) is Vw ; it is the ideal point at 
infinity for states (9) and (10); and V w is empty in the example 
(12). 

Next consider the action of the lowering operator Ae on 
the planar coherent state (6); 

00 

AJ(z) = N(lzIZ) L ICn IZ[(n + I)!] -IZn+ I (A J )nlo. 
n=O 

(14) 

It now follows that the Glauber state (10) with a = /3 = 1, is 
an eigenfunction of the associated lowering operator with 
eigenvaluez. Similar results do not follow in general. Indeed, 
the action of the corresponding lowering operator on the 
state (11) is given by 

AJ(z) = (zA J + 1 + p/q)zF(z). 

On the other hand, given a sequence c and an orthonormal 
basis r which determine a planar coherent state F (z) by 
means of (6), an operator Be exists such that Be F (z) = zF (z). 
In fact, each sequence (to,t l,tZ"" J of real numbers gives rise 
to a shift operator defined by 

Beln = {[(Vzn+z/Vzn)1/2 exp( - 21Ttln)] In-I, n = 1,2,3, ... , 

~ n=Q 
(15) 
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Clearly Be acts onF (z) in the desired manner. The two opera
tors Ae and Be are equal if and only if the measure v has even 
moments of the form V 2n = n!, and the Glauber state is the 
most important example whose base measure has this prop
erty. 

The over-completeness property of the planar coherent 
states (6) may be used to obtain "kernel" functions associated 
with elements in and operators on L. If g is an element in L, 
the function g(z) = };;; ~ 0 bn (g,Jn) zn, where bn is given in 
Eq. (3), may be utilized to write g as a Bochner integral: 

G = L g(Z)F(z)d,u(z). 

In this integral, and in the following discussion, the domain 
G is either the unit disk or the plane. To each continuous 
operator H on L, we may uniquely associate the function 
T (H;z) = (F (z), HF (z)); we may also consider this function for 
some expressions involving the ladder operators: 

= 
T(AJ;z)=zN2(lzIZ)I (n+1) (v2n+2)-llzI2n, 

n=O 

= 
T(Ae A J;z) =N2(lzI2) I (n + 1)2(v2n+2)-llzlzn, (16) 

n=O 

00 

T(A JAe;z) = N 2(1z12) I (n + W VZn (V2n + Z )-2IzI 2n + 2. 

n=O 

These expressions are particularly simple for the Glauber 
state' T(A t·z) =z' T(A A t.z) = 1 + IzIZ' T(A tA ·z) 
= Iz·l z. Fo;'fixed;, T(H;z) i~ linear in H; it is, rr:or~~ver, a 

continuous linear functional on the Liouville space of L. In
deed, if HI and H2 are any two Hilbert-Schmidt operators on 
L, IT(HI;z) - T(H2;Z) I is dominated by the Hilbert-Schmidt 
norm of (HI - H2)' We note also that for each trace-class 
operator H on L, 

Tr H = f G T (H;z)d,u(z). 

On the other hand, let S (H;z) be a continuous linear func
tional on the Liouville space of L such that for each trace
class operator H on L, Tr H = S GS (H;Z)d,u(z), where 
d,u(z) = (};;; ~ 0 v2-;; I rZn )dv(r)dqJ. Riesz's theorem and the 
linearity of the inner product on the Liouville space indicate 
that there is a family {S (z):z E G J of Hilbert-Schmidt opera
torsonL such thatS (H;Z) = Tr[St(z)H], forallzin G and all 
Hilbert-Schmidt operators H, and such that S GS (z) d,u(z) 
= I L • When the planar coherent state F(z) is given by for

mula (6), and whenS(H;z) = T(H;Z), thenS(z) = F(z). 
We may associate an uncertainty relation to each pair of 

ladder operators, Ae andA J, for which a corresponding state 
of the form (6a) exists. Namely, we set 
P=AJ+Ae, Q=,\AJ-Ae),andZ= [Ae.AJ)·P,Q, 
and Z are Hermitian operators and [P,Q] = 2,Z. Ifwe define 
(P 2) = T(PZ;Z) - T2(P;z)andsimilarlyforQandZ then we 
obtain 

(17) 

Equality in (17) holds if and only if 
T(PQ + QP;z) = 2T(P;z)T(Q;z), which in tum holds if and 
onlyifIm T(A JZ;z) = 1m T2(A J;z). This last relation is equi
valent to a denumerable family of restrictions on the even 
moments of the radial portion of the measure (6b): for n = 0, 
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1,2,00' , 

i [ (k + l)(n - k + I) ] 
k~O (V2k+2)(V2n-2k+2) 

= i [ (k + l)(k + 2) ] 
k~O (VZk+4)(VZn_2k) . 

(18) 
Solution of (18) yields that VZn = (n!)(V2r . The states (10) 
withf3 = 1 are, therefore, examples of minimum uncertainty 
states in the sense of (17). On the other hand, every planar 
coherent state (6) yields equality in the relation 

(pZ)(QZ»(Z2), (19) 

where P= BJ + Be;Q = '1BJ - Be), and Z = [Bc>BJ). 
Here Be is a lowering operator of the form (15) andB J is the 
corresponding raising operator. Indeed, equality holds in 
(19) if and onlyifIm T(B~;z) + 1m T2(Be;z) and this follows 
immediately from the definition of Be. 

Consider next the space of continuous complex-valued 
functions on D along with the inner product 

(f,g) =SD f(z)g(z) d,u(z),whered,u(z) = (};;;~o V2-;;I~n) 
dv(r)dqJ. With respect to this inner product, the set of func
tions 
If/-{'/'()- -112(};oo -1_2n)-1/2n 012 J - 'rn Z - V2n n ~ 0 V2n r Z :n = , , ,00' 
forms an orthonormal set. Since for each z in D, 
};;; ~ 0 I tP n (z) 12 = 1, each function of the form 
h (z) = };;; ~ 0 Sn tPn (z) with S = (SO,SI,s2'00,) in lz(c)' converges 
uniformly and absolutely on each compact subset of D. The 
set M of all such functions forms a Hilbert space with the 
inner product (f,g) and possesses tP as an orthonormal basis; 
moreover, Land M are isometrically isomorphic under the 
correspondence 

00 00 

f= I snfn -.. I Sn tPn(Z). (20) 
n=O n=O 

Here r = (foJIi2' 00, J is the orthonormal basis of L fixed 
earlier. We shall denote the image of g under (20) by f(z). 

The correspondence (20) permits another characteriza
tion of a planar coherent state on the unit disk. For each 
fixed z in D, the assignmentf-..f(z) defines a continuous lin
ear functional on L. By Riesz's theorem, there is a vector 
F*(z)inL such thatf(z) = (F*(z)J). For the given basisr, we 
have thatfn (z) = tPn (z), for allzinD, and therefore, F*(z) has 
the form given in (6) for all points in the disk. 

Let,u be an arbitrary positive, u-finite measure on D and 
let F(z) be a continuous function on D into L. Choose an 
orthonormal basis r * = {f~ JT J!, 00' J in L. With respect to 
r *, F (z) is a planar coherent state based on the measure,u if 
and only if there exists an orthonormal basis 
A = {Ao(Z),A I (Z),A2(Z),00. J for M such that for all z in D 

00 

1) I I An(Z) IZ = 1; (21) 
n=O 

and 
00 

2) F(z) = I An (z)f~· (22) 
n=O 

Necessity follows by direct verification. On the other hand, if 
F (z) is a planar coherent state, the set {An (z) 
= (F (z)J~):n = 0,1,2,00' J forms an orthonormal basis for M 

and the two properties, (21) and (22), follow immediately. 
If v is an arbitrary probability measure on [0,1), if the 

sequence c is given by (5), and if an orthonormal basis 
r = {fOJIJ2'00, J for L is given, the function (6a) is a planar 
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coherent state based on the measure (6b). On the other hand, 
if F (z) is an arbitrary planar coherent state based on a mea
sure df-l(z) = (};;:' = 0 V2~ I rn )dv(r)dq:;, with va probability 
measure, then there exists an orthonormal basis r in L and a 
sequence c such that F (z) = (exp zA 1) 10' Indeed, let 
r * = lit IT If,···j be an arbitrary orthonormal basis for 
L. There is a corresponding orthonormal basis 
A = IAo(z).AI(z), ... j for M such that for all z in D Eq. (22) 
holds. Let cP be the isometric isomorphism from L onto M 
defined by its values on this basis: 
cP if~) = An (z), n = 0,1,2, ... , and let Ube the unitary trans
formation that effects a change of basis from A to 1[/. The set 
{In = cP -I( U (CP if~))):n = 0,1,2, ... J is an orthonormal basis 
for L and relative to this basis F(z) = };;:'= 0 ¢n (z)/n' With 
the sequence c specified by (5), F(z) has the desired form. 
Thus the planar coherent states which are based on measures 
ofthe form (6a) are precisely those which may be put into the 
form (6a). 

Finally, we observe that the continuity ofbothf(z) and 

F(z) implies that f(z)F(z) is Bochner integrable. The over
completeness property of F (z) indicates that 

f = f D f(z)F(z) df-l(z). (23) 

This relation is just the inverse of/(z) = (F (z)/), which was 
obtained earlier. An immediate consequence of (23) is that 
the overlap functionK (z,w) is the kernel of the identity oper
ator on M. For each w in D, 

f(w) = f Df(z)K (z,w) df-l(z). 

5. AN APPLICATION TO SPIN SYSTEMS 

In this section we shall use planar coherent states to 
obtain a lower bound for the partition function of a system of 
generalized quantum "spins" of dimension S + 1. Since the 
generalization is based on probability measures, we shall call 
these spins probability spins, or p-spins. The state for a single 
p-spin is Cs + I, and we take IKn:n = 0,1,2, ... ,S J to be the 
usual Kronecker basis for CS + I • As in the previous sections 
of the paper, let dv(r)dq:; be a measure either on the unit disk 
D or on the entire plane C such that v is a probability mea
sure on [0,1) or [0,00), respectively, and let the sequence 
C = (en 1 be defined by (5) for n = 0,1,2, ... ,S - 1. We set 
both C -I and Cs to zero, and we also take Ac and A : to be 
the general spin operators. The planar coherent state (6) is 
now formed based on the measure df-l(z) = N s- 2 (r)dv(r)dq:;, 
where 

N s-2(lzI2) = lIexp(zA ;)KoIl2. 

In view of the planar coherent states, (12) and (13), it is clear 
that this p-spin model is natural to consider since it is just an 
explicit development of what was implicit in the discussion 
of those states. 

The system we shall consider is an anisotropic chain of 
p-spins, each of dimension S i + 1, and each associated with 
the measure df-li (z) = d,) (r)dq:;. Here and throughout this 
discussion, the superscriptj labels quantities belonging to 
the jth p-spin. There are M p-spins in the chain and the Ha
miltonian is taken to be 

M-I 
H= - I [A~ + (A~n [A~+I + (A~+ln. 

i=1 
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The Hamiltonian acts on the Hilbert space for the chain 
M 

LM = ® CSJ
+ I, 

i=1 

so that the partition function is 

Z = Tr exp( - PH), (24) 

where the trace is evaluated with respect to bases for L M • 

The trace in (24) may be replaced by an integration over 
the measure df-l* = df-lI(ZI ) ... df-lM (~) by the use of the fol
lowing identity. Let A be any operator on the finite-dimen
sional Hilbert space L, and let F (z) be a planar coherent state 
in L based on some measure df-l(z). Then for any orthonormal 
basis lin 1 in L: 

Tr A = 'LifnAfn) 
n 

= 'L (A tf)' (zifn )df-l(z) 
n 

= J + (F (z)/n )ifn,AF (z))df-l(z) 

= J T(A,z)df-l(z). 

M 

In terms of the products F M = ® F i(zi), the partition func
i=1 

tion may be written 

Z J (FMe-pHFM)df-l.' 

The lower bound for z is now obtained by an application of 
the Peierls-Bogoliubov inequality: 

z> J e-P(FM,HFMldf-l.' 

The inner product in the argument of the exponential may be 
recast by use of the first formula in (16): 

M 

(FM,HFM) = I T(A~ + (A~)\zi)T(A~+ 1 + (A~+ I)t;zi+ I) 
i=1 

m 

= 2'L [g(";)xi] [gi+ 1(";+ l)xi + I], 
i= I 

where 

g(t) = C~:(k + 1)(V2k+ 2)-lt 2k) C~0(V2k)-lt2k)-1 
Each g(r) is dominated by r 1/2 S (Sf + 1) so that 

z> J exp - Pi~1 [Si(Si + l)xi] [SJ+ I(Si+ 1)xJ'+ I] df-l •. 

(25) 

When all the measures df-l M are identical, the integral on the 
right-hand side of (25) is just the classical partition function 
for a particular system of M identical planar rotors with 
interactions indicated in the exponent of the integrand. 
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A general transformation matrix T (p,s;p,s) is constructed which transforms a Dirac spinor t/J( p,s) 
into another Dirac spinor t/J( p,s) with arbitrarily given momenta and polarization states by 
exploiting the so-called Stech operator as one of generators for those transformations. This 
transformation matrix is then used in a calculation to yield the spinorial matrix element 
M = if,( p,s)Ft/J( p,s) for any spin polarization state. The final expressions of these matrix elements 
show the explicit structure of spin dependence for the process described by these spinorial 
amplitUdes. The kinematical limiting cases such as very low energy or high energy of the various 
matrix elements can also be easily displayed. Our method is superior to the existing one in the 
following points. Since we have a well-defined transformation operator between two Dirac spinor 
states, we can evaluate the necessary phase factor of the matrix elements in an unambiguous way 
without introducing the coordinate system. This enables us to write down the Feynman 
amplitUdes of complicated processes in any spin basis very easily in terms of previously calculated 
matrix elements of if,r¢ which are building blocks of those Feynman amplitudes. In contrast, in 
the existing method, one has to figure out the suitable multiplication factor for each individual 
case. Furthermore, in the previous method one needs a coordinate system to evaluate phase 
factors, thus making the calculation more cumbersome. Also, the expression of the matrix 
element in the previous method is in the fractional form whose denominator may have a 
singularity structure (and not always an isolated one at that), while the spinorial amplitudes in our 
method take a much simpler form, free of coordinate systems in any spin basis. The usefulness of 
the results is illustrated on Compton scattering and on the elastic scattering of two identical 
massive leptons where the phase factor is important. It is also shown that the Stech operator as a 
polarization operator is simply related to the operator K = f3 (l:-L + 1 )/2, which is often used in 
bound state problems. 

PACS numbers: 02.30.Tb, l2.20.Ds, 11.10.Qr 

I. INTRODUCTION 
The explicit expressions of the spinorial matrix ele

ments if,( p,s)r¢( p,s) in terms of the momenta and the phys
ical, three-dimensional spin vectors I of the Dirac particles 
play an important role in particle reactions especially now 
that a multitude of polarization experiments are feasible and 
therefore the experimental determination of reaction ampli
tude could be achieved. Even though observables can be cal
culated by the traditional techniques using spin projection 
operators, the evaluation of the matrix elements do not lend 
themselves to this method of calculation. Also, it is known 
that measurements of all spin projections of particles in the 
scattering process along only one direction do not allow a 
complete determination of the amplitudes up to certain over
all phase factors. 2 The complete determination of the scat
tering amplitude requires the measurements of spin projec
tion along at least two nonparallel axes. It is therefore 
convenient to have the expression of matrix elements with 
respect to most general arbitrary polarization states. The 
aim of this paper is, therefore, to develop a simple and unam
biguous calculational scheme for providing such matrix ele
ments which form parts of a Feynman amplitude, and there
by of the S-matrix elements. In general, the unimodular 
phase factor of the Dirac spinor depends on the way one 
defines the spinor state. Therefore, the unimodular phase 
factor of a given Dirac spinor state is to a certain degree 

arbitrary so that we need a convention in order to fix the 
phase. The most commonly used one is Jacob-Wick helicity 
formalism, 3 and all other spin bases may be obtained from 
this by suitable transformations. 
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But if we can relate an arbitrary given Dirac spinor 
¢( p,s) to another given Dirac spinor ¢( p,s) in a consistent 
and well-defined way, we can calculate the spinorial ampli
tude unambiguously for any spin basis using the spin projec
tion operator. The general transformation operator 
T (p,s; p,s) which transforms a given Dirac spinor ¢( p,s) into 
any other spin or ¢( p,s) is obtained by combining several 
simpler operators. This transformation operator is then used 
to calculate the matrix elements in a straightforward man
ner. The construction of the operator is presented in Sec. II, 
while the matrix elements are given in Sec. III, where the 
important phase factor is also briefly discussed. The more 
detailed discussion about the phase factor is in Appendix C. 
Since we can figure out the relevant phase factor, it is a mat
ter of a simple algebra to write down any S-matrix element 
using tabulated spinorial amplitudes M = if( p,s)rt/J( p,s) for 
any spin states. There is another scheme4 to calculate spinor
ial matrix elements M. Since M = it( p,s)Fu( p,s) does not 
change if we multiply it by a somewhat simpler matrix ele
ment such as S = u( p,s)u( p,s) and divide it by the same fac
tor to get M = u( p,s)ru( p,s)u( p,s)u( p,s)/u( p,s)u( p,s), we 
can use the spin projection operator to calculate the numera-
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tor. But one has to specify the coordinate system to obtain 
the denominator.4 

Our method and final expressions are superior to those 
in Ref. 3 in the following ways. 

(i) In principle, we can calculate M = uFu, for any F 
from 1M 21 except for the unimodular phase factors. Since 
these phase factors are not determined this way, one has to 
use an explicit representation of Dirac spinors and F matri
ces in a specific coordinate system to obtain the phase fac
tors.4 But these phase factors may depend on the representa
tion of Dirac spinors and F matrices and also on the 
coordinate system employed. What Fearing and Silbar actu
ally did was to obtain the phase of any M = uFu relative to 
the simpler one such as F = 1 and to find M = uu in the 
helicity basis by employing an explicit coordinate system. In 
our method all the final results are representation-indepen
dent and free of a coordinate system. 

(ii) For any spin basis other than the helicity basis there 
does not seem to exist in the Fearing-Sibar method any un
ambiguous way to evaluate the phase factor even after intro
ducing a coordinate system. One may have to express the 
spinorial amplitudes in a general spin basis with respect to 
the standard such as the Jacob-Wick helicity basis to have 
the correct phase factors. This could be a complicated proce
dure. In contrast our results can be applicable to any spin 
basis with the knowledge of the necessary phase. 

(iii) Their final results are in a fractional form which 
could be rather inconvenient in algebraic manipulations. 
Furthermore, the denominator (which is the multiplication 
factor) may have singularities which are not necessarily iso
lated zeros5 so that one has to be careful in choosing a suit
able multiplication factor. 

(iv) They have to figure out the suitable mUltiplication 
factor for every individual situation and also its relevant 
phase factor. But in our algorithm we can use the calculated 
results of M = uFu to write down any S-matrix element 
straightforwardly in any spin basis, and it is easy to evaluate 
the necessary phase factor in a well-defined way. As an illus
tration of the usefulness of our results, the scattering ampli
tudes for Compton scattering and for Moller scattering are 
evaluated to the lowest order in QED in Sec. IV. As a by
product of the discussion, it is shown, in Appendix B, that 
the Stech operator6 is directly related to the so-called K oper
ator7 commonly used in bound state problems. 

II. TRANSFORMATION OPERATORS 

In this section we provide a general transformation op
erator T (p,'S; p,s) that transforms a Dirac spinor ¢( p,s) into 
another Dirac spinor ¢( p,'S) with arbitrarily given momenta 
and polarization states, i.e., ¢( p,'S) = T (p,s; p,s)¢( p,s). The 
result that we have obtained is, in the form of 2 X 2 block 
matrix, 

where 
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and 

TIl = - T22 = (1 + N) [1 + P'p ] 
(E + m)(E+ m) 

Sxs·pXp 
+ -

(E+ m)(E + m) 
"( 1- A A) O"p X P 

- 1 + s·s ----~-
- (~+m)(E+m) 

.[ 1 pop ] A A - 1 - - O"sXs 
(E + m)(E + m) -

" (p.sX[O"p + posX~O"op) 
-I - -

(~+m)(E+m) 

TI2 = - T21 = - (1 + s.~)( O"p + ~ ) 
E+m E+m 

"( posXs POSX~) -+1 ---+----
E+m E+m 

+ [ O"PX(SX~) _ O"pX(sX~) ]. (2.1) 
E+m E+m 

Here 'TJ is the phase factor of modulus 1 which will be 
discussed in Appendix C. O"'s are the 2 X 2 Pauli matrices in 
the vector form. We denote ¢(p,s) as a simultaneous eigen
spinor of two commuting operators8 P = Pp.1" = Ero- por 
and'll'os, whereS is a three-dimensional unit vector describing 
the spin state. 'II' is a vector operator and is given by 

'II' = 'II'(+I( ~ ) + [ _ '11'(-)] ( -~: m ) 

=(0"+ m(;7m) !), 
~ _ 0" __ ..:.P_O"-,P,--_ 
m m(E+m) 

(2.2) 

with 

'11'(+1 = (0"0 0) - 0" + 20"pp 
and 

(2.3) 

The 4X4 matrix '11'(+1 is known as the Stech operator, 
which is used as a polarization operator. Its heuristic deriva
tion is given in Appendix A and some of its properties are 
discussed in Appendix B. The unit vector s is the same as the 
one appearing in the covariant 4-vector Sp. = ((pos)lm, s 
+ (ppos)lm(E + m)). Specifically, we can see that the projec

tion operator for a positive energy state is 

u(p,s)u(p,s) = ( "~m )( 1 +2rs$) 

= ( "~m )( 1 + ;(+loS ) " (2.4) 

We will use ¢( I p 1ft,s) instead of ¢( p,s) whenever it is 
convenient to do so in the following discussion. The con
struction of T (p,'S; p,s) can be done as follows. First of all, we 
need a certain transformation operator R (~;S) which changes 
only the spin state of a Dirac spinor, that is, 
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This can be obtained by treating the operator 1T as a gener
ator of R (~;s); 

R (f,·s) = eiI1l2j""O = cos(e 12) + i1T.e sin(e 12), 

R (A A) R ( A A A A) 1 
s;~ = p,s; p,s = 17 ---;:;:==:;=;===::~ 

~2m2(1 +H) 

(
E(1 + s·~) - i(E - mlP·sX~u.p - imuosX~ 

X . A A (1 A A) 
-lpoSX~ + + N uop 

where 17 is an appropriate phase factor. Note that for a parti
cle with Ipi = 0, i.e., in the particle's rest frame, we have 

R (~;s)o = 17 -;:;:=::.==:::;::;::
~2(1 +N) 

(
1 + s·s - iu-sXs X - -

° - (1 + s.~~ + iu-s X~). 
(2.7) 

Then we have for the most general transformation oper-
ator 

T(p,s;p,s) =R (p,s;p,s)L (p)L -I(p) (2.8) 

or 

T(p,s;p,s) = L (p)R (s;s)oL -I(p), (2.8) 

where L (p) is a Lorentz transformation operator for a Dirac 
spinor, 

¢(p,s) = L (p)¢(s), 

( 
E + m )112( 1 L(p)= --

2m (uop)l(E + m) 
(U-p)l(~ + m)) 

(2.9) 

1110 CALCULATION OF SPINORIAL AMPLITUDES 

where 

cos e = s·~, e = (sX~)/lsXn 
After some algebra, we obtain 

iposX~ - (1 + H)u-p ) 
- E(1 + N) + i(E - mlP·sX~u-p + imu-sx~ , 

I 

(2.5) 

(2.6) 

and L -I( p) is the inverse matrix of L (p). The relation (2.9) 
will produce the result (2.1). This construction of the general 
transformation operator may seem trivial but it is not be
cause ofthe following observation: One might have been able 
to use 

R- (A A) 1 
~;s 0 = 17 -;;:;==;;:-

~2(1 +H) 

(
1 + s·s - iuosXs X - -

° 
(2.10) 

instead of (2.7) because both Ro and Ro give the same result 
for the positive energy Dirac spinor in its rest frame. But we 
have found that T(lplp,~;lplP,~)R (~;s) is not equal to 
R (~;s)T(lplP,s;lplP,s) ~hile T(lplP,~;lplp,~)R (~;s) is equal to 
R (~;s)T(lplP,~;lplP,~). That is, we-can define T(lplP,~;lplP,s) 
uniquely only if we use R (~;s). This is the main reason why we 
prefer R (~;s) to R (~;s). 

Consider the matrix element M = u( p,sjFu( p,s). Here F is any 4 X 4 matrix that can be represented as a linear combina
tion of 16 basis matrices [ I,Ys'YI" ,YsYI",uI"V J. Equipped with the transformation operator in the last section, we can rewriteM 
as follows: Since 

u( p,s) = u( p,sH YoTt( p,s; p,s)Yo], 

we have 

M = (u(p,s))aFa{3(u(p,s)){3 

= (u(p,s))s [YoTt(p,s;p,s)Yolsa F a{3(u(p,s)){3 

= Tr[ YoTt(p,s;p,s)yJ [u(p,s)u(p,s)l). 

Alternatively, if we use u( p,s) = T (p,s p,s)u( p,s), we have 

M = Tr[ [u(p,s)u(p,s)]FT(p,s;p,s)). 

Though it is algebraically tedious, we can show that both expressions (3.1) and (3.2) produce the same results. 

(3.1) 

(3.2) 

Since any Fmatrix can be expressed as a linear combination of [ l,Ys'YI",YsYI",ul"v)' or equivalently [ l,ys,Yo,'Y,YsYo,Ys 'Y, 
Yo'Y,YsYo'Y) , we only need to calculate matrix elements with respect to this basis. We have obtained the following results: 

cu(p,s)u(p,s) = ( 1 + H )112[1 _ pop ] + i pXe o(a + lb), 
2 (~+m)(E+ m) (~+m)(E+m) 

cu(p,s)Ysu(p,s) = (_P- - ~).(a + lb), 
E+m E+m 
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( 
1 + S'S )1I2[ p.p ] pXp CU(P,s)YoU(p,S) = --- 1 + - - i - "(0 + Ib), 

2 (.§ + m)(E + m) (.§ + m)(E + m) 

CU(p,s)yU(p,s)= --- -P-+--- +i ------ X(a+lb), ( 
1 + S,S ) 112( P ) (P P) A 

2 E+m .§+m E+m .§+m 

CU(p,s)YoYsU(p,s) = (-p-+ ~ )"(0 + Ib), 
E+m .§+m 

cu(p,s)YYsu(p,s) = [1 - poe ](0 + Ib) 
(E+ m)(E+ m) 

( 
(+S'S)I12 pXP pe+ep "(o+lb), 

+i ~ (E+m)(~+m) + (.§+m)(E+m) 

cu(p,s)Yoyu(p,S) = ( 1 + N )1I2( _P __ ~) + i( _P_ + ~ )X(O + Ib), 
2 E+m .§+m E+m .§+m 

cu(P,s)YsYoyu(p,s) = [1 + poe ](0 + Ib) 
(E+m)(E+m) 

.( (+N )112 PXP 
-I -2- (.§+m)(E+m) 

PP + PP (A b) - - "a+l. 
(.§ + m)(E + m) 

(3.3) 

Here 

_ I [ (E + m)(E + m) ] 112 
c ='T/ , 

4m2 

A+A AXA(l AA)1I2 S S S S - s,s 
0=---- b=---- ---- . 

Is + ~I ' Isx~1 2 
(3.4) 

I 
cu(p). )Ysu(p,).) = (A -1) _lp_l_ ( 1 - p.p )112, 

- E+m 2 

The above expressions show the explicit, characteristic 
spin structure for each spinorial amplitude which we can 
interpret as a vertex amplitude. Note that two vectors 0 and 
b are well defined except the case in the fixed quantization 
scheme. For the fixed quantization scheme we can obtain the 
suitable 0 and b using a limiting procedure: Let s = ae and 
s = ae. Then we choose 

cute). )You(p,).) = ( I + ~lp·e )1I2[ 1+ ,.1,1 ( ; ~: )], 

and 

A S + s 1 ( _)A 1 (- 1 \.; 
a = Is + il = 2 a + a e + 2 aa - k5 

sX~ ( 1 - s.~ )112 1 _ A 

b = Isx~1 -2- = 2 (a - a)f. (3.5) 

We can see that the set of three vectors ! e,),g l form 
basis vectors of a right-handed Cartesian coordinate system, 
i.e., ex) = g. All unit vectors!andg satisfying this property 
are acceptable, but a judicious choice of! and g will provide a 
simpler expression of matrix elements. The results (3.4) may 
be used in the very well defined manner for certain kinemati
cal limiting cases, such as at the very low energy or in the 
extremely high energy limit, since all the amplitUdes are ex
pressed as functions of Ipl/(E + m) and Ipl/(E + m). The 
above matrix elements are a little complicated due to the fact 
that they contain all spin information, but they take on a 
simple form if we specify the spin basis explicitly. For exam
ple, for the case Ipi = Ipi in the helicity basis where S = AP 
and ~ = l.e, we obtain the following expressions: c- I = 'T/AX 

(E + m)/2m, where the phase factor 'T/AX in this case is given 
by 

'T/AX = ~(A -1) + ~(l +,.1,1), 

cut e). )u( p,). ) = ( 1 + ~lp-R. ) 112 [ 1 _ ,.1,1 ( ; ~ : )], 
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cut p,). )yu( p,). ) = -P-- I I ( 2 )112 
- E+ m I +P-R. 

X [( I ~ ,.1,1 )t p + e)+ i( A ; 
1 P xe], 

cu(p). )YoYsu(p,).) = (A + 1) _lp_l_ ( 1+ p.p2 ) 112, 
- E+m-

cute). )YYsu(p,).) = [I + ,.1,1 ( ; ~: )] 

AP + lp + iAlpxp 
X - -

~2(I + AAP-R.) 

cu(p,). )YoYu(p,).) = -P-- I I ( 2 )112 
- E+ m I-p.p 

X [( I ~ ,.1,1 )t; - e) 

.(A-lp A] -I -- Xp 
2 - ' 

cute). )YsYoYu(p,).) = [I - ,.1,1 ( ; ~: )] 

X AP +le + iAlpxe 

~2(1 +AAp'e) 
(3.6) 

These expressions are exact results. Note that in this 
particular example with Ipi = Ipi some matrix elements van
ish identically when either 1 = A or 1 = - A. Specifically, 
there cannot be any helicity flip part in uyu with these kine-
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matics which occurs such in the elastic scattering. We can 
see explicitly that helicities are conserved in the high energy 
limit for the vector and the axial vector vertex cases while the 
helicity must change at the scalar, pseudoscalar, and tensor 
vertices of Dirac particles in the high energy asymptotic lim
it. One interesting observation could be made here. We ex
pect that in the very high energy limit two helicity states 
become decoupled from each other as in the case of massless 
particles. Hence it is suggestive to know that only the vector 
and the axial vector vertex are compatible with this expecta
tion. A scalar, or a pseudoscalar particle exchange between 
the Dirac particles in the high energy is unacceptable. We 
can easily find that for some cases such asr = Ys, YoY, y, and 
YoYs the matrix elements identically vanish for the helicity 
flip or the helicity conserving cases for any scattering angle. 
The same thing occurs in other quantization schemes, viz., 
u( p,s)u( p,s) vanishes identically in the transversity flip case. 
Hence the points where certain matrix elements such as uYsu 
in the helicity scheme or uu in the transversity scheme van
ish are not isolated zeros as is claimed in Ref. 3. 

IV. EXAMPLES: COMPTON SCATTERING AND 
e-e---+e-e-

A. Compton scattering 

For the illustration of the application of the matrix ele
ments obtained in the previous section, we consider Comp
ton scattering ofa lepton with momentum Pit by a photon of 
momentum kit and a polarization E It' We will specify the 
final state of the lepton by Pit and a photon by Kit' E It' By 
adding the contribution of the two lowest-order Feynman 
diagrams, we obtain the following Feynman amplitude: 

- p.K(2p·E*( - tiE"')] u( p,s). 
(4.1) 

I 

UsingtheidentitYYItYvYA =gltvYA +gvAYv +iEltvApYSYP, 
we have 

i 2P'KP'K F 
e2 

= u( p,s) [(2P'EP'K + P'KK'E)l* + (P'KK'E* - 2P'E*P'K)i 

- (p.K + P'K)E'E*t + iEltvApYsyP(P'KE*ItKvE" 

+P·K~KvE*A)]U(p,s). (4.2) 

In the laboratory frame where the lepton is at rest, 
P = (m,O), K = (@,~), Eit = (O,E), and E = (O,~). Also we have 
K'E = 0, K·E = 0 as well as P'E = 0, P'E = O. Then we get 

. 2m
2
ww F -( - -)[ * * 1 ? - L = up,s mWE''SE .y + m@f 'IeE'Y 

e~ 

+ m(w + W)E'~*(WYo - k.y)]u(p,s). 
(4.3) 

Note that terms proportional to EltvAp cancel each other in 
the laboratory frame. In the center of mass frame this cancel
lation does not occur and we have a term proportional to 
EXe*'YsY. Using the result in the previous section, we ob
tain 

. 2m2ww ( 2m )112 
1 ----- FL 

e2 E+m 

= [W(W + @)E"~* + ( ; ~! )E''S~*'1e 

_ (;:! )E'E*Ie';]( 1 ~ s'~ y/2 
.[-s+s . sXs (1_$.$)112] 

-I Is+il +/lsxil -2--

[ 
WE*XPE'1e + WEXPE*'1e (w + W)E"E* ] . - - + (IeXp) - - . 

E+m E+m 
- (4.4) 

We can see that the structure of the Feynman amplitude 
becomes simpler (i.e., it has fewer terms) for photon states of 
linear polarization along the direction orthogonal to the 
scattering plane. We can neglect the overall phase factor in 
the above expressions since the observables in this case are 
independent of this phase. 

In this example, we have to evaluate the relevant phase factor due to the existence of the exchange diagram. We only 
consider the lowest-order Feynman diagrams in QED. Then the Feynman amplitude can be immediately written down in the 
c.m. frame using the results in Sec. III: 

F =2i ( 2mlpi )2[1_ (;V)2]F 
c.m. e2 E + m II' 'E c.m. 

= (1 + p-e)u( p,Et)YIt u( p,a)u(q, /J )y!tu(q, f3) - (1 - p.£)u(q, /J )YIt u( p,a)u( p,Et)y!tu(q, f3), (4.5) 

wherep = (E,lplp), q = (E, - IplP),p = (E,lplE), and q = (E, - IplE). For the most general polarization states, we obtain 
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The above expression is rather complicated due to the fact it contains all information on the spin structure. One can specify the 
spin basis to obtain a simpler expression. 

In the helicity basis where a = ap, q = ab, 1J = /3 ( -p), and ~ = /J ( - e), F~~. is given in the following form: 

F~~. ==~! ( ;~~ r [1 - (p~f]F~~. = (1 + P~){ ( 1 + ~ajJ~ )1I2[ 1 + aa( ! ~: )] 
-( 1 + ~/JP~ ) 1/2 [ 1 + /3/J ( ; ~ : )] + ( ; ~ :)( 1: P~ ) [( 1 ~ aa )r jJ + e) +;( a ~ a )r jJ xeJ] 

.[ ( 1 ~/3/J}p + e) _;( /3; /J ).o:><l!]) _ 7Jex(l _ p'e){ ( 1 - ~/Jp·e y/2[ 1 + a/J( ; ~: )] 

-( 1 - ~ajJ·e ) 112 [1 + /3a( ; ~: ) J + ( ; ~ :)( I! P~ ) [ ( 1 ~ a/J } p - i!) - i( a ; /J ).0 Xi! ] 

.[ ( 1 ~/3a}p _ i!) + i( /3; a ).0 xi! ]}. (4.7) 

Here the relative phase factor 7Jex is due to the fact that u( p,a) and u(q,iJ) are obtained from u( p,a) and u(q,/3) along different 
paths in the exchange diagram than in the direct diagram. We obtain 7Jex = - 1 for the cases (a, /3;a, /J) = ( + , + ; + , + ), 
(+ +; - -), (- -; + +), and ( - , - ; - , - ) and 7Jex = + 1 for all the other cases. For the specific helicity configura
tion we have obtained the following results: 

2i (2mlpj)2[1 _ (Pp)2]F~H~ (a,/3;a,/J) F~H~.(a,/3;a,/J), 
e -' 

F~H~. ( + , + ; + , + ) = 161pl2 + 4m2(1 + p'i!)2, 
F~~~.( +, +; -, _) = 4m2 [1- (p~)2], 

F~H~.( +, _; +, _) = 4(1 +p~)(lpI2 +E2p~), 
F~H~( +, _; _, +) = _ 4(1 _ p~)(lpI2 - E 2p'e), 
F~n,,;.{ +, -; +, +) = - 4Emp-e/ftXi!/. 

(4.8) 

Note that F~H~. (+ +; - -) is isotropic and F~Hnl. (+ -; + +) vanishes at 90° c.m. angle scattering as it should be in 
this identical particle scattering. 
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APPENDIX A: THE STECH OPERATOR, 1T( +) 

Consider the Foldy-Wouthuysen transformation of a 
free particle for the following operators: l: A = l: = (~ ~), 

l: B = {3 l: = (~ ~.,.). In the standard representation of Dirac 
y matrices, we have the following form of the Foldy-W outh
uysen transformation: 

and 

_(E+m)1I2( 1 UFW -

2m _~ 

E+m 

With this we have 

~A = UFwl: A U F¥J 

(

m + pO""p 
= EO' E(E+m) 

.O'XP 
/--

m 

_i_O'~P ) 

m 0' + _-,P,--O""-=-P_ 
E E(E+m) 

; ) 
pO"P 

- 0' + --=---=---
E(E+m) 

Now we obtain 11'(+) as follows: 

11'(+) = (l:A'P)P + PX(l:B XP) = (0'0 0 ) 
- 0' + 20""pp . 

We construct 11'( +) to have a form for the polarization opera
tor along the momentum direction which is different from 
that for the polarization operator along the direction orthog
onal to the momentum vector. We want to associate 11'(+) 

with l:A along the direction of the momentum and with l:B 
along the direction orthogonal to the momentum. 

APPENDIX B: SOME PROPERTIES OF 1T(+) 

The Stech operator 11'( +) commutes with both 
P = Eyo - P'y and the free Dirac particle Hamiltonian 
Ho = up + (3m while neither l: nor{3 l: commutes with both 
of them. Since 11'( +) commutes with p, we can construct the 
Dirac spinors which are simultaneous eigenstates of 11'(+)'5 

and y" Pf" That is, we have a positive energy Dirac spinor 
u( p,s) that satisfies both equations pur p,s) = mu( p,s) and 
(l1'(+)'S)u(p,s) = u(p,s). Theu(p,s) is the one with momentum 
pf' = (E,p) and covariant spin vector 

Sf' = ( P'5 ,5 + P5'P ). 
m m(E+m) 

Because 11'(+) also commutes with the Lorentz transforma
tion matrix (2.10), the unit vector 5 is Lorentz invariant. 
Thus one may say that the polarization is the same in any 
Lorentz frame if we define the polarization vector by the 
operator 11'(+)'5. There are two situations that show 11'(+) be-
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ing a useful polarization operator. The first one is the obser
vation of the following relation: (1I'(+).x)[U(lplz,z) 
± U(lplz, - z)] = ± [U(lplz,z) ± U(lplz, - z)]. That is, we 

can interpret the state [U(lplz,z) ± U(lplz, - z)] to be pro
portional to [U(lplz, ± x)]. 

This is similar to the nonrelativistic spin description 
where we can obtain the spin state polarized along the x 
direction by superposing two oppositely polarized spin states 
along the z direction. 

The second situation is somewhat nontrivial because it 
comes from a system bound by a central potential such as the 
hydrogen atom. In the case of a Coulomb potential we have 
the Hamiltonian He = u·p +{3m + (3V(r) which commutes 
with the total angular momentum operator 
J = L + S = rXp + 1/2l:. We understand that for free 
Dirac particles the linear momentum p is a constant of the 
motion and its direction vector p can serve as a good refer
ence direction for the polarization vector. In the bound state 
we have J as a conserved vector while p is not. Then we could 
use the direction of J as a reference direction for the descrip
tion of the spin state of the bound Dirac particle. Let us 
consider an operator 

We can recognize the first term in the above expression as 
the operator K = {3 (l:' L + I), which is used to solve the 
problem of the hydrogen atom. In the usual discussion of the 
hydrogen atom, the introduction of the K operator is rather 
mathematical without having any clear physical interpreta
tion. But we can see that K is related to the polarization 
operator for the bound system if we understand 11'( +) as a 
polarization operator. 

APPENDIX C: THE PHASE FACTOR 17 

The phase factor 17 which appears in the expression of 
T (P,'S; p,s) and in the spinorial amplitude is needed because 
the phase of the spinor ¢( P,s) depends upon the path along 
which we construct T (P,'S; p,s). In most cases this phase fac
tor can be neglected since we need only one kind of path to 
reach ¢( p,'S) from ¢( p,s) and thus the observables are inde
pendent of17. But when we deal with the scattering ofidenti
cal particles such as e-e--+e-e-, we have to compare two 
different paths due to the presence of the exchange diagram. 
Let M = if;(p,a)r1¢(p,a)if;(q,/J)r2¢(q,/3) and 
if = if;(q,/3)rlrf;(p,a)if;(p,a)r2¢(q,/3). We can write down 
matrix elements M and if very easily using already evaluat
ed basic spinorial amplitUdes except the relevant phase fac
tors. Since only the relative phase between M and if appears 
in interference phenomena, we just need to calculate this 
relative phase factor. This relative phase arises because we 
compare ¢(p,a) states transformed from ¢(p,a) and ¢(p,a) 
states coming from ¢(q,/3 ). The situation is the same between 
¢(q,iJ) and ¢(p,a) and ¢(q,/3). Note that we do not need to 
compare the initially given states ¢( p,a) and ¢(q,/3). Since 
T (P,'S; p,s) transforms a Dirac spinor tPf.. p,s) into the state in 
its rest frame as an intermediate step, we can evaluate the 
relevant phase simply in the following way. Draw a sphere of 
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unit radius and specify all four spin states Ct, p, Ct, and pas 
points on its surface. Note that our transformation operator 
of spin states can be represented as an arc of the great circle 
of this sphere connecting two spin states. After specifying all 
the paths representing the transformation, we find the path 
difference between M and if which form a closed circuit 
when neglecting the path direction. Using the fact that each 
spin state is an eigenstate of the polarization operator (J'"s, we 
can evaluate the relative phase factor. 

The same idea can be applied to obtain relative phases 
among different spin configurations for only M. In the heli
city case, the closed path just becomes the whole great circle 
and the relative phase factor is - 1. Another rather nontri
vial example of the phase factor is T/ =!(l + p.p)I/2 
+ !i(l - p.p)1/2 for the case when Ct = p, & = p~ 
P = ( - pXP)l[jJxpl, and/1 = (pxp)llpxpl· 

Note that we do not need to introduce the coordinate 
system for the evaluation of the phase factors. 
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'We are using the three-dimensional polarization vector s, which is shown 
to be equivalent to the more conventional covariant vector Sp. For the 

helicity description we have S = AP, where A = ± 1. Note that the values 
of A are twice as big as the ordinary value of the helicity of a spino! particle. 
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M. Borghini et al., Phys. Rev. D 17, 24 (1978). 

3M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959). 
4H. W. Fearing and R. R. Silbar, Phys. Rev. D 6, 471 (1972). The results of 
spinorial amplitudes in this paper are given in the form of a fraction whose 
denominator has a complicated structure with possible zeros, and there 
are also phase ambiguities. 

su(iplp,J.. )rsu(iplp,J..) in the helicity scheme and u(lplp, - s)u(lplp,s) in the 
transversity scheme vanish identically for all angles.-

6B. Stech, Z. Phys. 144, 214 (1956); D. M. Fradkin and R. H. Good, Jr., 
Rev. Mod. Phys. 33, 343 (1961). 

7p. A. M. Dirac, The Principle o/Quantum Mechanics (Oxford V.P., Ox
ford, 1958), 4th ed.; J. J. Sakurai, Advanced Quantum Mechanics (Ad
dison-Wesley, Reading, MA, 1967). 

"We are using the notation in J. D. Bjorken and S. D. Drell's Relativistic 
Quantum Mechanics (McGraw-Hill, New York, 1964). Specifically our 
metric is (1, - 1, - 1, - 1) and our r matrices are in the standard repre
sentation. But the final results of spinorial amplitudes are, of course, repre
sentation-independent, as they should be. 
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The vector space of real functions, defined on the set of all mappings of a finite set P into another 
finite set L, splits into a sum of orthogonal subspaces, one for each subset of P. The orthogonal 
projections onto these subspaces merely involve averaging operations. Certain linear functional 
identities are equivalents of k-representability, i.e., oflocation in the span of those subspaces that 
belong to subsets of cardinality k. Potential applications refer to complex systems where these 
results could be used to analyze empirically how their properties depend on properties of their 
components as well as on the interactions between them. Roughly this amounts to estimating the 
internal structure of a "black box" from measured properties. 

PACS numbers: 02.40. + m, 02.30.Bi 

INTRODUCTION 

This work will be concerned with the (vector space) 
structure of the set Kil of real functions, defined on the set 
{} = L P of all mappings P--+L between two finite sets of car
dinality p and I, respectively. We are going to interpret 
{} = L P as the state space of a composite system and Kil as 
the space of its properties as follows: consider a composite 
system, built up fromp subsystems labeled 1,2, ... ,p each with 
a finite state space I L I,L2, ... ,Lp. Let this system be such that 
each of its states is completely characterized by specifying 
the states of all the subsystems. Then its state space is the 
Cartesian product LI XL 2 X ... XLp ofthe state spaces of its 
components. Let us further assume that for any state of a 
subsystem there is an analogous state of each other subsys
tem. Thus all the state spaces Li can be mutually identified, 
and the state space of the composite system takes the parti
cular form of a Cartesian product L X LX'" X L of p copies 
of the same state space L, common to all the subsystems 
1,2, ... ,p. This object, however, is readily identified with the 
setL P of mappings from thesetofsubsystemsP = 11,2, ... ,p 1 
into the set L. 

Remark: It is only for the sake of simplicity that we 
restrict ourselves to Cartesian powers of the same set L. The 
subsequent results are immediately generalized to 
L IXL 2 X···XLp insteadofL XL X···XL~LP. 

With L P taking the part of the state space of a compos
ite system, real functions! L P --+K are readily interpreted as 
(real number valued) properties of the system in the sense 
that for rpEL P the number f(rp ) is the value of the property f 
for the system in its state rp. We may, e.g., consider f to 
represent a measuring apparatus andf(rp ) to be the result of 
the corresponding measurement performed on the system in 
its state rp. 

Our main result will be an orthogonal decomposition, 

f= I I Q , 
QC;;;P 

of any property finto a sum of components/Q' one for each 
subset 0~ Q~P. With regard to the interpretation sketched 
above we will refer to the subsets of P as clusters, i.e., aggre
gates of subsystems. Thus by virtue of the foregoing decom
position, a property of the compound system is split up into a 
sum of contributions due to its clusters of subsystems. Re-

written in the form 
I,p I,p 

f = f0 + If: + If:j + I lijk + ... , 
i <j i <j< k 

the cluster decomposition may be considered as an expan
sion into a sum of individual contributions]; of the subsys
tems, followed by corrections];j'];jk , ... due to interactions of 
increasing complexity: interactions between pairs of subsys
tems, triples, etc. 

For a preliminary impression, let us consider the case of 
p = 3, i.e., a real valued functionfofthree variables that run 
through the same finite set L. Its cluster expansion reads as 
follows: 

fIx, y, z) = 10 +11 (x) + 12( y) + 13(Z) 

+ Idx, y) + 113(X, z) + 123( y, z) 

+ 1123 (x, y, z) , 

where the cluster functions are given by 

10 = (f(x,y, z)x,y,Z , 

ft(x) = (f(x,y, z)y,Z -10 , 

Idx,Y) = (f(x,y, z)z - II (x) - 12(y) - 10 , 

with analogous expressions forf2,/3' and for/13,/23' respec
tively. Here the brackets denote mean values, and the sub
scripts indicate the variables over which to average. 

Finally, to provide an idea of what linear identities and 
k-representability are about, let us call the previous function 
of three variables I-representable if there are real valued 
functions a,b,c of one variable such that 

fIx, y, z) = a(x) + b (y) + c(z) . 

Thenfis I-representable if and only if 

fIx, y, z) = - 2f(v,v,v) + f(x,v,v) 

+ f(v, y, v) + f(v,v,z) 

holds as an identity in x, y,zEL, while vEL can be fixed arbi
trarily. 

The motivation of studying these objects originates in 
the theory of chirality functions by E. Ruch and A. Schon
hofer,2 which is concerned with the pseudoscalar properties 
of chemical compounds that derive from an achiral parent 
compound by substitution. Here sums of contributions from 
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minimal chiral molecular fragments have been proposed as 
an approximation, and an associated linear identity was used 
as a preliminary test of such an approximation for the optical 
rotatory power of certain methane derivatives.3 

CLUSTER DECOMPOSITION 

Let Land P denote two finite sets of cardinality I and p, 
respectively. Furthermore, let n = L P and X = Rn denote 
the sets of mappings from Pinto L and of real functions on n. 
Elements of n will be denoted be small Greek letters like 
/L, p, ... , those of Xby small Latin lettersf ,g, ... . With addition 
of functions and their multiplication by real numbers de
fined pointwise in the usual fashion, X becomes a vector 
space over R of dimension In I = IP. Moreover we may en
dow X with the customary scalar product, 

(f,g): = If(/L)g(/L) , 
pen 

turning it into a Euclidean space. We begin by associating 
with each subset Qr;;;;,p a subset XQ r;;;;,X defined as follows: 

XQ: = !fEXI/LIQ =plQ =>f(/L) 

=f(p) for all/L,pEfl J ' 

where the SUbscript ·1 Q denotes the restriction of a mapping 
from its domain P to Qr;;;;,P. Evidently, all the XQ are linear 
subspaces of X. In particular, X p = X, and X0 is the sub
space of constant functions. The following properties are 
equally obvious: 

Rr;;;;,Q=>XR r;;;;,XQ , 

and, as a stronger version, 

XQnXR =XQ<R . 

In the sense of the preceding interpretation X Q is the 
subspace of all those properties of the compound system 
which only depend on the state of the cluster Q, i.e., which 
are independent of the state of the complementary cluster 
P '\ Q. How can dependency on the state of a given cluster be 
removed? By averaging over its states! Accordingly, as can
didates for the orthogonal projectors onto the subspaces X Q' 

we define mappings &' Q from X into XQ by 

&' Q:f~fQ' 
where 

1 
fQ(/L): = IP-q k f(p)· 

plQ= plQ 

Here I, p, and q denote the cardinalities of L,P, and Q. Evi
dently any such &' Q is a linear map onto X Q' Moreover easy 
calculations show that &' Q is symmetric, and that the fol
lowing relation holds: 

&' Q&' R = &' Q<R for all Q,Rr;;;;,P. 

In particular, this implies that these maps are idempotent. 
Collecting the results we have proved that &' Q is the orthog
onal projector onto XQ for all Qr;;;;,P. 

In view of our intention-namely to attribute to any 
cluster a specific contribution to a property-the orthogonal 
projectionsfQ are not yet what we are looking for. A sub
space X Q r;;;;,X contains all the subspaces X R , R C Q in tum. 
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Thus let ~Q be their sum (span) 

~Q:= I X R , 
ReQ 

and let X Q denote the orthogonal complement of ~ Q in X Q' 
i.e., XQ is defined by 

XQ =XQ Ell~Q 
being a direct sum of orthogonal subspaces. Accordingly, 
any projectionfQ = &' Qf splits into a sum of two compo
nentsJQEXQ,J.I~Q' wheref.I is that part_ of/Q that can be 
attributed to smaller clusters R C Q, whilefQ may be consid
ered as a candidate for the specific contribution of Q. The 
subsequent results confirm that this is the right guess. Expli
citly X Q is given by 

X Q = ! fEX Q I &' R f = 0 for all R C Q J . 

From this characterization it is an easy conclusion that all 
these spaces are mutually orthogonal 

XQl Xs for Q =IS. 

With arbitrary elements qEXQ' sEXs it follows from 

_ _ _ _ {(q , &' Q &' ss) = (q , &' Q>Ss) 
(q , s) = (&' Qq , .9 ss) = (aJ aJ - -) _ (aJ - _)' usuQq,s - uQ>Sq,s 

that this scalar product vanishes for Q =IS, since .9 Q>SS van
ishes unless Q~S, and .9 Q>Sq vanishes unless Qr;;;;,S. The 
same type of argument also shows that 

XQl Xs for Q<!S. 

This information is enough to prove our next assertion: For 
any Qr;;;;,P the spaceXQ is the direct sum of its subspacesXR' 
Rr;;;;,Q. 

.. 
XQ = I XR • 

Rr;;;Q 
The proof starts from the orthogonal decomposition 

XQ =XQ Ell~Q' 
where ~ Q is the span of all the subspaces X R , R C Q. First we 
notice that ~Q is already spanned by the subspaces X R for 
subsets R C Q of cardinality I Q I - 1, because any subspace 
that belongs to a smaller subset of Q is contained in at least 
one ofthem. Thus we have 

XQ = XQ Ell I XR · 
ReQ 

IQI-IRI= ! 

The same argument applies to the subs paces X R 

X R = XR Ell I XS' 
seR 

IQI-ISI=2 

Inserting these decompositions into the previous one we ar
rive at 

.. 
XQ = I XR Ell I Xs . 

Rr;;;Q seQ 
IQI-IRI<! IQI-ISI=2 

The direct sums are due to the facts that all the subspaces X R 

are mutually orthogonal and that they are orthogonal to any 
X s ' S of smaller cardinality as well. This line of reasoning 
may be repeated until finally the remainder reduces to X0 , 

thus finishing the proof. 
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Next we should like to determine the orthogonal pro
jectors 13) Q onto the subspaces XQ • An immediate conse
quence of the previous result is 

9 Q =II3)R' 
R<;;;;Q 

These equations can be inverted, using the Mobius function4 

of the lattice of subsets of P 

13)Q= I (_1)IQI~IRI9R' 
R<;;;;Q 

Direct calculation confirms that these maps are indeed the 
orthogonal projectors onto the subspaces in question. For 
example they satisfy 

- - {13) Q for Q = R 
9 Q 9 R = 0 for Q #-R . 

Our main interest concerns the particular case of 
Q = P, where X P = X, and 9 P = 1 the identity operator of 
X. Summing up we have proved the following: 

Theorem: The Euclidean space X = Rn of real func
tions, defined on the set [] = L P of all mappings between 
two finite sets P and L, splits into a sum of orthogonal sub
spaces X Q' one for each subset Q c;;, P. The family of projec
tion maps 13) Q constitutes the corresponding resolution of 
the identity map on X 

'" X = I XQ , 1 = I 13) Q • 
Q<;;;;P Qc;;;,p 

Thus the cluster decomposition of a functionfEX is giv
en by 

with 

IQ : = I (- l)q ~ r fR , 
R<;;;;Q 

and 

(/,p,q,r denote the cardinalities of L, P,Q,R.) For computa
tional purposes, i.e., when the functionfis given by its graph 
such as, e.g., a table of measured values is, another expres
sion for its cluster components will be preferred: 

IQ (/1) = (-})q ± (1-/)' I f(p)· 
I r=O pEn 

IQnDI1", pll = r 

with 

denoting the subset of P where the maps /1 and p coincide. 
Finally we give another characterization of the projection 
maps 9 Q and 13) Q from which it is obvious how to genera
lize this theory for L 1 X L2 X ... XL p taking the place of L p. 

For this purpose we identify a map /1 from P = ! 1 ,2, ... ,p J 

into L with the row vector (/1I,/12, ... ,/1p) of its images 
J.li: = J.l(i). Then 
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[s:f i f] (/11,J.l2'''·' J.lp ): 

1 
= -- If( J.lI,· .. ,J.li ~ 1 ,Z, J.li + 1'"'' J.lp ) 

IL I ZEL 

defines an averaging operator s:f i with respect to iEP. With 
these objects, the projectors 9 Q and 13) Q are given by 

13) Q = II (l - s:fi ) II s:fj . 
iEQ jEP,Q 

k·REPRESENTABILITY AND LINEAR IDENTITIES 

Let us call a property fEX to be k-representable if it is a 
sum of contributions from clusters of size k. Formally, for 
O<,k<,p,p = IP I 

f is k-representable: q fEX Ik I , 

where 

Xlkl:= I X
Q

• 

Q<;;;;P 
IQI = k 

Equivalently,JEX is k-representable ifit is a sum of contribu
tions from clusters of maximum size k, since X Ik I is also 
given by 

Xlk)= I X
Q

• 

Qc;;;,p 

IQI<k 

Replacing theXQ by XQ , the sum is turned into a direct one 

'" Xlkl= I XQ • 

Q<;;;;P 

IQI"k 

This follows by stepwise reduction to a direct sum according 
to 

'" Xlkl = I XQ GlXlk~ II. 
Q<;;;;P 

IQI = k 

This decomposition of X Ik I implies that 

9 Ik ): = I 13)Q 
Qc;;;,p 

IQI"k 

is the orthogonal projector ontoX1k l, thus providing us with 
a test of k-representability 

f is k-representableq f= 9 1k lJ· 
These are linear identities of the form 

I c( /1,a)f(a) = 0 for all /1Efl , 
aEn 

where the coefficients are nonzero for almost all the pairs 
J.l,aEfl as a rule. There are, however, much "shorter" identi
ties such as the one given in the Introduction. A general 
method for constructing identities like that as equivalents of 
k-representability starts from the trivial observation that a 
vector is located in a subspace if and only if it coincides with 
its projection onto that subspace, where the projection map 
is arbitrary. Thus we look for other projectors onto the sub
spaces X Ik I to replace the orthogonal ones. 
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Fixing an arbitrary map pEfl, we define a family of 
maps :Yt Q:X -x Q by 

[:Yt Qf](Il): =f(IlIQ +plp,Q)' 

where + is abused to denote the composition of maps with 
disjoint domain, i.e., 

. {Il(i) for iEQ 
[IlIQ + plp,Q ](1): = p(i) for iEP \.Q . 

Evidently, :Yt Q is a linear idempotent map onto XQ' i.e., a 
projector onto X Q' Moreover these maps multiply as follows: 

:Yt Q:Yt s = :Yt g-,s for all Q,S~P, 

thus exhibiting close analogy with the orthogonal projectors 
9 Q (except for the loss of orthogonality). Therefore we pro
ceed along the same lines by defining a family of subspaces 
XQ of X 

XQ:= IfEXQI:Ytsf=O for all seQ). 

Consider a set of vectors qEXQ' one for each subset Q~P, 
together with a linear relation with coefficients cQER 

I cQq=o. 
Q<;;'P 

For a subset S~P, application of its projection :Yt s leads to 

= I cQ:Yt g-,sq = I cd· 
Q<;;'P Q<;;'S 

Within the collection of subsets Q~Pwith cQ #0, let S 
be a minimal element. Then the preceding line gives Cs = 0, 
thus proving by contradiction that there are no linear depen
dencies among vectors of different subspaces X Q' Thus any 
sum of subspaces X Q is a direct one. Moreover any sum of a 
subspace Xs and of subspaces XQ such that Q~S is a direct 
one. This again suffices to prove that XQ is the direct sum of 
its subspaces XS , S~ Q. 

.. 
XQ = I Xs· 

S<;;'Q 

In contrast with the former situation where we could 
make use of a well-known fact about orthogonal projections 
(namely that the projection onto a sum of orthogonal sub
spaces is the sum of their projections) and afterwards apply 
Mobius inversion, this time one has to show that the opera
tors 

~Q:= I (-I)IQI-IS I:Yts 
S(;;Q 

are indeed projection maps onto the subspaces X Q' and that 
they add up according to 

:YtQ=I~s. 
S<;;'Q 

This is readily verified by direct calculation. The analogy of 
results also extends to 
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Xlk)- ~ X

- k Q' 
Q<;;;P 

IQI<k 
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and to 

:Yt1k ):= I ~Q 
Q<;;'P 

IQI<k 

being a projection map onto X (k). In consequence 

f is k-representable q f = :Yt(k 'f. 
After some arithmetic one obtains the following expression5 

for :Yt(k), O<k<p - 1: 

:Yt 1k ) = ± (_I)k-q(P-q-I) I :YtQ' 
q~O k - q Q<;;'P 

IQI ~q 

which provides a family of linear identities, equivalent to k
representability. 

Theorem: 

f is k-representable (O<k<p - 1) 

~ 

f(ll) = ± (- W- q (p -k ~ - 1) I f(IlIQ +plp,Q) 
q~O q Q<;;'P 

IQI ~q 

for all IlEfl . 

The map pEfl is arbitrary. The introductory example refers 
to a constant map p = (v,v,v). With the same p, a function of 
three variables is 2-representable, i.e., there exist functions 
a' ,b ' ,c' of two variables such that 

f(x,y, z) = a'(x,y) + b '(x,z) + c'(y,z) 

if and only if 

fIx, y, z) = f(v,v,v) - f(x,v,v) - f(v, y, v) - f(v,v,z) 

+ fIx, y,v) + f(x,v,z) + f(v, y,z) . 

These identities can be used for a preliminary test of how 
accurate an approximation to a functionfits k-representable 
partf(k): = 9(k'f is, namely by sample checking of how 
badly the associated identity is broken. 

SUMMARY 

The Euclidean space X = Ril of real functions, defined 
on the set {J = L P of all mappings from a finite set Pinto 
another finite set L, splits into a direct sum of subspaces X Q' 

one for each subset Q~P. The associated orthogonal projec
tions are given in closed form, involving merely averaging 
operations. Certain linear identities are equivalents of k-re
presentability, i.e., oflocation in the span of those subspaces 
that belong to subsets Q~P of cardinality k. 

A typical application that we have in mind would be an 
analysis of large sets of experimental data of a molecular 
property, yielding empirical rules on how its numerical val
ues depend on molecular structure. The cluster decomposi
tion then provides an empirical definition of the contribu
tions due to various molecular fragments, and linear 
identities may be used for estimating the degree of complex
ity of those fragments that have to be accounted for when 
using a truncated cluster expansion as an approximation. 
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'Finite space and finite set are used synonymously. 
2E. Ruch and A. SchOnhofer, Theor. Chim. Acta 19, 225 (1970). 
3W. J. Richter, B. Richter, and E. Ruch, Angew, Chern. Int. Ed. Engl. 12, 
30 (1973). 
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'G._C. Rota, Z. Wahrscheinlichkeitstheorie 2,340 (1964) as cited in C. 
Berge, Principles of Combinatorics (Academic, New York 1971). 

5Where (g): = I. 
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Generalized superspaces are defined taking as a starting point the concept of Grassmann-Banach 
algebra. The category of B-spaces with L B -maps as morphisms is introduced. This allows one to 
discuss linear and tensor algebra on generalized superspaces. 

PACS numbers: 02.40. + m, 1l.30.Pb 

1. INTRODUCTION 

In the last years there has been a lot of interest in sym
metry transformations mixing commuting and anticommut
ing objects. The two main examples of this kind oftransfor
mation are supersymmetries and Becchi-Rouet-Stora 
(BRS) transformations. The later are relevant in quantized 
nonabelian gauge theories, while supersymmetric transfor
mations provide the possibility of enclosing particles of dif
ferent spin in the same multiplet. The common feature from 
the mathematical point of view is that both of them are gen
erated by a graded Lie algebra spanned by commuting and 
anticommuting generators. Accordingly, finite transforma
tions should have parameters belonging to a Grassmann al
gebra. 

The role of Grassmann algebras was strengthened by 
the supers pace approach to supersymmetries in terms of su
perfields, introduced by Salam and Strathdee. 1 The concept 
of superspace, heuristically introduced in Ref. 1 as a collec
tion of eight coordinates belonging to a Grassmann algebra, 
has been formalized and generalized by several authors. 

There are essentially two approaches to a formalized 
concept of superseaces and supermanifolds. The first is due 
to Berezin and Leites2 and Kostant.3 The method followed 
by them consists in replacing the algebra COO (X) of a real 
Coo -manifold X by a graded algebra A (X)::::::: Coo (X) ® A q, 

where A q is the exterior algebra expanded by q generators.4 

All the elements needed to do differential geometry as vector 
fields, differential operators, etc., are extended from Coo (X) 
to A (X) following an algebraic path. Therefore, supermani
folds are just ordinary real manifolds with a ring off unctions 
enriched with anticommuting elements. So, such things as 
"points" of superspace with commuting and anticommuting 
coordinates do not exist in that approach. 

The second approach to superspaces and supermani
folds has been introduced by Rogers.s Rogers's superspaces 
are products of even and odd parts of Grassmann algebras. 
Analysis on them is a generalization of real analysis, for 
which linear approximation of functions (differential) is 
done with respect to the Grassmann product. Accordingly 
Goo -supermanifolds are topological space locally G-diffeo
morphic to superspaces. This point of view provides a very 

natural way for generalizing the results of ordinary differen
tial geometry to differential "supergeometry." It has also the 
advantage that supermanifolds admit nontrivial topologies 
in the anticommuting sector.6 On the other hand, there is 
room for infinite-dimensional Grassmann algebra that 
avoids undesirable restrictions (vanishing for a sufficiently 
high number offermionic fields) for Green's functions of 
fields valued in those algebras, as stressed in Ref. 5. Finally 
Berezin-LeItes-Kostant manifolds can be realized as Goo -
supermanifolds. 

We shall take Rogers' approach as a starting point for 
our generalized supermanifolds. However, we shall improve 
some unsatisfactory points of that work. In particular, the 
extension theorem is valid only for a particular class of open 
sets, as was pointed out by Jadczyk and Pilch.7 On the other 
hand, the existence of a body manifold is not guaranteed for 
every GOO -supermanifold. 

In this series of papers we shall generalize the concepts 
of superspace and supermanifold as follows: Instead of con
sidering a superspace as a direct product of m even and n odd 
copies of a given Grassmann algebra, we shall allow different 
coordinates to belong to different Grassmann algebras. In 
this way we arrive at superspaces and supermanifolds with 
inhomogeneous coordinates which include the usual ones as 
particular cases. Also the class of B-spaces, wider than that 
of supers paces, is introduced to deal with tensor products of 
superspaces. Although this generalization could be well jus
tified from the mathematical point of view we can further 
argue that it offers a much broader field of application in 
physics. In fact, the generalized superspaces have proved 
useful in the study of the geometrical structure of quantized 
gauge (BRS invariant) theories.6 We hope that the general
ized supermanifolds will be useful in supersymmetric theor
ies. 

Because of the length of this work, we shall divide it into 
three papers. We shall refer to them from now on as I, II, and 
III, respectively. In Paper I we study generalized super
spaces, B-spaces, and their linear algebra using as a basic 
building block a Grassmann-Banach algebra. Paper II is 
devoted to the analysis on generalized superspaces with em
phasis on the concept of G-differentiability and in the expan-
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sion of GOO -functions in terms of COO -functions (superfield 
expansion). In Paper III, the class ofp-supermanifolds (man
ifolds with a well-behaved body manifold) is defined, and the 
geometrical objects associated with them as vector super
fields, etc., are studied. Also the elements ofthe theory of Lie 
supergroups and principal superfiber bundles is developed 
within the context of p-supermanifolds. 

In Sec. 2 of Paper I, we introduce the concept of Grass
mann-Banach algebra as a Grassmann algebra endowed 
with a Banach algebra structure in such a way that the 
Grassmann product is continuous with respect to the Ban
ach norm. The natural concept of Grassmann-Banach alge
bra, here introduced, is in contrast with that of Banach
Grassmann algebra recently introduced by Jadczyk and 
Pilch/ for which Grassmann structure (existence of anti
commuting generators) is not explicitly required. In fact, fin
ite-dimensional Grassmann algebras do not fulfill the condi
tions of Jadczyk and Pilch, but they are particular cases of 
our definition of Grassmann-Banach algebras. However, in
finite-dimensional Grassmann algebras given in Ref. 5 do 
satisfy both definitions. In Sec. 3 we introduce the concept of 
graded B-module and define generalized superspaces and B
spaces modeled on B-modules. In Sec. 4, B-linear operators 
between B-spaces and their matrix representations are stud
ied with special attention for the case of superspaces. Finally, 
in Sec. 5 we deal with supertensor algebra and B-multilinear 
operators. 

2. THE GRASSMANN-BANACH ALGEBRA 

As is well known a finite-dimensional Grassmann alge
bra is an algebra generated by n anticommuting elements. So 
long as we are involved in the study of functions defined on 
Grassmann algebras, we need some topology on them. So we 
also will consider them as Banach algebras8 (Banach spaces 
with associative continuous product). Both structures will be 
married by the concept of Grassmann-Banach algebras 
which will be developed in this section. 

Definition 2.1: A Z2-graded Banach algebra is an asso
ciative Banach algebra B with unity 1, such that B can be 
decomposed as the direct sum B = B ° EB B 1 of two closed 
Banach subspaces and lEE 0, B r BSCB r+s [r,s and sums of 
them are always considered mod 2]. We shall call aEE homo
geneous if aEE r. We define the degree of an homogeneous 
element aEE as lal = r if aEE r. B is commutative if 
ab = ( - 1) Ia 11 b I ba, for a,bEE homogeneous. 

We only will be concerned with Banach spaces with 
countable (possibly finite) bases. Nevertheless, we are aware 
that the case of noncountable basis, and hence nonseparable 
Banach spaces, might also be considered. So, from here on, J 
will be a fixed (finite or countably infinite) set of indices, P (J) 
the set of parts of J, and F = F (J) the set of finite parts of J. 
Since it is countable, it can be given by J = ( 1,2, ... ,n) or 
J = p,2, ... ) = N. This order on J induces an order on Fvia 
the injectionj:F---+Nu{O) given byj(0) = O,j(h, ... ,rk )) 

= p:~~ 1 2
r
';jis onto if J = N. A property of this order is: if 

MEFI/ m), (J m) = 1, ... ,m and NEtl'1J m), then M < N. 
Definition 2.2: A Grassmann-Banach algebra is a Z2-
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graded commutative Banach algebra, with the following 
properties : 

(i) There is a linearly independent subset (Pi LeJ CB 1 

such that (PM) MeF is a Banach space basis of B, and for each 
M= (il,···,ir)EF,il<···<i" PM =Pi Pi '"Pi #0,and,B0 , , , 
=1. 

(ii) For each HCF and a = kMeF aM PMEE we define 
PHIal = k MeH aM PM (i.e., we take aM = 0 if MffH). Then 
PH:B---+B is a linear function from B to B. 

It would seem natural to impose II PM II = 1 andpH con
tinuous with l/PHII = 1. However, we will not need these 
conditions for our purpose and, we will see anyway that PH 
always is a continuous projection. We shall refer in general 
to PH projections as p-projections. All Grassmann algebras 
considered by Rogers4 endowed with the structure of Ban
ach algebra given there are examples of Grassmann-Banach 
algebras with the above properties. 

Proposition 2.3: For each HCF,PH:B---+B is a contin
uous linear projection. Furthermore, B = PH (B ) Ell PH, (B ), 
H' = F - H, and PH, = I-PH' I is the identity on B. 

Proof Because the coordinate maps (a---+aM ) are contin
uous linear,8 we have thatpH(B) and PH, (B) are closed sub
spaces of B. AlsoPH(B)rVJH, (B) = (OJ andpH is a linear 
projection. Hence, we only need to prove that PH(B) 
+ PH, (B) = B. Let a = kMeF aM PMEE; by property (ii) of 

Definition 2.2, a l = kMeH aM PMEpH(B) CB, a2 = k MeH, 
aM PMEpH, (B )CB and a = a l + a2 taking limits on finite 
approximations. Q. E. D. 

Let us point out some consequences of Definition 2.2. 
(1) All PM are homogeneous andPMEE rifr = card (M). 

{
o ifMnN#0, 

(2)PMPN = ±PMuN if MnN=0, 

the sign being determined by the permutation which restores 
natural order of the p;'s. 

(3) If H = (MEF Icard (M) = 0), then B ° = P H(B ), 
B 1 =Pw(B). 

(4) If H = (0) CF thenpH(B) = R. LetB' =PH,(B); 

thenB = REBB'andB' = BO' EBB l,whereBo' = B'nB°. We 
will call r PH (s P w ) the body (soul) map and for each 
element aEE, ria) (s(a)) will be called the body (soul) of a. We 
also have that r is an algebra homomorphism. 

Let B " be the set of nilpotent elements of B; since r is an 
algebra homomorphism, B " C B '. 

Proposition 2.4: B " is a dense subset of B '. Further
more, B 1 CB" and for aEE I, a2 = O. 

Proof The last statement is a direct consequence of the 
commutativity property of Definition 2.1. 

To prove the first part, we observe that if H C FI./ m ), 

mEN, thenpH(B)nB' CB", sinceforaEpH(B)nB' am + 1 = O. 
Now, let aEE' and € > 0; then there exists MeEF such that 
lIa - kM<M, aM PMII<€ and ifme = max Me then 
(MEF IM<Me) CFI/mJ HencekM<M,aM PMEE ".Q.E.D. 

Proposition 2.5: (i) For each aEE' and 0 < (J < 1, 3.:t.;>0 
such that \;f n;>O lIanll<.:t.(Jn. 

(ii) aEE is invertible iffr(a) #0. Furthermore, 

(1) 
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Proof In Lemma 2.7b of Ref. 4 it has been proved that 
for each aED' 3 0 dk 1, ,1>0 such that Ilanll <,10 n \;f n>O. 
We now see that this implies (i). Let aED', 0 < 0 < 1. Then 
b = taED' so there exists 0 < 0' < 1, ,1>0 such that lib nil 
<,10 m. Hence Ilanll <,1(0' It t<,1O n for t>O -I. For (ii) see 
Proposition 3.1 of Ref. 5. Q.E.D. 

In this work we shall consider a special class of subalge
bras associated with each subset KCJ, defined as follows: 
B K = P FIK) (B). In addition we have that P FIK) :B-.B K is an 
algebra homomorphism and B K is a Grassmann-Banach al
gebra. 

We conclude this section with a lemma that will be use
ful for the expansion of superfunctions (see II). 

Let Ki be subsets of J for i = 1, ... ,5 and A = B~, B t 
···B t = ! al,···,asED laiED ~i}' Let Ebe the annihilator of A, 
i.e., E = ! bED lab = 0 \;f aEA }. 

Lemma 2.6: E is a closed ideal of B and there exists a 
continuous projection P from B onto E. In fact, P is a {3-
projection and Band E = PH (B ) for a subset H C F (J). 

Proof From the definition of E, it follows immediately 
that E is a closed ideal of B. To prove the existence of P we 
will show that a HCF(J) exists such that E = PH(B). Then 

P PH' 
In particular when a subset Ki is infinite E ! O} and 

P = 0, and when K; = 0, A = ! O}, E = B, and P = I. 
LetH= !KEF(J)I{3KEE}. ThenpH(B)CE follows 

sinceEisaclosedsubspaceofB. To prove that ECPH(B ), we 
only have to show that for each a = l:MEFIJ) aM {3MEE, 
aK = 0 if Kfdf. In fact, if Kfdf, there exists bEA such that 
{3Kb #0. Then, as each element bEA is of the form b = l:j~ I 

l:;pj bi , •...• ;, {3;, , ... ,/3;, with bi , ..... ;, ED 0, if Kfdf there exists 
ijEKj for j = 1, ... ,5 such that {3k {3i, , ... ,/3i, #0, and since 

(3i" .. ·,/3i,EA, 0 = a{3i" .. ·,/3i, = l:MEFIJ) aM({3M {3i,,· .. ,{3,J fol
lows. Now {3M {3i,,· .. ,/3i, = 0 if Mn! il, ... ,is } #0 and{3M 
{3i, , .. ·,/3i, = ± {3Muli, .... i,J if Mn! i , , ... ,is } = 0. Then, from 
the uniqueness of the expression in the basis of the Grass
mann-Banach algebra aM = 0 if {3 M {3i, ,· .. ,/3i, #0. Hence, a K 
=0. Q.E.D. 

3. SUPERSPACES AND B-SPACES 

Let B be a Grassmann-Banach algebra. 
Definition 3.1: A Banach Z2-graded left B-module is a 

Banach space V that is also a left B-module and can be de
composed as a direct sum of Banach subspaces V = VO EB V I, 
with B' VSC V'+s. In addition Ilavll<llallllvll, aED, VEV. 

Let us remark that V' are not B-submodules but only 
B o-submodules. In a similar way we could define a Banach 
Z2-graded rightB-module. Moreover, since B is graded com
mutative, each right B-module can be considered as a left B
module, and conversely, in the form 

Definition 3.2: A free Z2-graded B-module is a B-mod
ule V having a basis whose elements are homogeneous. 

A finite-dimensional free Z2-graded B-module is said to 
be (m,n)-generated if it has a basis with m even and n odd 
elements. From now on B-modules will always be under-
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stood as Banach Z2-graded free B-modules, if the other is not 
specified. 

Let Vbe a left B-module with the basis 
! el, ... ,em ,em + I , ... ,em + n ), where e; is even for 1 <i<m and 
odd for m + 1 <i<m + n. Then, the even and odd parts of V 
can be expressed as 

{
m+ n } 

V' = ;~I a;ei laiED and lail + Ie; I = r . (2) 

The simplest example of a B-module is B m + n with the 
canonical basis ei = (8/)j~+1 n, considering that ei is even for 
1 <i<m and odd for m + 1 <i<m + n and the even and odd 
parts of B m + n are defined by (2). The Banach structure of 
B m + n is the usual product of Banach spaces. Moreover, 
from the property Ilavll<llallllvll of Definition 3.1 and Ban
ach's open mapping theorem (8), Vis naturally isomorphic to 
Bm+n. 

Definition 3.3: The body map associated with a fixed 
basis! ei ) ;"~+I n of Vis the map 

(3) 

R is linear, continuous, and R (av) = r(a)R (v) for aED, 
VEV. We observed that if the basis! e; } ;"~+l n is changed, the 
map R, associated with! ei } ;"~+l n, is not given by (3) in the 
new basis. 

Now we define the class of B-spaces, containing the su
perspaces as a subclass. The need for B-spaces will become 
clear when dealing with linear operators between super
spaces and tensor algebras. In fact, we are going to define a 
category whose objects are B-spaces and whose morphisms 
are L B -operators. 

Definition 3.4: Given a m + n sequence 
1T = (PI,P2, ... ,Pm + n) of{3-projections ofB (see 2.2). Let V(1T) 
be the Banach subspace of V, 

V(1T) = {1:aieiEV laiElm Pi}. A B-space dimension is a 

couple (1T,U) = (( p;), (q;)) of m + n sequences of {3-projec
tions such that q; • Pi = qi (i.e., 1m q; C 1m Pi)' A B-space of 
dimension (1T,U) isthe quotient Banach space V(1T,U) = V(1T)/ 
V(u). 

Remark: V (1T,U) inherits a structure ofZ2-graded vector 
space from V. In fact V(1T)O = V(1T)nVO and 
V(1T)1 = V(1T)nVI. Also V(1T,U)' = V(1T)'IV(u), so 
V(1T,U) = V(1T,U)O EB V(1T,U)I. Clearly V (1T,U)O and V (1T,U) I are 
B-spaces themselves. Let us observe that when some coordi
nates of V (1T,U) vanish, it is possible to consider it modeled in 
a B-module of lower dimension. 

Definition 3.5: Let V (1T,U) be aB-space, Fe a real vector 
space, and t a linear map from R m + n onto Fe; then the linear 
map t·R I VI".) from V(1T) into E factorizes to a linear map c 
from V(1T,U) into Fe' We say that cis a k-body map of V (1T,U) 
and that Fe is a body of V (1T,U) if c is onto and k = dim Fe. 

t·R I VI".) 

V(1T) • Fe 

V(~!U)~ 
(4) 

P is the quotient projection. 
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We call B-space with body to a couple (V(1T,U),C). In 
what follows only bodied B-spaces will be considered. We 
observe that (V,R ) is a bodiedB-space with dimensionpi = I, 
qi = 0, l.;;;i<m + n. Next we define the superspaces that will 
be the basic objects of our theory, as bodied B-spaces. 

Definition 3.6: A supers pace is a bodied B-space (S,r), 
whereS= V(1T,U)O,Pi = PFIKiP0=/=Ki CJ for 
m + l<i<m + n, and r is defined by t: R m + n--+R m, 

t(xl,·.·,xm + n) = (xl,···,xm )· 

The superspace S is just the Banach subspace (~;"~ +1 n 

aieiE V laiER i J of V. So S is isomorphic to B ~ X ... X B ~ 
, I m 

X B k X ... X B k . Then a superspace S has m even and 
m+ 1 m+n 

n odd coordinates, and its dimension can be characterized by 
the sequence % = (Kw .. ,Km + n)' Consequently we shall of
ten use for a supers pace of dimension % the notation S m,n 
(%). 

4. LB-OPERATORS 

In this section we shall introduce the morphisms of the 
category of B-spaces, and study their main properties. We 
begin with B-linear operators between B-modules. 

A. 8-Linear operators between 8-modules 

Let Vand V' be B-modules with bases (e i J ;"~+I nand 

(e; Jj~ in', respectively. 
Definition 4,1. A B-linear operator from V into V' is a 

continuous linear operator TEL (V, V') such that (av)T 
= a(vT), aER, VEV, The set of B-1 in ear operators from Vinto 
V' will be denoted by LB (V,V'). 

Let us remark that a linear operator from V to V' with 
B-linearity conditions, is automatically continuous. 

We give to LB (V,v') a B-module structure. The scalar 
multiplication is given by u( Ta) = (u T)a. The degree is deter
mined by I T I = riff VST C V" + s, r,s = 0,1. A basis is given 
by Tj, ek Tj = D ~e'j. LB(V,v') is a closed subspace of 
L (V, V') and so it is a Banach space. The dimension of L B 

(V, V') as free B-module is (mm' + nn', mn' + m'n). We ob
serve that the composition of operators is written in the fol
lowing way: u(S.T) = (uS)T (Russian notation). 

As aB-moduleLB( V, V') has the bodymapR defined on 
it, given TEL B ( V, V') we can consider R (T) as a linear map 
from R m + n into R m' + n' that we shall call the body opera
tor. More precisely: 

Lemma 4.3: Let TELB(V, V') and U,VEV such that 
R (u) = R (v); then R (uT) = R (vT). 

Proof It is enough to prove that if R (u) = 0 then 
R (uT) = O. Let u = ~;"~+I n aiei ; then R (u) = 0 is equivalent 
to r(a i) = 0 l<i<m + n. But uT= ~;"~+In ai(eiT) and 
R (uT) = ~;"~+In r(ai)R (eiT) = O. Q, E. D. 

Definition 4.4: Let TELB( V, V'). We define the body op
erator of T, TREL(R m + n, R m' + n'), by TR(x) = R (uT) if 
x = R (u)ER m+ n, UEV. 

This definition is consistent with Lemma 4.3 and the 
idea behind both is expressed by the following commutative 
diagram: 
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T 

V • V' 

R! ~ R (5) 

Rrn+n_Rm'+n' 

Next we shall give matrix expressions for B-linear operators. 

As usual ei T = ~j~ r n' eI; e; so that the matrix A = (eI;) rep
resents the operator T. Herej is the column index and i the 
row index, so vectors in V (and V') are expressed as a row. 
Matrices with entries in a superalgebra are usually referred 
to in the literature as supermatrices. The rules for calculus 
with supermatrices can be found in the paper by Leites. z 

We also have that the body of a B-linear operator T, 
represented by the matrix A = (di ), is represented by the 
matrix R (A ) = (r(di )). R is an algebra homomorphism, i.e., 
R (A +B) =R (A) +R(B)andR(AB) =R (A )R(B). 

A B-isomorphism from Vonto V I is a B-linear operator. 
TEL B (V, V') which is one-to-one and onto. This isjust a linear 
isomorphism that is in L B (V, V'). Also, Tis a B-isomorphism 
iff there exists SELB(V,V ' ) such that TS = I, S·T= I. We 
can characterize B-isomorphisms by means of their body. 
The following theorem generalizes Proposition 2.5. 

Theorem 4.5: Let TELB( V) and A be the matrix expres
sion of T. Then 

(i) If R (A ) = 0, V 0 < 0 < 1 3 a;>O such that 
IIA nll<aO n V n;>O, 

(ii) Tis aB-isomorphism iff TR is a linear isomorphism. 
In addition, if S (A ) = A - R (A ), 

00 

A - I = (R (A )) - I I (- 1 nS (A ) R (A ) - It 
n=O 

(6) 

Proof (i) GivenD> OwecanfindpEN such that A can be 
decomposed as A = A I + Az, where entries of matrix A I be
long to the finite-dimensional subalgebra BJ and IIAzll < D. 

p 

Now 
II(AI +AZY'+h 11<.2' IIA 'i A ;loo.A i A ;'11 

<.2' 'IIAIIIl:;~ lij IIAzlIl:;~ Ii'] 

< ktJP: h)IIAllik 8' + h - k, (7) 

where.2' is extended over the sequences of nonnegative 
numbers (ii' i; ,oo.ir,i;) such that ~;~ I (ij + i;J = P + hand 
.2' 'over the sequences in.2' such that ~; ~ I ij <P, The restric-

tion from.2' to.2' I is due to the fact that A ~I A ; '00.A i A ;' = 0 
if .2'ij ;>p + 1, since the elements of A I only contain P genera
tors. From here on the prooffollows as in Lemma 2.7 of Ref. 
5 and in Proposition 2.5. 

(ii) If Tis aB-isomorphism, there exists aB such thatA· 
B = I and B·A = I. So, since R is an algebra homomorphism 
R (A )R (B) = IandR (B)R (A) = land, hence, TR isalinear 
isomorphism. 

Conversely, if TR is a linear isomorphism, the expres
sion for the inverse matrix A-I (Ref. 6), has a sense and the 
series converges by (i). 

Proposition 4.6 (dimension theorem): Given a B-iso
morphism TELB(V,V')O [TELB(V,V')I] we have m' = m 
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and n' = n [m' = nand n' = m]. 
Proof If T is a B-isomorphism by (ii) of Theorem 4.5 

m' + n' = m + n. Now if Tis even the matrix A can be ex
pressed in boxes as 

ell A= 
21 

(8) 

whereA 11 andA 22 have even entries and dimensions mXm' 
and n Xn', respectively, while AI2 andA 21 have odd entries. 
Therefore, 

R (A) = (RO (All) 0 ) (9) 
R (A 22 ) 

and, since R (A ) is a linear isomorphism, it follows that 
m' = m and n' = n. For odd T, R (All) = R (A 22 ) = O. 
Hence m' = nand n' = m. Q.E.D. 

B. La-operators between B-spaces 

We now proceed to define B-linear operators between 
B-spaces. 

Definition 4. 7: GivenF = V (1T,U) andF' = V'(1T',U ')B
spaces and TEL (F,F') we say that Tis L B iff there exists 
T'EL (V(1T),v(1T)) and TELB(V,v') such thatpT= T'p' and 
iT= T'i', wherei,i' andp,p' are, respectively, the inclusions 
and projections of the diagram below. 

T 
v • V' 

i 

1 I ., 
I 

T' 

V(1T) • V(1T') 
(10) 

p ! ! p' 

T 

F • F' 

As a direct consequence of this definition T' is L B when 
we consider V(1T) and V' = (1T') as B-spaces. 

Now we identify canonically LB(F,F') with a B-space 
modeled in LB(V, V'). To do this, we introduce first 
LB(V, V', V (1T), V'(1T')) = [TELB(V, V')I V(1T)TC V'(1T')}, 
which is a B-space modeled on L B (V, V') whose dimension is 
given by Hj.Hj = nMeH, H;(M), withH;(M) 

= [LEF(J)ILnM #0 orLuMCH;j,andwhereH..,H;de
fine the dimensions of V(1T) and V'(1T'), respectively. Then we 
consider LB(V, V';F,F') = LB(V,v'; V(1T),v'(1T'))nLB 
(V,v'; V(u), V'(u')) and the linear continuous map q:LB 
(V,V';F,F')~L (F,F'), defined by [v](q(T)) = [vT]EF' 
for [v]EF. Then, it is easy to see that q is well defined on LB 
(V,v';F,F') and that 1m q = LB(F,F') and ker q = LB 
(V, V'; V (1T), V'(u')). So q factorizes through the linear contin
uous isomorphism q:L B (F,F')~L B (F,F'), where L B (F,F') 
= LB(V,V';F,F')lker q is a B-space modeled in LB(V,V'). 

Then q identifies canonically L B (F,F') with the B-space 
LB(F,F'). We ob~rve that the map q preserves the composi
tion. Moreover, LB(F,F') is Z2-graded as B-space and q is 
even. 

We study now LB-isomorphisms. Let q(T) = TELB 
(F,F') be a linear isomorphism such that T is a B-isomor
phism. Then it follows that T-1ELB(V',V;F',F) and 
T- 1 = q(f'-I)ELB(F',F). 
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Definition 4.8: TELB(F,F') is a nongraded LB-isomor
phism iff it is a linear isomorphism and there exists aLB -

isomorphism TEL B (V,v') such that q(T) = T. If Tis even we 
call it simply an LB-isomorphism. We denote the set L B -

isomorphisms by GLB(F,F'). 
Theorem 4.9 (dimension theorem): Let F = V(1T,U), 

F' = V '(1T' ,u') be B-spaces and TEL B (F,F') a nongraded L B
isomorphism. Then 1T = 1T' and u = u' up to a reordering of 
the basis of V'. 

Proof By Theorem 4.5 k = m + n = m' + n' = k'. We 
prove now the theorem by induction over k. For k = 1, since 
T= (a) is invertible r(a)#O, so that 0EH .H', 0EK .K'. 
Therefore,MEH' V MEHandLEK' V LEK,i.e.,HCH'and 
KCK'. Conversely as r(a-1)#0, we conclude H'CH and 
K' CK. SO H = H' and K = K', which completes the proof 
for k = 1. Now we proceed by induction. We assume that the 
theorem is true for k = 1 and prove it for k. Taking the ma
trix representations T = (aJ) and T -I = (b J) we have 

k k' k l:j~ 1 aj b~ = 1, so we can choose} such that r(aj )#0 and 
r(b jk)#O. Now reordering the basis of V' wetakej = n. Next, 
fromr(a~)#Oandr(b~)#O, wehaveHn =H~ andKn 

= K ~ as before. Now we take out the k th coordinate obtain
ingtwo reducedB-spacesFo= Vo(1To,uo)andF~ = V~ 
(1T~,Uo), where 1To, 1To. uo, Uo coincide with the first k-l di
mensions of1T, 1T', U, u', respectively. Then Ii = (aj)k :-_11 is a 

) I,}-

LB-isomorphism from Vo onto V~ because r(b ~J#O and 
IiELB(VO,v~;Fo,F~). So there exists U = q(U) which is a 
nongraded L B -isomorphism from Fo onto F ~. Therefore, by 
the induction hypothesis 1To = 1T~, and Uo = u~ up to a re
cording of the basis of V ~, and the theorem follows. Q.E.D. 

In the case of Tbeing even, the reordering of the basis of 
V' proceeds independently for the even and odd parts of the 
basis. 

AsLB(F) is aB-space we can define on it many different 
bodies. However, we will need the concept of body operator, 
as in Lemma 4.3, rather than that of the body itself, for the 
transition maps of fiber bundles. For a given body c of Fwe 
consider the subspace c-LB(F) = [TELB(FJlc(uT) = 0 if 
c( u) = O}. Then for each TEC-L B (F) there exists a unique Te 
EL(Fe) making commutative the following diagram: 

T 

(11) 

We call Tc the c-body operator of Tand Tis c-bodied. Of 
course, there exists always a body on LB(F) such that its 
restriction to c-LB(F) produces Te from T. We observe that 
if c is a maximal body then c-L B (F) = L B (F). Similar consid
erations can be taken for L B (F,F '). 

Given a B-space F modeled on V not all the bases of V 
make sense for F, but only those obtained from the canonical 
one el,. .. ,em + n through an element of GLB(FJ. So GLB(F) 
can be considered as the set of reference frames on F. We 
remark that when F and/or F' are not free B-modules the 
space of B-linear maps from F into F' (in the usual sense) is 
bigger in general than the space L B (F,F'). 
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To end up with the discussion about LB-operators 
between -?!-spaces, we define the dual B-space to a B-space F 
as F * = L B (F,B). It is easy to see that F is not reflexive in 
general (FCF**). However, F* is always reflexive 
F*** =F*. 

C. La-operators between superspaces 

Supers paces are a particular case of B-spaces and all the 
results of Sec. 4B hold for superspaces. However, we shall 
give here some specific features which will be of interest later 
on. 

Given two superspaces S, S' modeled, respectively, on 
Vand V' we have that L B (S,S ') C L B (S, V'). Indeed 
LB(V,V';S,S')CLB(V'V';S,V') = LB(V,v') and 

L (SS') _ LB(V'V';S,S') 
B' - LB(V,v';S,{Oj) , 

L (VV') 
L (S V')- B' 
B' - LB(V,v';S,{Oj) 

The dimensions of L B ( V, V';S ( 0 ) ) are given by P; 
= PH, withH; = (LEF(J)IL:JK;) iffK; is finite and 

i>m + 1, andp; = 0 otherwise. In particular 
L B (V, V';S ( 0)) = (O) iff S is free. As a consequence if 
T\ = (~) and T z = (b{) are two extensions of TELB(S, V'), 

i.e., q(T,) = q(Tz) = T, then ~ - b{ E/JKi' where /JKi 

= (multiples of flKi ) if K; is finite and ~ = b{ otherwise. 
Concerning the dual space S * of a superspace, we have 

that S * is a B-module (free iff S is free) and 
S** = S = p:;:+, na;e;EV la; flKi = 0) isalsoaB-module. In 
fact,S * = V* andS = VwhenSisfree. On the other hand, if 
q(Td = q(Tz) = TELB(S,V'), it holds that 1",15 = Tz15' In 
fact, S can be characterized as the maximal subset of V such 
that all extensions of operators in LB(S, V') coincide. 

For each element TEL B (S,S ') we have different exten
sions TEL B (V, V' ;S,S ') and different matrix expressions of T. 
The matrix elements of 1" = (~) are then of the form 

Ii; = b{ + d; with b{EB i; r1, CjE/J; if K; is finite for r; = 1, 
} . 

and d; = 0 otherwise. Moreover, if K; ct:KJ~' b{EflKnK if K; , } 

is finite and card (K; - K;J = 1 for r; = 0, and b{ = 0 other
WIse. 

In what follows we shall exclude the pathological case 
card (K; - K;J = 1 with K; finite and r; = O. 

We observe that if S is free, L B (S,S ') is a supers pace 
modeled on LB(V, V'). Finally, we remember that a super
space S m.n has a canonical body map r:S m,n _Rm which is 
maximal. Therefore r', r - L B (S,S ') = L B (S,S ') and each 
TEL B (S ) has aT, EL(Rm) associated with it such that r,r 

T 
sm,n • sm',n' 

, I l " (12) 

T, 
Rm r.r • R m' 

On the other hand, we have a maximal body map from 
LB (S,S ') onto L (R m + n, R m' + n') given by R (T) = T R , 
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where q(T) = T. R (T) is well defined since T'R = TZR if 
q(T,) = q(T2 ). 

5. SUPERTENSOR ALGEBRA 

In this section we shall study multi-LB maps and we 
shall construct supertensor algebra over a superspace. 

Definition 5.1: Let V, V' be B-modules. A B-multilinear 
operator from V k into V' is a multilinear map TEL k(V, V') 

such that (u" ... ,auo ... ,uk)T = ( - 1(~:;::: ha(u" ... ,u;, ... ,uk)T 

for each homogeneous aEB rand U; E V;'. 
The set of B-multilinear operators will be denoted by 

k 

L ~(V, ... , V, V') and it is a B-module. The Zz grading of L ~ 
k k 

(V, ... , V, V') is given by the rule TEL ~(V, ... ,V,V')'if 

( V X .~. X V}T C V" + s, 

where 
k 

(VX"'XV),= u VSIX ... X V Sk. 

We remark that the above rule does not define a grading for 
k 

V X .. · X V. A tensor representation for T is (V" ... , Vk)T 

~ ;I;k b j 'h h' = "':;'(\"';k a, · .. ak ;1''';' ej , were t e SIgn E;I''';k 

= ( - )~7 ~ 2 ~~ ~ \ la;'1 r;k' and V; = X~ejE V, b{1 ";k EB. 
TEL k(V, V') is graded (skew-) symmetric iffor 

(v" ... ,v; + , ,V; , ... ,vk)T 

= ( _ 1)',ri + I + r(v" ... ,v;,v;+ l> ... ,vk)T 

= (_ l)'ir,+ I +r(v" ... ,v;,v;+ " ... ,vk)T 

with r = 0 (r = 1). In particular, if Tis graded skew-symmet
ric then (e;1 , ... ,e;JT = 0 provided that some odd (even) e; 

appears twice. 
We define multi-LB operators in the same way as L B-

operators. 
Definition 5.2: Let F = V(1T,O') and F' = V(1T',O") be B

spaces; then TEL k (F XF X .. · XF,r) is multi-LB (or TEL ~ 
(F X F X ... X F,F ') iff there exist T' and 1" such that 

1" 

Vx VX'''X V • V' 

it ti (13) 
V(1T)X",X V(1T) V'(1T') 

PX ... xp~ ~p' 
FX .. ·XF ~ F' 

L ~ (F X ... X F,r) can be canonically identified with a B
space L ~(F X .. · XF,r) in a similar way as for LB-maps . 

Now we restrict the discussion to superspaces. In parti
cular, we are interested in the form of the tensor representa
tions of multi-L B operators in order to deal with partial de
rivatives. When the superspace S is not free there exist many 
extensions TEL ~ (V, V') for a given TEL ~ (S, V'). For two ex
tensions 1", = (a!. ..... ;J, 1"2 = (b !...iJ we have that if 
K; , ... ,K; are finite, and 

J] J.\ 
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where E is the annihilator of A = B L B 1: ···B 1: (see 
'Jl Il2 lis 

Lemma 2.6) and a/. ..... jk = b /. .... ,;k otherwise. We observe that 
a (skew-) symmetric operator TEL ~(S,V') has always a grad
ed (skew-) symmetric extension TEL ~(V,V'). 

We discuss now tensor algebra and exterior algebra 
over a superspace. First we consider the case of a free super
space. ThenS* = V*andS= V.Soitreducestothecaseof 
B-modules. Given VI and V2 B-modules the tensor product 
VI 181 B V2 is well defined because VI and V2 can be simulta
neously considered as right and left modules. We can endow 
VI 181 B V2 with the structure ofaB-module becauseB is grad
ed commutative, 

a(u l 181 BU2) = aUI 181 BU2 = ( - l),r'u l 181 B aU2, 

where aElJ r,UIEV~', u2® V2. 

The grading of VI 181 B V2 is given by 

(VI 181 B V2) = al = r( V~' al B V;2). (14) 
rl + r2 

To simplify the notation the suffix B will be dropped 
from now on. The usual properties of commutativity and 
associativity of the tensor product hold here, and the same is 
true for the universal property (with respect to B-multilin
earity). 

Next we consider the contravariant tensor algebra T (V) 
of a B-module V. As usual T(V) = al k ~ ° Tk(V), where 

k 

T°(V) = B, and Tk(V) = V 181'" 181 V because of the grading 

we need some modifications in the definition of symmetric 
and skew-symmetric tensors. Let Sk be the permutation 
group andS,A two homomorphismsS,A:Sc,"*GLB(Tk(V)), 

S(-r)(XI 181 .. • ®Xd 

= (- 1)"r, + , XI 181 .. • ®Xj+ I ®Xj 181 .. • ®Xk, (15a) 

A (-r)(XI 181 .. • ®Xk) 

( 1 )r,ri+ , + I X X X X (15b) = - 1 181 ".181 j+I® j®"'® k, 

where -r is the transposition (i,i + 1), XjEV r" X j+ I EV r
,+ '. 

Then the symmetrization S and the alternation A are defined 
on T(V) as 

1 
S(R) = - L S(u)(R), 

k! oESk 

A (R ) = J.. L A (u)(R ), 
k! oESk 

S and A are even idempotent linear operators on T ( V). 
S ( V) = 1m S is the space of graded-symmetric tensors and 
A (V) = 1m A is the space of graded skew-symmetric tensors. 

The exterior product in A (V) can be defined by 

RAR'= (k+k')! A(R®R') REAk(V) R'EAk'(V). 
k!k'! ' , 

(17) 
The isomorphisms S (V):::::::S (V0) 181 A (V I) and 

A (V):::::::A (VO) 181 S (V I) can be proved as consequences of the 
universal factorization property of the tensor product. 
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Given a basis {e j J7'~+ln for Vwithei EVofori<m andej 

E V I for i> m we define for each set 

(kw .. ,kn )ENn,e(kl,· .. ,kn) 
k, k2 

=em + 1 A .. ·A em + 1 Aem + 2 .. ·A em + 2A 

k n 

... Aem + n .. ·A em + n, e(O, ... ,O) = 1. 

Note that the defined elements are not zero because we are in 
S (VI). Then a basis for A (V) is given by {ej , A ej, Ae(k, ..... k

n
,] 

with l<il < .. ·ir<m and (kl, ... ,kn)ENn. 
The covariant tensors are defined obviously by 

Tr(V) = Tr(V*) and the mixed tensors by T;(V) = T'(V) 
181 Ts(V)' Then, we can define the mixed tensor algebra 
Y(V) = al ~ ~ ° T;(V). We observe that the B-module 
T;( V) is isomorphic to a B-module of B-multilinear maps 
T;(V):::::::L ~(V;rs(V)). 

Concerning body maps for tensors, we choose the body 
of V( = S) as r = R·po. For each k a canonical body map r 
from Tk(V) on Tk(Vr) is defined by r(VI 181'" 181 Vd 
= r( VIi 181 ... 181 r( Vk ). In a similar way body maps for A (V) 

and Y (V) are defined. We observe that r is an algebra homo
morphism from Y (V) onto Y (Vr)' 

For S not free we have the following situation. Since Sis 
a (not-free) B-module S 181 BS is determined by B-linearity 
and has the universal property 

(18) 

i.e., for T B-bilinear there exist U B-linear making commuta
tive the above diagram. However, we are interested in the 
L B -maps rather than in B-linear maps. As the last ones form, 
in general, a wider class than the former ones, we have that 
the space S® LBS satisfying the universal property for L B-

maps is bigger than S 181 BS, In fact S 181 LBS :::::::L 1 (S *,S *,B ) 
is 181 BS, We remark that S 181 LBS has also the universal 
property for L 1 operators defined on S X S. So 
S 181 L S = S 181 LBS and we shall denote it shortly by S 181 S or 
- :::§ -

S 181 S. Notice that first-order tensors are then S and not S. 
Finally, these considerations can be straightforwardly ex
tended to higher tensor products of Sand S *. 

6. CONCLUSIONS 

In this paper we have introduced the concept of gener
alized superspace. The starting point for it is the structure of 
Grassmann-Banach algebra which includes, as main exam
ples, the exterior algebra of a finite-dimensional vector space 
and infinite-dimensional Grassmann algebras of Rogers.4 
Our definition contrasts with Banach-Grassmann algebras 
of Jadczyk and Pilch5 which do not include finite-dimen
sional cases. 

The generalization of superspace consists in consider
ing the possibility of different Grassmann algebras for each 
coordinate. This allows for a richer field of applications in 
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physics.6 The "dimension" of a generalized superspace is 
defined as a sequence of sets such that each one determines 
the generators spanning the Grassmann algebra to which 
each coordinate belongs. 

B-linear maps over graded B-modules and LB-maps 
over superspaces have been discussed. It happens that the set 
of LB-maps between superspaces is not a superspace in gen
eral. To solve this problem we have introduced the category 
of B-spaces which is wider than that of superspaces and 
where morphisms are LB-maps. Also multi-LB maps and 
tensor products of superspaces are discussed in the frame
work of B-space category. 

In the next paper of this series, we shall study analysis 
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The analysis on generalized supers paces is studied. G-differentiability of functions and 
indetermination of partial G-derivatives are treated in detail. A canonical expansion for 
supersmooth functions and a particular choice of partial G-derivatives are given, and their 
properties studied. Existence of (nonanalytic) Goo-functions is proved. 

PACS numbers: 02.40. + m, Il.30.Pb, 02.30. + g 

1. INTRODUCTION 

In this paper we discuss the analysis on generalized su
perspaces following the program outlined in Ref. 1. Analysis 
on homogeneous superspaces has been recently considered 
by Rogers2 and Jadczyk and Pilch.3 However, some impor
tant questions are left out in these papers, while others are 
not solved in a fully satisfactory way. In particular, the do
main of validity of the extension theorem for Goo-functions 
has not been well determined in Ref. 2. This problem has 
been solved by J adczyk and Pilch, through the concept of G
connectedness. However, their approach only applies to infi
nite-dimensional Grassmann algebras. On the other hand, 
the superfield expansion in terms of ordinary Coo-functions 
is not satisfactorily treated in Ref. 3 due to the difficulties 
inherent to work with infinite-dimensional Grassmann alge
bras. To be more precise, the subclass ofC 00 functions which 
can appear in a superfield expansion is not clear. We prove 
that this class is large enough to guarantee the existence of 
partitions of unity in p-supermanifolds (Paper III). For fin
ite-dimensional Grassmann algebras the superfield expan
sion has been given by Rogers, but it lacks uniqueness. All 
these problems, together with the new aspects introduced by 
the use of generalized superspaces, have been solved in this 
paper. In particular, a rule to fix a canonical superfield ex
pansion is given in the case of nonfree supers paces. 

In Sec. 2 the concept of G-differentiability is intro
duced. Spaces of G k-functions are studied and special atten
tion is devoted to the inverse and implicit mapping theorem. 
The extension theorem, and some of its consequences, is de
veloped in Sec. 3. A particularly interesting result of this 
section is that the analyticity is preserved by the extension. 
The Z-operator mapping COO into Goo-functions is defined 
and Goo-functions are expanded in terms of families of C 00_ 

functions. While this expansion is certainly not unique for 
nonfree superspaces, we have fixed a particular canonical 
expansion. Moreover, from the canonical expansion, partial 
G-derivatives can be uniquely determined. For the case of 
even coordinates taking values in infinite-dimensional 
Grassmann subalgebras, a Z-operator is defined, mapping 

COO-functions with nonvanishing convergence radius for its 
Taylor series at each point, into Goo-functions. In particular 
CW-functions are mapped onto GW-functions. However, the 
existence of a superfield expansion for Goo-functions which 
are not G wallows one to show the existence of "bell" func
tions on superspaces, which in tum is crucial for having par
titions of unity on p-supermanifolds. 

2. G-DIFFERENTIABILITY 

In this section we shall proceed to develop further the 
concept of G-differentiability, first introduced by Rogers, 2 

extending it to functions defined on generalized superspaces. 
We first recall thatf U C E - F, E,F Banach spaces 

and U an open set, is said to be C k ifit is k times continuously 
differentiable. Then D Y(x) ELk (E, F) denotes the k th dif
ferential of I and is a symmetric k-multilinear operator.4 

Definition 2.1: LetF = V(l1-,u) andF' = V'(1T',U') beD
spaces and U C Fan open set. (a) f is GO ifit is Co. (b) I is 
G I iff it is C I and there exists a continuous map 

Df: U - LB(V, V';F,F') such that D/(x) = q( D/(x)) V 
X E U. (c)/is G k ifit is G I and DI is G k - I. (d)/is Goo ifit is 
G k V k. (e)/is GW (G-analytic) ifit is analytic (CW) and for 
each Xo E U, there exists Uo C U open neighborhood of Xo 
such that for all x E Uo, X = (Xi) 7'~-+t n 

00 

I(x) = I (Xl _X~)i, ... (Xm+n _X;+n)im+n 

i1.···,im + n = 0 

where v;, ..... im+ n E V', and the series converges uniformly on 

Dr (Xo) C U. As immediate consequences of Definition 2.1, 
if/is G k-differentiable, then Dlis G k - I-differentiable and 
the composition of two G k -differentiable functions, I and g, 
is G k-differentiable. 

A particularly interesting case is F' = D. A function 
fU - V' defines the familylj:U _D, 14<m' + n' by 
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fix) = Lj~ tn' p(x)e;, x E U. Thenfis G k-differentiable iff 
p, 1 <.i<,m' + n', is G k-differentiable. 

Let us now see how the partial G-derivatives of a func
tion appear. Forf U --. F', D kf(x), x E U, is a multi-L B oper
ator over S. A tensor representation of D 'i(x) can be ex
pressed as 

(h 1, •.• ,hk)D 'i(x) 

= tn't n' ( I h ii ... h ~ Gik ... Gil fJ(x))e; (1) 
j=ll<ie<m+n 

which defines the partial G-derivatives Gik ... Gi1 Pix). How
ever, for F = S nonfree (see I) superspaces, they are not com
pletely determined for odd coordinates. On the other hand, if 
fis G I the existence of partial derivatives Gi, ... Gil f that are 
G I - k functions is guaranteed by the iterative form of Defini
tion 2.I(a). For a G-differentiable functionfu --. S', if 
Ki ct: K;, thenp does not depend on the coordinate Xi. In 
fact for a G-differentiable functionf U --. F', the dimensions 
of LB(S, F') might enforce Gfi(x) = 0, X E U. 

Next, let Gk(UJ, F') C Ck(C, F') be the set ofG k_ 
functions from U into F', k = 0,1, ... ,00 ,w. In the particular 
case F' = B we simply denote this set by G k (U). 

Proposition 2.2:(i) G k (U) is a Zz-graded commutative 
algebra and a Zz-graded B-module. (ii) G k (U; V') is a Zz

graded G k ( U I-module. In particular it is also a Zz-graded B
module, and a vector subspace of C k (U; V'). 

The grading ofGk(U;V') is given byfE Gk(U;V')'iff 
Im(f) C Vir. Moreover, using the canonical projections 
p':V' --. Vir and the property p' ·fE Gk(U; V'r, the decom
position f = po . f + pl. f holds. 

The product of functions is defined as usual, 
(fg)(x) =f(x)g(x), wherefE Gk(U)andg E Gk(U) [yielding 
the structure of algebra for G k (U I], or g E G k (U; V') [yield
ing the structure of G k (U I-module for G k ( U; V')]. The com
mutativity of G k (U) comes from that of B. 

We end these comments with some remarks concerning 
the grading of partial G-derivatives of G k -functions. Let 
rj =OifI<,i<,m,rj = 1 ifm + 1 <,i<,m +n,f,gEGk(U). 

Then: (i) IffE Gk(U)', then GJE Gk-I(U)'+"; (ii) 
Gj(f + g) = GJ + Gj g; (iii) iffE Gk(U)', then hj Gi(fg) 

= hi((Gj f)g + ( - I)"1(Gj g)); (iv) if a E B', hj Gj(af) 

= h i (( - I)"ia(G j f))· 
LetfE Gk(U, F'), U' c F' be an open set with 

flU) C U' andgE Gk(U', F"). Then the composition 
g . fE G k( U, F ") and the total differential reads (chain rule) 

D (g. f)(x) = Df(x) . Dg(f(x)), (2) 

where total differential operators are right L B -<;>perators as 
in (1). This leads to the chain rule for partial G-derivatives, 

m'+n' 

hj Gj( g . f)(x) = hj I Gj fi(x)Gj g(f(x)). (3) 
i~1 

For a F = S nonfree superspace the indetermination of par
tial G-derivatives affects Eq. (3) in the following way: the 
possible indetermination of Gj g has no effect; if 
m + 1 <,i<,m + nand K j is finite, the right-hand side of (3) 
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gives a possible determination of Gj( g. f); in other cases 
formula (3) is exact without the h;'s. 

Next, we shall generalize the inverse mapping theorem 
and its consequences. The approach and results contained in 
Ref. 5 are borrowed. To fill the gap from C "'- to G "'-differ
entiability we need the following lemma. 

We use the notation L B (F) ins ted of L B (F;F) and denote 
by GLB(F) the isomorphisms in LB(F). 

Lemma 2.3:(i) Let TEL k (F;F'). Then: (i) Tis 
G I=? TE L ~(F;F') =? Tis Goo. (ii) Let 
'P:LB(F)XLB(F) -+ LB(LB(F)) be defined by CIA, B)'P 
= - A . C· B. Then 'P is LB-bilinear, hence G "'. (iii) 

GLB(F) is an open set ofLB(F). (iv) Let I:GLB (F) -+ GLB(F) 
be the inversion map i( T) = T - I. Then i is G '" and 
Di(T) = (T-I,T-I)'P. 

Proof (i) Comes from the definition of G-differentiabil
ityandDT(x) = Tforlinearmappings.'PisLB-bilinearsince 
there exists an obvious extension to L B (V) given by the very 
definition of 'P. Property (iii) comes from the fact that GL (V) 
is an open set of L (V). Finally, it is known that i is Coo and 
Di(T) = (T -I ,T -I)'P. SO from (ii) and proceeding by induc
tion, property (iv) follows. Q.E.D. 

We remark that Lemma 2.3 is still true even whenSis a 
nonfree superspace. In this case L B (S) is not a superspace 
but a B-space. However, with the natural extension of the 
notion of Goo-function to B-spaces, i( T) = T - 1 is yet a G oc_ 

function. So the proof of Theorem 2.4 is valid also for non
free superspaces. 

Theorem 2.4 (Inverse mapping theorem): LetfU -+ F' 
be G k, k > 1, andxo EUsuch that Df(x) is aLB-isomorphism. 
Then, there exists a neighborhood of xo, Uo C U such that 
f( Uo) is an open set of S' andf Uo -+ f( Uo) is a G k -diffeomor
phism (i.e., one-to-one andf- I is G k). 

Proof From the ordinary inverse mapping theorem we 
only need to prove thatj-I is G k. We can identify F' with F 
by means oftheL B -isomorphism Df(xo). We shall proceed by 
induction. First,f - I is G I since it is C I and for all y Ef( Uo), 

Df-I(y) = (Df(f-I(y)))-I is LB-linear (it is the inverse of a 
LB-linear map). Now, ifj-I is G I

, l<,k - 1, writing 
Df- I = i . Df -I-I we have that Df- I is G I, since Df is 
G k - 1 and i is G '" by Lemma 2.3. Hencef-I is G 1+ I. This 
concludes the induction procedure. Q.E.D. 

Prior to some corollaries of Theorem 2.4 we shall give 
some definitions, enlarging the concept of closed subspace 
which splits to the case of superspaces. 

Let Sand SI be superspaces. We say that SI splits S if 
there exists a superspace S2 and aLB -isomorphism 
TI ELB(S;SIXS2 )· 

A one-to-one B-linear operator T E LB(S;S') is said to 
split if 1m T is closed in S " S splits S " and there exists a L n

isomorphism TI E L B (S ';S X S2) such that 
T· TI E L B (S,S X 0) is aLB -isomorphism. 

Corollary 2.5: Letf:U -+ S' be a G k-function, k> 1, 
f(xo) = 0 and Xo E U. (i) If Df(xo) is a one-to-one Ln-linear 
operator which splits, then there exists U' C S', open set, 
and a functiong: U' -+ S XSz which is a G k-diffeomorphism 
ontog( U') C S XSz, open set, such that there exists a neigh
borhood Uo ofxo, Uo C U, and g . j( Uo) C S X 0 is an open 

Hoyosetal. 842 



                                                                                                                                    

set in S X 0 and g . fis a G k-diffeomorphism onto its image. 
(ii) If Df(xo) is onto S' and S, = ker Df(xo) splits 
S (S ~S, X S2)' then there exist open subsets U, C S, and 

U2 C S2 and Xo E Uo C U and h:U, X U2 ---+UO, G k-diffeo
morphism onto Uo, such thatf· h is a projection 
U, X U2 ---+ S' (i.e., can be expressed as the composition of the 
projection U, X U2 ---+ U2 followed by a G k-diffeomorphism 
from U2 onto an open subset of S '). 

Corollary 2.6 (Implicit function theorem): Let S,' S2' 
and S' be superspaces, U, C S,' U2 C S2 open subsets, and 
fU, X U2 ---+ S' a G k-function such thatf(xo,yo) = 0, 
(xo,y 0) E U1 X U2, and D (f. ixo)( Yo) aLB -isomorphism, 
where ixo: U2 ---+ U, X U2 is the inclusion map ixo (y) = (xo,y)· 
Then, there exists an open neighborhood ofxo,Uo C U, and 
a unique G k_map g: Uo ---+ U2 such that g(xo) = Yo and 
fIx, g(x)) = 0 for all x E Uo. 

The proof of analogous corollaries given in Ref. 5 ap
plies here since the inverse mapping theorem holds. 

3. EXTENSION OF Goo -FUNCTIONS 

We deal in this section with the extension of G 00 -func
tions and their natural domain of definition. We shall see 
that Goo-functions behave along the soul as analytic func
tions. The extension theorem was first stated by Rogers, 2 

without fixing its domain of validity. Later, Jadczyk and 
Pilch3 found the domain in which the theorem holds and 
generalized it to infinite-dimensional Grassmann algebras. 

Definition 3.1: Let S be a superspace and U C S a sub
set. The r-saturation of U is U = r-'(r( U)). U is said to be G
connected (G-convex) iff or all x E U, ! x J n U is connected 
(convex). 

Clearly, if U is open, U is also open. 
Theorem 3.2: Let S be a supers pace, U C Sa G-con

nected open set andf E G 00 (U;F ') where F' is a B-space with 
body c. Then: (i) Ifx,y E U and r(x) = r(y), thencf(x) = xf(y); 
(ii) there exists a unique extensionfE G 00(U;F'); (iii) 
c(f(U)) = c(f(U)); (iv) moreover, iffE G"'(U;F'), then 
fE G"'(U;F'). 

Proof It is enough to consider the case off E G 00 ( U), 
and c = r. The proof of Proposition 5.4 of Ref. 3 applies here 
to (i), (ii), and (iii) without any modification. 

Let us suppose now thatfis G "'. Thenfis G 00 and hence 
there exists, by (ii), a uniquef on U that is Goo. We now prove 
thatfis G"'. Let Xo E U and h, with r(h) = 0 nilpotent and 
such that Xo = Yo + h with Yo E U. 

Letp(yo) > 0 be the convergence radius for fin Yo' For 
IIx - XoII <p <p(yo), x = y + h with Ily - Yoll <po Because h 
is nilpotent,f(x) = l:~=o (lIp!)h PD Pf(y) and D'1(xo) 
= l:~=o(lIp!)hPDP+'1(Yo). Sincefis analytic in Yo, DPf(y) 
= l:;'=o(lIq!)(y - yo)qDP+<if(yo)' Using thatfis an exten

sion off, and x - Xo = Y - Yo, we have 

fIx) = ± ~hP( f ~(y - yo)qDP+<if(yo)) 
p=o p. q=O q. 

f ~ (x - xo)q( ± J.-hPDP+:f(Yo)) 
q=O q. p=l p! 

00 1 _ 
= L -(x - Xo)qD :f(Xo) (4) 

q=O q! 
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that proves thatfis analytic at Xo andp(xo»p(yo)' Q.E.D. 
Corollary 3. 3: Let U C S be a G-connected open set and 

Uo C U an open set. Letf, g E G OO( U;F') such thatf = g in 
Uo. Thenf = g in Uo C U. 

Proof It is enough to prove that ifx E Uo, thenf = g in 
! i J n U. Let x E Uo and Br(x) C Uo an open ball, then Br(x) 
is G-connected andf = g in Br(x); by Theorem 3.2 there ex
ists a uniqueh E G 00 (Br(x);F') extension offIB,.(x)' Therefore, 
by the unicity,f = g in Br(x) C U. Q.E.D. 

Proposition 3.4: Let U C Sand U' C S' be G-connected 
opensetsandfE G OO(U;S'), g E G OO(U';F")withf(U) C U'. 
Thenf(U) C U'and(g'f)- =g.f 

Prooff(U) C U' by Theorem 3.2 (iii). Since 
(g. f) - = g . f holds in U, by Corollary 3.3 it holds in 
U. Q.E.D. 

Corollary 3.5: Let U C Sbe a G-connected open set and 
fE G OO(U;S') be a Goo-diffeomorphism ontof(U), a G-con
nected open subset of S '. ThenfE G 00 (U;S ') is a G oo-diffeo
morphism onto f( U) -. 

Proof It is a straightforward consequence of Proposi
tion 3.4 and the fact that the extension of the identity is the 
identity map. Q.E.D. 

We conclude this section with a particular construction 
which will be crucial in our definition of (bodied) supermani
fold. 

Proposition 3. 6: Let S, S 'be superspaces and U C Sa G
connected open subset. Letf E G 00 ( U;F '). Then there exists a 
unique functionfc E C OO(r(U);F;) such thatfc . r = c·f 
This can be expressed by the commutative diagram 

f 
U-F' 

r ~ fc! c 
(5) 

f(U)-F; 

Proof Without lost of generality we can assume U = U 
andf = ]. Let i:r( U) ---+ U the inclusion i(x) = (x,O). Then we 
definefc = c . f· i which is C 00 because it is a composition of 
COO-functions and satisfiesfc . r = c·f by Theorem 3.2 (i). 
To see the unicity, supposef; such thatf; . r = c·f Then 
f; . r = fc . r so thatf; = fc because r is onto. 

It is not true in general that the image of a G-connected 
open set by a Goo-diffeomorphism is G-connected. This is 
because the map induced in the bodies could fail to be injec
tive. The following proposition deals with this problem. 

Proposition 3. 7: Let Ube a G-connected open subset of S 
andf a Goo-diffeomorphism from U ontof( U), open in S '. (i) 
If V C r( U)isopenandfrl v is injective, thenf(r-'(V) n U)is 
G-connected. (ii) If Z C f( U) is G-connected open, then 
fr lu -liZ) is injective. (iii) For all x E U 3 a> 0 such that 
f(Ba(x) n U) is G-connected. 

Proof (i) Let x,y E r-'(V) C U such that rf(x) = if(y). 
Thenfr r(x) = rf(x) = rf(y) = fr r(y) implies r(x) = r(y). So 
there is a continuous path a: [0,1] ---+ r-l(x) joining x and y, 
since U is G-connected. By 3.2f· a is a continuous path in 
r-l(f(x)) joining fIx) and fly). So fIr-ltv) n U) is G
connected. (ii) Let x,y Ef-I(Z) such thatfr r(x) = fr r(y). 
Then rf(x) = rf(y)· By 3.2 r(x) = r(y), since Z is G-connected 
andf-'Iz is G 00. Sofrlrir liZ)) is injective. (iii) Given x E U 
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we take.B> Osuch that Bp (f(x)) C flU) and a > Osuch that 
Ba (x) C f- f(Bp (f(x))). Then (iii) follows from (i) and 
(ii). Q.E.D. 

Part (iii) of Proposition 3.7 means that Corollary 3.5 
only applies locally for G 00 -diffeomorphisms. 

4. EXPANSION OF Goo -FUNCTIONS 

Every Goo-function can be expanded as a polynomial in 
the odd coordinates whose coefficients are functions defined 
over the even coordinates. By imposing some additional con
ditions these coefficients can be determined by functions of 
real variables. The purpose of this section is to discuss this 
expansion. Moreover, as a consequence, partial G-deriva
tives will be determined. 

A. The Z-operator 

Given a supers pace S m. n we are going to construct a 
linear operator Z applying COO-functions defined on r(S ) into 
G "" -functions defined on S. 

Without losing generality we can restrict ourselves to 
the case off E G 00 (U) and Ubeing r-saturated. First we con
sider the case of S m.O. We define a linear operator which 
appliesf --+ j = f· i from G "" (U) into C 00 (r( U), B), when i is 
the inclusion i:r( U) --+ U. Then using the chain rule we ob
tain aj(y)layi = GJ(i(y)) that leads to 
(alalj la/al ... aymam)(y) = G );,1 ... amf(i(y)), where 

lal=a l + ... +a andGlal =Gall ... Gam. 
m uI, .. a m m 

Lemma 4.1: LetfE G ""(U), x, x + h E U with 
r(U) = O. 

(a) Ifu7'~ I Ki is a finite set, there exists a finite integer iii 
[depending on ..5Y = (K;)] such that 

in 1 
f(x+h)= I . . 

i" ... ,im -+ n l.!".lm+n! 

X(h I)il ... (h m + nfmH G:;;~"n ... G'II fIx). (6) 

(b) For general dimension, iff has a nonvanishing con
vergence radius for its Taylor series at x and h is nilpotent 
(i.e., hi nilpotent for i = 1, ... ,m), then 

1 
fIx + h) =. I i I '" i I 

'I.···,lm+n l' m+n' 

X(hlt···(hm+nfm+"G;~~ ... Giif(x). (7) 

Proof (a) Since U is r-saturated, the segment joining x 
and x + h is contained in U. Now ifh is nilpotent, the Taylor 
series cuts off, and by Taylor's theorem it is equal tof(x + h). 
On the other hand, if u7'~ I K; is finite there exists iii such 
that u7'~ I F(K;) C F(Jm ). So ha = 0 if lal > iii and (a) fol
lows. Take now p > 0 to be the convergence radius of the 
Taylor series for f at x. Then in the closed ball Bp , 

= [hlllhil <p' <p I the series converges absolutely and uni
formly. Therefore it defines a continuous function on Bp ,' 

which coincides withf(x + h) for h nilpotent and hence for 
all h by Proposition 1.2.4. 

Next for a given h, by Proposition 1.2.5 there exists 
K = K (h) such that Ilhall <xe lal. So the Taylor series con
verges absolutely for all h (nonuniformly). However, by de-
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composing h = hi + h2 with Ilhlll <p' and h2 nilpotent, it 
follows then that the Taylor expansion coincides with 
fIx + h) by a similar argument as in the proof of Theorem 
3.2. Q.E.D. 

Corollary 4.2: The linear operator Af --+ i from G OO( U) 
into Coo (r( U );B ) is injective. 

Proof We show thatfis determined by j. By (b) of 
Lemma 4.1 and the preceding remarks, 

m 
f(i(x) + h) = I 

al····,am 

m 

= I 
u\ ....• u m 

Now since "A " is injective we have the inverse linear 
operator Z from 1m A = G ""(U) C C ""(r(U);B) onto 
G 00 (U). Then it is easy to see that the operator Z commutes 
with derivatives, i.e., 

G;(Z (g)) = Z (ag
). 

ax' 
(9) 

A characterization of G "" ( U) is not easy to give in gen
eral, but as we show in the next theorem G "" ( U) is wide 
enough to quarantee the existence of nonanalytic C 00 -func
tions which in turn are needed to construct partitions of un i
ty. Prior to stating the next theorem we define C ;(r(U);B) 
as the subset offunctionsfE C ""(r(U);B) such that their 
radii of convergence for their Taylor series are nonvanishing 
at each point x E r(U). 

"'-
Theorem 4.3: (a) For g E C ;(r( U);B), g E G ""( U) and 

00 1 a1alg 
Z(g)(i(x)+h)= I -ha-(x) (10) 

a~O a! axa 

for x E r( Uk r(h) = 0 and i(x) + hE U. (b) Moreover, ifuKi is 
finite then G "" (U) = C co (r( U );B ) and (10) holds. 

Proof (a) As g EC ;(r( U);B) we can define the function 
f(i(x) + h) = ~: ~ 0 (1/ a!)ha(alalgl axa)(x) in a G-connected 
open neighborhood of i(r( U )). Obviously the function so de
fined is G 00 and therefore, Theorem 3.2 can be extended to a 
G "" -functionf defined on U. Also j = g, and g E G "" (U). 
Moreover, by Lemma 4.1 (b) (10) holds. (b) When uK; is finite, 
the series (10) cuts off for some integer iii, and it follows that 
G ""(U) = C ""(r(U);B). 

Next we construct "bell" functions on superspaces. 
Corollary 4.4: Let S be a superspace and U C S a G

connected open subset. Let Uo C UI CUbe open subsets 

such that r( Uo) C r( Utl and is compact. Then, there exists 
g E G "" (U) such that g = 1 on Uo n U and g = 0 on U - UI • 

Proof: By ordinary differential analysis, there exists 
fE C ""(r( U );R), ReB, such thatf = 1 on r( Uo).! = 0 on 
r( U) - r( U I ) (in fact 0</< 1) andf has nonvanishing conver
gence radius for its Taylor series at each point so 
f E C ; (r( U );B ), and taking g = Z (f) we obtain the proper
ties required by the proposition. 

We give below some properties of the Z operator.6 

Proposition 4.5: (i) Let S be a superspace, U C Sa G
connected open subset, and V' a B-module. If 
fEC ""(r(U);B), g E C ""(r(U);V'), then Z(fg) = Z(f)Z(g). 
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(ii) Let S, S' be superspaces, U C S, U' C S' G
connected open subsets, and V" a B-module. If 

IE C oo(r(U);R m') such that Z(f) E G "'(U;S') and 
I(r( U)) C r(u'), and g E C "'(r( U'); V"), then 
Z(g·/) =Z(g) .Z(f). 

The proof is standard in the theory of expansion offunc
tions. 

In general for a superspace S m,n we have that the map 
G "'(U) ~ G "'(U) C C "'(r(U);B) is not injective. However, 
A is injective when restricted to the subset G :' ( U) 
= t/EC"'(U)lf·e=/l wheree:U_ Uis the projection 

onto the "even" part of superspace, i.e., e(l:7'=+1 n ai ei ) 

= l:7'= I ai ei • Then Z is defined by Z = ("'1 G ~I UI) -I. Obvi

ously Z (f) ~ = I for lEG'" ( U). On the othe~ hand, for 

IE G "'(U),/. =1' e E G:' and!. =!HenceZ(/) =i.,and 
Gi Z (f) = 0 for i = m + 1, ... ,m + n. It is immediate to see 
that all statements made before for the Z operator in the case 
of a superspace S m,O are still valid in the general case S m,n. 

B. Expansion of Goo -functions 

In this subsection we give the expansion of G '" -func
tions in terms of Coo-functions ("superfield expansion"). 

We introduce the family of maps II L : S m,n - B where 
L C {I, ... , n 1 = I n defined by ll\ZJ(x) = 1 and 

II ( ~m + n i) m + i, m + i, m + ik fi L I' . 1 L -'i= I aei = a a ... a or = lll, .. ·,lk 
(il< ... <ik )· 

Theorem 4.6: lEG'" ( U) iff there exists a family 

IL E G "'(U), L EF'(Jn) such that 

I(x) = I llL(X)Z(fL)(X), 
L E FIJnl 

Proof First since llL and Z (fL) are G "', I(x) 

(11) 

= l:ll L (x)Z (fL )(x) is G "'. To prove the converse we intro
duce some notation; x = l:~+l n aiei = (y,O) E (B °t X (B I)n, 
/ = ai for i = 1, ... ,m and Oi = a j + m forj = 1, ... ,n. Now giv
en/(x) E G "'( U) we write the Taylor expansion around 
e(x) = (y,O), 

l(y,O) =/(y,O) 

+ ~ Oi, ... OikG ... G. l(y,O) (12) 
~ 'k+m" +m 

1<i1<···<ik<n 

which proves the theorem by observing that 1TL (y,e) 
= Oi, ... Oik and that GL/(y,O) = GLI· e(y,O) 
= Z(GL/)(y,e). SOiL = GLf Q.E.D. 

The relationship between superfields (in physics) and 
G '" -functions is given by (11). This expansion corresponds 
to the expression of a superfield in forms of ordinary fields. It 
is worthwhile to observe that different families of functions 
IL may correspond to the same G '" -function/, unless S is 
free. 

Having chosen a family {IL 1 corresponding to a G 00_ 

function/, partial G-derivatives of lean be fixed as follows: 

GJ(x) = IllL(X)Z(~/L)(X)' 1 <.i<,m, 
/ ax' (13) 

GJ(x) = I llL(i)(x)Z(fL)(X), m + 1 <,i<,m + n, 
L 
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where llL(i) = 0 ifi Et L, llL(i,) = ( - 1)'+ WL -ii,1 (x) for 
L = {il, ... ,i,,. .. ,ik 1 ordered. 

Partial G-derivatives of higher order can be obtained by 
iteration. 

We observe that the partial G-derivatives so fixed are 
Goo-functions. Equations (13) provide the so-called induced 
expansion (from that of I) for partial G-derivatives. From 
the usual Schwartz lemma and (13) we get the Schwartz 
lemma for G OC-functions as 

(14) 

We have shown in (13) how to fix partial G-derivatives 
of a G '" -function I once a family {IL 1 is given. However, 
there still remains the problem of how to choose such a fam
ily in the case where S is nonfree. The choice in Proposition 
2.11 of Ref. 2 is unsatisfactory since the projection used to 
definelL does not eliminate the ambiguity in the odd partial 
G-derivatives of order greater than one. Next, we give a pre
scription to do that. 

Let us remind the reader that qL = 1-PL, PL being 
the continuous projection onto the annihilator ofIm II L' 

(See Lemma 1.2.6.) 
Lemma 4. 7: (i) Letg E C oo(r( U);B) and L E F(Jn ); then 

for all x E U, llL(X)Z (g)(x) = llL(X)Z(qL . g)(x). (ii) If Iv 
gL E COO(r(U);B), L EF(Jn ), and l:L llL ZL(fL) 
= l:L llL ZL(gL)' thenqL ·IL =qL ·gL for all L. 

Proof (i) Since Z is L B -linear, it is enough to prove that 
II L Z (PL . g) = 0, i.e., that Z (PL . g)(x) EEL' the annihila
tor of 1m II L' X E U. From (10) and E L being an ideal 
(Lemma 1.2.6) this follows. In fact, the partial derivatives of 
PL . g are EL -valued because PL .g is EL -valued. (ii) It is 
enough to prove that l:L II L Z(fL) = 0 implies q L fL = 0 
for all L E F(Jn ). Let us suppose we have proved that 
qL . Z(fL) = 0; then qL ·IL = qL . Z(fL)' i = O. 
qL . Z (fL) = Ocan be expressed as IlL Z (fL) = O. We prove 
the last equality by induction over card (L ). If L = 0 and 
x = (y,O), then Il\ZJ(x) = 1 and llL(X) = 0, L #0. Then 
l:L IlL (x)Z(fL)(X) = Z(f\ZJ)(X) = O. For any x = (y,z), 
Z(f\ZJ)(x) = Z(f\ZJ)(y,O) = O. We now assume that 
IlL Z (fL) = 0 for card (L )<,k - 1, k;;d. Let L be fixed with 
card (L) = kand x = (y,Z),Zi = Oifi Et L. ThenIle (x) = Oif 
L' #L and card (L '»k. Using the induction hypothesis 

I IlL' Z(fe) = I IlL' Z(fL')' 
L' card (L 'I;>k 

hence 

card IL 'I> k 

For a general x = (y,Z) = (y,ZL) + (O,Z~), Z~ = Zi, i E L, and 
z~ = 0, i Et L. Then II L (x) = II L (y,ZL) and Z (fL )(x) 
= Z (fL )(y,ZL)' This proves the induction. 

Theorem 4.8: There is a rule to assign to each G 00 -func
tion a unique expansion, called the canonical expansion, 
such that the induced expansion for partial G-derivatives is 
canonical. 

Proof The rule to obtain the canonical expansion of lis 
given by the family {qL ·IL 1 if the family {IL 1 is any expan
sion off This rule is well defined because of Lemma 4.3. 
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To prove that the induced expansion is canonical, we 
first observe that q L ·IL = IL iff IlL I is canonical. For 
1 <i<m, qL((alaxi)qL ·IL) = (alaxi)qL -fL because 
(al axi)q L ·IL has its image in 1m q L. Now, if IlL J is canoni
cal, this proves that I (a;axi)/L J, 1 <J<m, is canonical. For 
m + l<i<m + n, we have (GJ)L _1'1 =IL' i E L in the in
duced expansion, and qL _ iii . qL = qv i E L proves that 
!( GJ)L _ I if L E L is canonical if [IL J is canonical. 

Although the results of this section have been derived 
for Goo-functions taking values in B, they are also valid for 
Goo-functions taking values in a B-space. We observe that 
G 00 ( U;F) is a proper subalgebra of C 00 ( U;F) and the func
tions/E C oo( U;F) and their derivatives can be SUbjected to 
many restrictions to have their image into F. Moreover, for 
the canonical expansion of IE G OO( U;F) somelL must neces
sarily vanish (depending of the B-space dimension of F). 

5. CONCLUSION 

In this paper the analysis on generalized supers paces 
has been discussed. First of all, the concept of G-differentia
bility has been established. The successive differentials of 
Goo-function are Lrmultilinear operators involving exten
sion problems (see I) and the lack of uniqueness of partial G-
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derivatives. We have solved this problem by means of the 
canonical expansion of Goo-functions introduced in Sec. 4. 
The extension theorem has been revisited for generalized 
superspaces. Some new important properties of the exten
sion are proved: composition of functions is stable, extension 
of a diffeomorphism is again a diffeomorphism, and analy
ticity is preserved by the extension. A linear operator Z has 
been constructed which allows one to produce Goo-functions 
out of Coo-functions. In general not every Coo-function has 
an image in G 00 through Z, but bell functions can be mapped 
on nonanalytic Goo-functions. Nevertheless, Z maps analyt
ic functions on analytic functions. 

The next paper of the series (III) will be devoted to the 
study of supermanifolds. 
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elements of the theory of Lie supergroups and principal superfiber bundles as p-supermanifolds 
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1. INTRODUCTION 

This is the third paper of a series in which we develop 
step-by-step a theory of generalized supermanifolds, i.e., 
manifolds containing commuting and anticommuting co
ordinates. Our aim is to give a mathematical setup capable to 
serve as framework for a rigorous study of geometrical prob
lems appearing in supersymmetric theories. 

We shall refer here to the two preceding papers as I and 
II. I In Paper I a model for generalized superspaces has been 
constructed using as a building block a Grassmann-Banach 
algebraB. AlsoLB-operators between superspaces and their 
matrix representations have been studied there. In Paper II 
the analysis on supers paces was developed, centering the dis
cussion around the concept of G"" -functions and their prop
erties. 

The present paper is devoted to the study of supermani
folds modeled in generalized superspaces. 

We start in Sec. 2 with a concept of supermanifold 
which is a direct generalization of that of Ref. 2. However, 
the existence of a well-behaved body for the supermanifolds 
impose restrictions on them. As a result of the analysis of 
these restrictions we arrive at the concept of p-supermani
folds. In Sec. 3 we give precise definitions of p-supermani
folds and of G"" -functions defined on them. Ordinary C"" -
manifolds can be considered as a particular case of 
p-supermanifolds, for which the p-supermanifold and its 
body coincide. The existence of partitions of unity for p
supermanifolds is established in Sec. 4. Section 5 is devoted 
to the study of G"" -vector fields and G"" -derivations on su
permanifolds. We find that G"" -vector fields are a proper 
subset of G"" -derivations and we reserve the name of super
vector fields for G"" -derivations. Then, apart from the tan
gent bundle, whose G"" -sections are the G"" -vector fields, 
we give room to the G"" -derivations as sections of a "super
tangent" fiber bundle in Sec. 6. In this way we define a class 
of vector bundles, which we call supervector bundles or L B

bundles, characterized by the fact of having L B -transition 
functions. In Sec. 7 we deal with supertensor fields and dif
ferential superforms on p-supermanifolds. Finally in Sec. 8 
Lie supergroups and principal superfiber bundles are de-

fined and their main properties within the framework of p
supermanifolds outlined. 

In some parts of this paper we restrict our study to the 
free superspaces (see I). This restriction simplifies the discus
sion considerably and, on the other hand, is the most rel
evant case in physics, because non vanishing products of an 
arbitrary number of anticommuting fields are required. 

2. DISCUSSING THE CONCEPT OF SUPERMANIFOLD 

G"" -supermanifolds were first introduced by Rogers.2 
We start from that definition of G"" -supermanifold, focus
ing our attention on having an operative body for the super
manifold. 

Definition 2.1: Let S be a superspace and E a Banach 
C"" -manifold3 modeled on S. (a) A G"" -atlas on E is a C"" -
atlas {( Ua, lJIa) Ja E A on E, such that for each pair a, PEA 

tPaf3 = tPf3 . tPa- 1 is G"" from tPa(UanUf3) on to tff3(UanUf3)' 
(b) A G"" -structure on E is a maximal G"" -atlas on E. (c) A 
G"" -supermanifold E is a Banach C"" -manifold endowed 
with a G"" -structure. If S is free we call E a free G"" -super
manifold. 

As we saw in the previous papers I and II of this series, a 
major feature of the superspace is the existence of a body 
map r:S"',n _ Rm. In the following we analyze the sense in 
which it is possible to also define a body p: E _ Ep for the 
supermanifold with similar properties to r. This analysis will 
lead us, in turn, to reformulate the concept of supermanifold. 

Let us study to what extent the body of a supermanifold 
can be defined through an equivalence relation. This ques
tion was earlier discussed by Rogers2 following the work of 
de Witt.4 There the equivalence relation x - y iff 3 (U,tP) 
G"" -chart such that x, y E U and rt/J(x) = rt/J( y) is proposed. 
This relation is, however, of no use in Haussdortf manifolds 
(with which we shall deal) because all points become related 
into a single class. To avoid the triviality of the former rela
tion we could introduce restrictions on the allowed charts. In 
view of the natural domain of definition of G"" -functions 
discussed in II, the suited condition would seem to be t/J( U) 
cG-connected (connected + G-connected). Unfortunately 
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this condition destroys the transitivity of the relation. Let us 
illustrate it with an example. 

Example 2.2: Let us take the superspace S 1,1 = R XB I 
whereB I is the odd part of the Grassmann algebra generated 
by the two anticommuting generators.81 and.82• Let us con
sider the two open subsets A and B of S 1,1 defined as 

A = f (x,yIBI + yz.B2) Ix E JR, (0 <YI < 1 and 0 <Yz < 3) or 

(I<YI <2 and (O<Yz < lor 2 <Y2 < 3)) J (1) 

and 

B = f (x, Y~I + yz.B2) Ix E JR, (3 <YI <4 and (0 <Yz < 1 or 

2<Yz <3)) or (4<YI <5 and O<Yz < 3)J. (2) 

Next, we take in AuB the equivalence relation 

{

X =X"YI =Y;,Y2 =Y;, or 

~ x=x', I<Yz<2,0<Yz<I,Yi =YI +2,y~ =Yz, or 

x = x', 3 <YI <4, O<Yz < I'YI =Yi + 2,y; = Y2' 
(3) 

Now we consider the quotient space E = AuB If/? [see Fig. 
l(a) and l(b)] and the canonical projection TT: AuB _ E. 
Then 1T(A ) = A and 1T(B ) = Bare open subsets of E, and TTl A, 
TTIB are homeomorphisms. We now endow E with a Goo -
atlas consisting of two charts (A, ifJ) and (ii, rP), with ifJ = TTl 
A -I and ifJ = t . TTIB -I, where t is the translation on S 1,1 

given by t (X'YI.81 + YZ.82) = (X'(YI - 2)131 + YZ.82)' Then 
ifJ(A) = A and rp (B) = t (E) are open cG-connected sets, 
ifJ(Ariii) = rP (Ariii) = [(X'YI.81 + Yz.82)lx E JR, 1 <YI <2, 
O<Yz < 1J and ifJ· rP -I = rP' ifJ- 1 = Ie' So we have a Goo_ 
supermanifold structure on E. 

Let us now see that the relation - fails to be transitive. 
Take u = (0, ~.81 + ~.82) EA, v = (0,~.81 + ~.82) EE, 

W = (0, ~.81 + ~.82) EA, and 1T(u) = u, 1T(v) = v, 
1T(w) = w. Then u - w through (A, ifJ) and w - v through 
(ii, rP ). However, there is no Goo -chart (U,o) with 0 (U) cG
connected with u,v E U. In fact, would such a chart exist, the 
transition functions oifJ- 1 and orP -I, being Goo , should have 
the form 

, 
, , 

" body 

(a) 

A B 

I 

, , 
I 

" body 

(b) 

FIG. I. (a) A section of the subset AuB with constant body. (b) The manifold 
E = AuB / R. The points in the two shadowed regions of A and B have been 
identified. 
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[0 . ifJ-I](X'Y~1 + yz.B2) = (a (x), b (x) + (Y~I + yz.B2)C(X)), 

[0. rP -I] (x', Yi.81 + y;.82) = (a'(x'), b '(x') 

+ (Yi.81 + y;.82)C'(X')). 

Then, since 0 (U) is cG-connected we have unA'riii #0. As 
rP • ifJ- I = Ie, we arrive at 0 . ifJ- I = 0 . rp -Ion ifJ(unA'riii). 
Hence a = a', b = b', c = c'. As a consequence the contra
diction 0 (u) = 0 (v) with u # v (0 must be injective) results. 
Therefore the chart (U,o) does not exist and the relation -
fails to be transitive. 

Although in the former example the relation - fails to 
be an equivalence, it is clear that a body can be naturally 
defined by pix, Y~I + Y2 .82) = x. On the other hand the re
lation - is reflexive and symmetric, and can be extended to 
an equivalence relation :::::: on E by means of finite chains: 
x::::::y iff 3 XI' ... 'Xn such that X-XI' XI -X2,· .. ,xn -yo 
Then in Example 2.2 E I:::::: = JR which is the manifold that 
we would look at naturally as the body of E. In general we 
can define the body of E as E p = E I:::::: with the quotient 
topology. The body map is then the canonical projection of 
::::::. We observe that if x - y, a path joining x and Y with 
constant body does exist; therefore the same is true for x::::::y. 
Then the body of E is determined by a given GOO -atlas. How
ever, this constructive procedure would be useless to find 
explicitly the body in a particular supermanifold. The main 
reason is that the coordinates in a given chart (U, ifJ) of two 
related points x::::::y could have a different body, i.e., 
n,b(x) # rifJ( y). We give now an example to illustrate this 
point. 

Example 2.3: Let us take the superspace S 1.1 = JR X B I, 
whereB I is the odd part of the Grassmann algebra generated 
by one generator.8. We consider the band A in JR2, 
A = [(x, y) E JR21x E JR and O<y< 1 J, and make a cylinder E 
of it by identifying (x,O) with (x, I) for x E R. We proceed to 
give a Goo -atlas to E. 

Let U = [[(x, y)] E E Ix E JR, O<y < j or ~ <Y< Ij and 
V = [[(x, y)] E E Ix E JR, 0 <Y < Ij. [(x,y)] is the equivalence 
class of (x,y) E A in E, and U, Vare open connected sets in E. 

Let ifJ: U _ S 1,1 given by 

{
(X'Y.8), x E JR, i <y< 1, 

ifJ([(x,y)])= (x,(y+l).8),xEJR,O<y<~ (4) 

and rP: V - S 1.1 given by 

{

(X'Y.8), x E JR, 0 <y<j, 

rP ([(x,y)]) = (x + Y - j,Y.8), x E JR, j<Y<5, 

(x + j, y.8), x E JR, j<Y < 1. 

(5) 

Then ifJ( U) and rP ( V ) are cG-connected open subsets of S I, I . 
Moreover, ifJ . rP - I: rP (Un V )-ifJ( Un V) is Goo and so is its 
inverse rP . ifJ- I. 

Let us now take [(x, ~)] E E. Then [(x, ~)] 
- [ (x + j, i)] through V. But [(x + j, m - [(x + j, ~) J 
through U. 

Therefore [(x, ~)] :::::: [(x + j, ~)]. Using the same argu
ment and induction we see that [(x, y)] :::::: [(x + n/3,y)] V 
n E Z. So we have rifJ[(x,y)] = x#x + n/3 
= n,b[(x + nI3,y)], n#O, butp([(x,y)]) =p([(x + n13, y)]). 

Nevertheless, in this example it is easy to see what the 
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body and the lines of constant body are. The body 
E /::::: = S I = R/Z and the lines of constant body are drawn 
in Fig. 2. 

We remark that E =l=S I XB I as a manifold, since the 
natural bijection between them cannot be continuous, be
cause U is connected in E but its image in S I XB I is not. 

We now go further in the discussion of the body defined 
by :::::. We shall see in the next example that this body could 
fail to be a manifold. 

Example 2.4: Let E = R/Z X R/Z be the torus. A Goo -
atlas for E is given by 

and 

UI = ![(x,y)] 10 <x < 1, O<y< lj, 

U2 = {[(x,y)]IO<x< 1, !<y<~I, 

U3 = {[(x,y)] I! <x<~, O<y< II, 
U4 = {[(x,y)] I! <x <~d<y<~J, 

"'i([X,y]) = (y - ax, xP), i = 1,2,3,4, 

(6) 

(7) 

where a is an irrational number a E R - Q. The transition 
functions are always translations. Hence {( Ui , "'i)' 1 <J..; 4 J 
defines a Goo -supermanifold structure on E. Now each line 
{(x,y) E R21y = ax + b J = Lb C R2, with b E R, corre
sponds to a line of constant body on E. Then the body of E is 
R/aZ + Z, which is not a manifold with the quotient topol
ogy. 

In view of these examples, we should look for condi
tions ensuring the existence of a well-behaved body. A natu
ral condition to impose is 

Condition (a): Existence of a manifold Ep' a Goo -atlas 
with cG-charts {( U, "') J on E, and a Coo -atlas {( V, ,p ) J on E, 
such that p( U) = Vand,p . p = np. 

Condition (a) is essentially the same as that imposed by 
Marchetti and Percacci5 in their definition of supermanifold 
with body. Unfortunately, it is not strong enough to guaran
tee the existence of nontrivial GOO -functions on supermani
folds. The reason is that compactness along the soul is al
lowed, and this in tum excludes Goo -functions nonconstant 
along the soul. We illustrate this point with another exam
ple: 

Example 2. 5: Let us take the cylinder E = R X R/Z. We 
endow E with a GOO -supermanifold structure through the 
atlas 

UI = {[(x,y)]lx E R, 0 <y < 1 J, 

U2 = {[(x,y)] Ix E Rd <y<~J, 
"'i([X,y]) = (x,yP) E S 1,1, 

where S 1,1 is the same superspace as in Example 2.4. 

(8) 

The body of E is Ep = p(uIl = p( U2)::::: R. Then it is im-

---r---.----r---r---r-- Y" I "0 

2 
Y"'i 

FIG. 2. A line of constant body on a supermanifold constructued over a 
cylinder. 
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mediate that the isomorphism,p: Ep -+ R defines a manifold 
structure in Ep and satisfies r· "'i =,p . p. 

We now take a Goo -function! E -+ B, given in coordi
natesbyf· "'i-I =/;(x,yP) = ai(x) + yPbi(x).For(x,yp)with 
! <y < 1 we obtainfI(x,yp) = nx,yp); therefore al(x) 
= a2(x) = a(x) and bl(x) = b2(x) = b (x). On the other hand, 

for (x,yP) with O<y<! we obtainfl(x,yp) =f2(X,ty + 1)/3); 
therefore a(x) + yPb (x) = a(x) + ty + l)f3b (x). So Pb (x) = 0 
and/; (x,yp ) = a(x). The last means thatf depends only on 
the body, i.e.,f = a . p where a:Ep -+ B is Coo . In general, 
this phenomenon will always appear when we have p -I(X) 
compact. In this case GOO -functions are polynomials and pe
riodic alongp-I(x), so they must be constants onp-I(x) for a 
fixed x E Ep. So they depend only on x. 

From these considerations we conclude that a further 
requirement is needed in order to have Goo -supermanifolds 
with body which can support nontrivial GOO -functions. To 
Condition (a) the following must be added. 

Condition (b): The atlas {( U,,p ) J and {( V,,p ) I of
Condition (a) also satisfy p -I (V) = U. 

In the next section we begin giving a formalized defini
tion of p-supermanifold which meets all requirements dis
cussed above. 

3. p-SUPERMANIFOLDS. Goo -FUNCTIONS 

As pointed out at the end of the last section, we begin 
with the definition of p-supermanifold (supermanifold with 
an operative body). 

Definition 3.1: Let E be a Coo -manifold modeled on a 
superspaceS;,,·n,Ep a Coo -manifold modeled onp(S) = Rm, 
and p a Coo -map from E onto Ep. (a) A p-atlas on the triple 
(E,Ep'p) is a pair ofa Goo -atlas {(Ua, "'a)1 on E and a Coo_ 
atlas {(Upa ' "'pa)} on Ep such that (i) "'a(Ua) is cG-connect
ed, (ii) Ua = p-I(Upa )' (iii) "'ap . P = r· "'a (where r is the 
body map on S m.n). (b) A Goo -p-structure on the triple 
(E,Ep,p) is a maximalp-atlas. (c) Ap-supermanifold is a tri
ple (E,Ep'p) with a Goo -p-structure on the triple. 

The manifold Ep is homeomorphic to the body E / :::::. 
This allows one to endow the body E /::::: with a structure of 
Coo -manifold. In what follows we shall not distinguish any
more between Ep and E / :::::. Superspace is an example of p
supermanifold. An open subset U C E is said to be G-con
nected iff or eachp-chart (UI,"'Il of E, "'1(UlnU) is 
G-connected. A G-connected subset of a p-supermanifold is 
itself a p-supermanifold. The direct product of two p-super
manifolds is again a p-supermanifold with the obvious p
atlas. Example 2.3 is a p-supermanifold, i.e., it admits a p
atlas compatible with the atlas given there. 

Given ap-supermanifold E, we shall define itsp-satura
tion E which is itself ap-supermanifold with the same body. 
Moreover, E will be an open submanifold of E. We proceed 
to construct E. 

Let {(Ua,"'a)}a E A be ap-atlas of E. For each a EA, 

let ("'a (Ua t ) be the p-saturation of", a ( Ua ) and E ' 
= U~EA ("'a(Uat) the disjoint union. We define an equiv

alence relation in E' by x R Y iff ippa (x) = y, X E ("'a (Ua t ), 
y E ("'p( Up t ). R is an equivalence relation by the results of 
Paper II, Sec. 3. Let E = E '/ R. It is well known that E is a 
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manifold. We now definep:E - Ep by p([x]) = tPp-al . r(xlif 
x E (tPa(Ua)- );p is clearly a well-defined Coo -map from E 
onto Ep. A p-atlas for E is constructed as follows: let 
Va = [tPa(Ua)- ] and ¢a:Va -S be the map ¢a([x]) = x 
for x E tPa(Ua)- . Finally,we give the inclusionjfromEinto 
E;j(x) = [tPa (xU if x E Uq . By identifying E with its image 
we have Ua C Ua , tPa = tPa IUa andp = piE. 

Let us remark that E is a de Witt4 supermanifold with a 
stronger topology. As observed in Ref. 2 the fiber of E is a 
vector space. However, E is not a vector bundle because the 
transition functions fail to be linear in the fibers. 

Next we define Goo -functions onp-supermanifolds. Let 
E I, E2 bep-supermanifolds and VaB-module. Let UCEI be 
an open subset andf U _ V;fis Goo iff for eachp-chart (U1, 

tPd of EI,f· tPI- I is a Goo -function from tPI(UlnU) into V. 
Similarly,! U - E2 is Goo iff for eachp-chart (UI,tPd of EI 
and (U2,tP2) of E2, tP2 ·f· tPI- I is a Goo -function from 
tPI( UtnU) into tP2( U2)· 

Let Goo (U, V) be the set of Goo -functions from Uinto V. 
In the particular case V = B, we simply denote it by Goo (U). 
Proposition 2.2 of Paper II applies here. 

Since each GOO -function defined on E can be uniquely 
extended to E, we shall deal in the following only with satu
rated p-supermanifolds and drop the notation ~. Given a 
subset U of E, the saturation Vof U is defined as V 
=p-I (p(U)). 

As in Proposition II. 3.6 forsuperspaces; if UCEis a G
connected open set andfis a Goo -function from U into E z, 
there exists a unique Coo -functionfp fromp(U)_Up CElp 
into E 2p such thatfp . p = r . f 

Let us finally observe that if E is ap-supermanifold and 
(U,tP) ap-chart of E, then U is G-connected, tP is a Goo -func
tion, and tPp is the induced map from Up into r(S). 

4. PARTITIONS OF UNITY 

We deal in this section with the existence of "bell" func
tions on p-supermanifolds and the problem of constructing 
partitions of unity. 

Lemma 4.1: Let E be a p-supermanifold, U C E an open 
set, and p E U. Then, there exists an open neighborhood Uo 
of p, Uo C U, and g E Goo (E) such that g = 1 on Vo, g = 0 on 
E - Vand O..;;r .g..;; 1. 

Proof Let (V,tP )be a p-chart with p E V. Take 
W = tP (VnV). Sinceris an open map r( W) is open in lRm

, and 
r . tP (P) E r( W). Then there exist two relatively compact open 
setsZo,Zsuch thatr· tP (P) EZOCZOCZ j CZI Cr(W). Asa 
consequence tP (P) E U ~ C Vb C u; C V; C W where 
Ub = r-I(Zo), U' = r-I(Zd. Now by Corollary II. 4.4 ap
plied to U b C U; C tP (V) there exists h E GOO (tP (V)) such 
that h = 1 on U band h = 0 on tP (V) - U;. We can also 
assume that O";;r· h..;; 1 [choosing h = Z (r. h)]. 

Next, we define Uo = tP -1(Ub)nU andf E _B by 
g(q) = h . tP (q) for q E V and g(q) = 0 for q E£ V. Then g is a 
well-defined Goo -function satisfying the conditions of the 
lemma, because tP -I(V; ) C Vn VC V. Q.E.D. 

A similar result also holds replacing the point p by a set 
K, with p(K ) relatively compact. 
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Corollary 4.2: Let E, Ube as in Lemma 4.1. Let K CUbe 
such thatp(K) is compact. Then, there exists a neighborhood 
Uo of K, Uo C U and g E GOO (E) such that g = 1 on Vo, g = 0 
on E - V, and O";;g p ..;; 1. 

Proof For each p E K, there ~xists p E Up C U ~d 
gp E Goo (E) such that gp = 1 on f!.p ,gp = 0 on E - U, and 
O..;;r.gp";;1. We can assume that Up = Up. We have 
p(KlCupEKP(UP) andp(Up) open. Sincep(K) is compact, 
there exist PI> ... ,Pn EK such thatp(K)Cu7~IP(UpJ Let 
Uo =p-l(u7~ IP(Up,))nU = u7~ I Up, andgE Goo (E) be 
g = 1 - (1 - g )( 1 - g ) ... (1 - g ). Trivially g = 1 on _ PI __ P2 P,., 

Uo, g = 0 on E - U, and O";;qp ..;; 1. Q.E.D. 
Theorem 4.3 (partitions of unity): Let Ep be paracom

pact and let ( Ua J be an open covering of E. Then, there 
exists a partition of unity subordinate to Ua , i.e., there exists 
a family { tPa J,tPa E Goo (E) such that (i) SuPP(tPa)C Va (ii) 
{Supp (tPa)) is a locally finite covering of E, (iii) (tPa)p(x»O 
V x E Ep ' and (iv) l:a tPa (P) = l,y E E. 

The proof uses the existence of partitions of unity in Ep ' 

Lemma 4.1, and the fact that Z is a linear operator. 

5. SUPERVECTOR FIELDS 

We shall discuss in this section vector fields onp-super
manifolds. It will emerge from the discussion that GOO -vec
tor fields do not coincide with Goo -derivations, and two tan
gent spaces must be considered. First, we shall endow the 
usual tangent space T (E) over a p-supermanifold E with a p
structure. Let T (Ep) be the tangent space of Ep (as Banach 
manifold), and p. : T (E) _ T (Ep) the derivative of p. Then, 
for {(Ua' tPa J ap-atlas of E, (T(Ua), tPa' J is ap-atlas for the 
triple (T (E), T (Ep), p.). This defines a p-supermanifold 
structure which does not depend on the specific p-atlas cho
sen for E. 

As T (E) is ap-supermanifold, it makes sense to consider 
Goo -vector fields on E. Moreover, if X: E _ T(E) is a Goo_ 
vector field, it is immediate that X can be considered as a 
derivation on Goo (E). However, Goo -vector fields do not ex
haust all derivations on Goo (E ). 

Definition 5.1: (i) A supervector field X on E is a deriva
tion of Goo (E); i.e., an element X E LB(Goo (E)) such that 

X(fg) = (Xf)g + (- I)'Y(Xg) 

with X E LB(Goo (E W,fE Goo (E y, g E GOO (E). (ii) A Goo_ 
vector field is a Goo -section of T(E). 

Let us observe that a Goo -vector field is image preserv
ing, i.e., for eachKCJ andfE GOO (E), (Imf)CB k 
::::>Im(XG) CB k for XGOO -vector field. 

As a consequence of Corollary 4.2 we have that if UCE 
is open andfE Goo (E) vanishes on U, then Xf = 0 for every 
supervector field X. 

Then, the field X in a chart (U, tP) will be expressed by 
X = l:;"~+ln a j alaxj

, whereaflaxj = Gj(f· tP- I) and 
a j: UJ _ B is a Goo -function (Gj is the canonical derivative 
introduced in Paper II, Sec. 4). We observe that a lax

j is not 
a derivation if x

j 
is odd and K j is finite. However, we can 

write X in local coordinates and get a characterization for 
supervector and Goo -vector fields. 

Proposition 5.2: Let (U, tP) be ap-chart of E. Then, (i) X is 
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a supervector field on U iff X = ~'('= ~ naia/ axi, where 
ai E Goo (U) and/3K/ = 0, when m + l,;;;;;i<;m + n andKi is 
finite. (ii) X is a Goo -vector field on U iff X is a supervector 

field and X = ~'('=+I naia /axi with 1m aie B ii' ri = 0 for 
1 <;i<;m and ri = 1 for m + 1 <;i<;m + n. 

To prove Proposition 5.2 we need the following lemma. 
Lemma 5.3: LetSbeasuperspaceand UeSaG-convex 

subset. LetfE Goo (U) and Xo U. Then, there exist 
gi E Goo (U), 1 <;i<;m + n, such that 

m+n 
f(x) =f(xo) + L (Xi - X~)gi(X) 

i=1 

and 

gi(Xo) = GJ(xo)· 

Proof Takinggi(x) = f6GJ(Xo + t(x - xo)) dt, the 
proposition follows from the Fundamental Theorem of Cal
culus applied to the function t - f(Xo + t (x - xo)), where 
GJ is the canonical derivative. Q.E.D. 

Proof of Proposition 5.2: By Lemma 5.3, if X is a deriva
tion, X = ~'('=+Inaia/axi with ai = X (Xi) E Goo (U). On the 
other hand, ifKi' m + 1 <;i<;m + n, is finite, thenxi/3K

i 
= O. 

Hence 0 = X(X'PK,l = X(xY3K ,. Conversely as we noted be
fore, a/axi is a derivation unless K i , m + 1 <;i<;m + n is fin
ite. In that case a(fg)/axi - (af /axi)g - ( - l)lf!(ag/axi) 
is a function multiple of /3 K

i
' Therefore, if /3 K/ = 0, 

~'('=+I naia/axi is a derivation. 
For X a Goo -vector field and (U, t/J) ap-chart, as we said 

before the expression in coordinates is X = ~'('= +1 naia/ axi, 
where a = (ai, ... ,am + n) E Goo (U, S). Hence (ii) 
holds. Q.E.D. 

We shall denote the set ofsupervector fields, and Goo_ 
vector fields by X (E) and X (E ), respectively. We remark that 
the only supervector fields with associated (local) unipara
metric group of transformations are the Goo -vector fields, 
because each vector tangent to a curve on E is necessarily in 
T(E). 

We observe that the space of supervector fields X(E ) is a 
Goo (E I-module. It is also a Lie superalgebra (over B) with the 
bracket[X, Y] =XY - (- 1)IXIIYlYX.However,x(E)isnot 
a Goo (E I-module, and the bracket gives it a structure of Lie 
algebra over lit 

We consider now how given a Goo -derivation x on 
GOO (E), it is possible to associate to X a derivation Xp (the 
body of X) on Coo (Ep). First, in the case of a GOO -vector field 
X: E _ T(E) we can define a (unique) Coo -section 
Xp :E _ T (Ep) which provides a Coo derivation on Ep as the 
one satisfyingp •. X = Xp . p. 

Takingp-coordinates (Xl, ... ,xm + n)inEand (yl, ... ,ym) 
inEp with/ =x~ for 1 <;i<;m, the local expressions of X and 
Xp in these coordinates are X = ~'('=+Inaia/axi and 
Xp = ~;:, I a~a/axi. For a general supervector field we use 
the last expression to defineXp in ap-chart. This defines also 
Xp globally. In fact, if we take another p-chart with coordi
nates (Xi)l m + n and (V);", we have X (x j) = ~;:'+I nX(xi)aXi/axi 
and X (xj)p = ~;:+lnX(xi)p(axj/axi)p. Now taking into ac
count that (ax j / axi)(p) E L B (S) and that for each function 
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between two supermanifoldsf E - E', (f,,). = if. )p' we ob
tain for l.;;;J<;m 

. {ayj . 
(

aX') -.' 1 <;l<;m, 
-.= ay' , 
ax' 

0, m + 1 <;i<;m + n 

(9) 

soX(Xi)p =~;:, IX(xi)payj/ayi. _ 
Next we discuss the dual of X(E). X*(E) = 

(w: X(E) - Goo (E), with waG'" (E I-linear mapping). By 
Lemma 4.1 if X E X(E) and X = 0 on U open in E, then 
Xu> = 0 on U. This allows one to construct local expressions 
for the forms in X *(E). Take the chart (U, t/J). We consider 
first E free. Then, a laxi E X(E) and ~'('=+I n(aia/axi)w = 
~'('=+I na'(aw/ax') = ~;:~ na,w,. In this case, we define dx' by 
a(dx,)!axj = oj, so that w = ~'('=+Indx' W,. However, if some 
K, (m + 1 <;i<;m + n) is finite, a lax' Et X (E) and (a/axi)w 
makes no sense. To avoid this problem we consider the sub
set n I(U)eX*(U) of maps of the form ~'('=+Indx' W, with 
w' E Goo (U), defined by ~j=~n(dala~)~'('=+lndx' w, 
= ~;:+I na'w i· We observe that the coefficients w' are not 
uniquely determined because dx' w; gives the same linear 
mapping on X(E), provided w; - Wi E /3 K. for K, odd and 
finite. Now define n I(E) as the subset of el~ments w of X *(E ). 
such that wi u En I( U) for each p-chart (U, t/J) of E. We re
mark that when E is free, n I(E) = X *(E ). 

In a similar way to the case of supervector fields the 
body of a I-superform won E is defined as the I-form wp on 
Ep given in coordinates by wp = ~'('= I wp' d/, with 
w = ~'('=+I nw, dx', where again x' and/ are corresponding 
coordinates in a p-chart. 

6. SUPERVECTOR BUNDLES 

We construct in this section L B -bundles whose sections 
are supervector fields and I-superforms. As shown in the 
preceding section, we have to distinguish between supervec
tor and Goo -vector fields. Therefore, we must introduce two 
different fibers and construct two tangent bundles. Also a 
third fiber is needed to construct the cotangent bundle. In 
view of Proposition 5.2 and the definition of n (E), the fibers 
to be considered are the superspace S m + n, in which E is 
modeled and S = (~'('=+I na,e, E V la,/3K

i 
= 0 for 

m + 1 <;i<;m + n), and S* = LB(S, B). (See Paper I.) 
Definition 6. J: An L B -bundle with base a p-supermani

fold E and fiber a B-space F is a vector bundle M (E,F, 1T), 3 

such that there exists a trivializing covering ( U,' 'T, J satisfy
ing the condition that for each x E U,' the transition func
tions x _ t/Jij(x) = 'Tix • 'Tj ; I from Ui n~ into c - LB(Ft 
are Goo Vi,}. From now on we shall refer also toLB-bundles 
as supervector bundles. 

Given an LB-bundle M and a body Fe for F, we can 
associate to them a real vector bundle Me called the body of 
M, with base Ep ' fiber Fe> and transition functions (t/Jc),j 
determined by the diagram 

'" 
(10) 
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Now given a p-supermanifold E modeled on a super
space S, two tangent L B -bundles with fibers Sand S, respec
~vely, can be considered. We designate them by T(E) and 
T (E ). Given a p-atlas { Ui, tPi J of E, the transition functions 
of the tan~nt bundles are given by tPij" Taking the body r 
for Sand S where r = t . Rand t is the projection over the 
first m coordinates, the body bundle (associated to r) of the 
two tangent bundles T (E) and T (E) is the usual tangent bun
dle T (Ep). Also a cotangent bundle T *(E ) with fibers S * is 
constructed with transition functions tP'0. The body of T *(E ) 
associated to the body of T *(E ) associated to the body r of S * 
is the usual cotangent bundle T *(Ep). 

The spaces of supervector fields X (E ), X(E), and of 1-
superforms fl (E), are the spaces of G'" -sections of-

T(E), T(E), and T*(E), respectively. In general it is not 
possible to construct an extension of the bundle T (E ) to an 
L B -bundle with fiber V. The reason is that the transition 
functionstPap(x). have many extensions fromS to V (unlessS 
is free) and the choice of one extension satisfying the cocycle 
condition is not possible. When Sis free, tPaP(x). has a unique 
extension from S to V. 

7. SUPERTENSOR FIELDS AND DIFFERENTIAL 
SUPERFORMS 

In this section we shall restrict our discussion to the 
case of supertensors defined on free p-supermanifolds. In 
this case S = Vand the study becomes less involved. The 
discussion of tensor fields for nonfree p-supermanifolds can 
be done similarly, but taking into account the peculiarities of 
tensor algebra on nonfree superspaces studied in Paper I. 

Now we construct tensor bundles over ap-supermani
fold as L B -bundles. Given a p-supermanifold E we define the 
tensor bundle T~ (E) as an L B -bundle with base E, fiber 
T~ (V), and transition functions induced by tPij" These tran
sition functions obviously have their image in 
r-LB(T~(V)). Associated with the body rofTl(V) we 
have a body T 1 (E)r of T 1 (E) which coincides with T k (E ). 
This provides an a posteriori justification for choosing r a~ 
the body map for T 1(V). 

Supertensor fields of type (1, k) are Goo -sections of 
T 1 (E). A supertensor field T 1 induces an ordinary tensor 
field (T k)r on Ep called the body of T 1. 

Differential superforms appear as usual as a particular 
case of supertensor fields. Differential superforms of degree 
p are the Goo -sections of the L B -bundle A p (E). We denote 
the space of differential superforms by fl (E ). 

The exterior product in fl (E ) is defined through the ex
terior product in the fibers. The exterior differential d is de
fined as an even linear map d:flp(e) - flp + I (E) satisfying (i) 
d (v 1\ w) = dv 1\ w + ( - l)1'v I\dw, v E flp(E), (ii)d 2 = 0, (iii) 
df = ~7'~+1 ndxiaf laxi in coordinates. Let us observe that d is 
LB-linear and that the Grassmann degree does not enter in 
the sign ( - 1)1' in (i) because d is even. For ap-form 
cu = f dX il 1\ ... 1\ dXip in coordinates 

d W = dfl\dxi11\ ... I\dxip, where i l< ... <ip and the sign 
= is only possible if ri . = 1. 

Differential superforms are obviously graded-skew
symmetric LB -multilinear maps on supervector fields. As an 
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example we give the exterior differential of a A -superform 
and the exterior product of two A -superforms. 

(XI,x2)dcul = X I(X2cud - ( - 1 )Ir, + s,ls, 

XX2(XlCU I) - ([XI' X2))CU I, 

(XI' X2)CUII\CU2 = ( - 1)"S'(Xlcud(X2cu2) 
+ ( - 1)1 + r,lr, +S.i(X2cud(XlCU2)' (11) 

where Xi E X(E),; and CUi E fll(E )';. 
For a Goo -function between two p-supermanifolds 

f:M - N the usual propertiesf*(cul 1\ CU2) = f*cu l I\f*CU2 and 
f* dcu = df*cu holds. 

8. SUPERGROUPS AND PRINCIPAL SUPERFIBER 
BUNDLES 

We describe in this section how supergroups and princi
pal supecfiber bundles are included within the framework of 
p-supermanifolds. Throughout all the section we shall re
strict discussion to the case of free p-supermanifolds. 

A. Lie supergroups and lie superalgebras 

Definition 8.1: A Lie supergroup Gis ap-supermanifold 
with a group structure given by a composition law such that 
for a, b, E G the map (a, b) _ ab -I is Goo . 

As a consequence of Definition 8.1, the body G of Gis a 
L

· p 
le group. The composition law for G is induced from that p 

ofGbyp(a)p(b) =p (ab).Sothebodymappisagrouphomo-
morphismp: G- Gp • 

Left and right translations La and Ra are Goo -diffeo
morph~ms. Then, the space of left-invariant supervector 
fields r is a Lie superalgebra over B, i.e., the Lie bracket is 
graded and L B -bilinear. On the other hand, the space ofleft
invariant Goo -vector fields is a B-Lie algebra, i.e., the Lie 
bracket involves only commutators and is L B -bilinear when
ever the multiplication by elements of B does not get out of 
J'/. 

There exists an L risomorphism from r on to Te (G ) 
that takes r onto Te(G 1 Then theB-Lie algebra Te(G) and 
the B-Lie superalgebra Te(G) are B-spaces whose body is 
rp which is the Lie algebra ofGp. _ 

On the other hand, another body can be defined for r 
in the following way. In the basis {XI"" ,xm + n J of r the 
Lie superalgebra is determined by the structure constants 
[Xu X j ] = ± C~Xk' Take now V = VO €a Vi to be a real 
graded vector space with dim VO = m and dim V I = n. 

Take a basis {YI, '" ,Ym + n J with Y I, ... , Ym E VO and 
Ym + p ... 'Ym + n E VI. We defineR: r - Vby 
R (~7'~+lnaiXi) = ~;"++In r(ai)Yi' Then Vis furnished with a 
real Lie superalgebra structure by the bracket 
[Yi, Y j ] = r(C~)Yk' This provides an ordinary real graded 
Lie algebra6 associated to the group G which we shall call 
r R' In addition we have that rp is isomorphic to r'k. 

The elements of r give rise to real monoparametric Lie 
subgroups of G while for elements X E r such that X It r, 
an integral curve does not exist. Hence, the exponential 
maps into G, but it is not defined on the whole r. 
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B. Representations of Lie supergroups and 
superalgebras 

Definition 8.2: A matrix representation D of dimension 
(m, n) of a supergroup G is a G~ -homomorphism D: 
G- GLB(V)O, where Vis aB-module of dimension (m,n). 

From this definition it is immediate that for each free 
superspace modeled on V, GLB(S) admits a representation 
on V. 

Given a matrix representation 

( DIIDI2)(g) 
VJ21D 22 

ofa supergroup G, DII(g) and Dzz(g) are mXm and nXn 
dimensional, respectively, and both have entries in B 0. On 
the other hand D 12(g) and D 21 (g) are, respectively, m X nand 
n X m dimensional and both have entries in B I. 

Since D is G~ , 

(
R (DII(g)) 

pIg) = p(h )=>D (g)R = D (h )R = 0 

So a representation D of G induces a reducible real (m + n)
dimensional representation of r p' DR :Gp _ GL (Rm + n) 
given by D (p(g)) = D (g)R' Then DR reduces to 
DR =Dp +D;, whereDp: Gp _GL(Rm),D;: 
Gp _ GL (Rn

), and Dp(p(g)) = R (DII(g)), 

D ; (p(g)) = R (D22(g)). 
We remark that the matrix supergroups of Rittenberg 

and Scheunert 7 are examples of the G~ -supergroups defined 
in 8.1, whose body is a direct product G I X G2• 

Given a representation D of a supergroup G we ha~e, 
associated to it, representations for the "Lie" algebras r, 
r, r R , and r p associated with G, straightforwardly. 

C. Principal superflber bundles 

Definition 8.3: A principal superfiber bundle Pis a prin
cipal fiber bundle P (M,G,1T) such that P and Mare p-super
manifolds, G is a Lie supergroup and 1T, the transition func
tions, and the trivializations are G~ -functions. 8 

As a consequence of the definition, Pp is a principal 
fiber bundle Pp(Mp,Gp' 1Tp). The LB-bundles defined in Sec. 
6 with base E and fiber a B-space F, are associated to a princi
pal superfiber bundle P(E,GLB(F)). 

Associated to an element A E r, we have a fundamen
tal Goo -vector field A * constructed by means of the mono
parametric subgroup of A. To deal with connections and 
curvature forms, it is convenient to extend the fundamental 
fields to elements of r. To do that, we look at A ~ = 0' u'e (A ) 
where 0' u :G - P is given by 0' u (g) = ug. The last expression 
for A ~ makes sense also for elements of r, and A ~ E Tu (P). 

A superconnection form on a principal superfiber bun
dle P is defined as an element w of {} ~ (P )0, i.e., an even r
valued superform on P satisfying the conditions 
R :w = ad(a - I) W Va E G and A *w = A Va E r. 

The vertical part ofTu (P) is determined, as usual, as the 
tangentparttothefiber1T- I(U)onU,(T(1T- I(U)) = ru and 
0' uOe gives a B-isomorphism from r into r u' The horizon
tal part for w is h (Tu(P)) = Ker w u, and Tu(P) = hTu(P) 
+ Gu • So h is a well-defined G~ -projection. 
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The covariant differential D is defined by applying the 
exterior differential to the horizontal part of the supervector 
fields. So the curvature {} (X, Y) = Dw(X, Y) 
= dw(hX, hY) is a G~ -r-valued two-superform. The 

structure equation {} = dw + [w, w] and the Bianchi identi
ty d{} = 0 hold. 

9. CONCLUSION 

We have constructed in this paper the basic objects su
per manifolds, supergroups, supervector bundles, and prin
cipal superfiber bundles necessary to provide a mathemat
ical model suited to propose and solve geometric problems in 
spaces with commuting and anticommuting coordinates. 
We hope that the present study will be of worth in discussing 
the geometrical structure of supersymmetric gauge theories 
and supergravity. In fact, using this model a geometrical 
interpretation for gauge theories with Faddeev-Popov fields 
has been proposed using a principal superfiber bundle struc
ture.9 

The central role in our construction is played by the so
calledp-supermanifolds which are nothing but COO -Banach 
manifolds3 with a superimposed Grassmann structure and 
related to an ordinary C~ -manifold via the projectionp. 
This point of view allows one to translate most constructions 
of ordinary differential geometry into differential supergeo
metry almost directly, in contrast to Kostant's approach. 10 

One of the results of this work has been precisely to 
characterize the class of p-supermanifolds or supermani
folds with a well-behaved body, which are very similar to de 
Witt's proposal,4 but for the fact that p-supermanifolds are 
Haussdorff and allow nontrivial topologies in the anticom
muting sector. On the other hand, the existence of the Grass
mann structure and of the projection p on a finite-dimen
sional real Coo -manifold allow one to handle p-super
manifolds as if they were finite dimensional in many cases. In 
particular, the existence of partitions of unity can be proven. 

Concerning tangent bundles to p-supermanifolds we 
have found that apart from the ordinary tangent bundle, a 
supertangent bundle can be defined in a natural way which is 
a B-module. The supertangent space in a point turns out to 
be reflexive and permits one to construct easily differential 
superforms and supertensors on p-supermanifolds. 

Lie supergroups appear naturally in our model and gen
eralize the matrix supergroups of Ref. 7. Also a precise rela
tion emerges between the "Lie algebra" of a supergroup un
derstood as the set of infinitesimal operations and the real 
Lie superalgebras treated in the literature.6 In addition some 
relations between the representations of a supergroup and 
those of its body have been found. Finally the elements of the 
theory of principal superfiber bundles and associated L B

bundles have been established. 
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Global ¢ -I 0 f 0 ¢ = f and infinitesimal a 0 f = Df(a) symmetries are considered for dynamical 
mapsf The general solution of a 0 fIx) = j'(x)a(x); xe[a,b] C R is constructed, and for S
unimodal maps, the existence of a nontrivial continuous solution is shown to be equivalent to the 
existence of a stable periodic orbit. 

PACS numbers: 02.40. + m, 02.20. + b, 03.20. + i 

I. SYMMETRIES IN DISCRETE DYNAMICAL SYSTEMS 

Symmetries play an important role in the study of dyna
mical systems defined by flows of vector fields. For Hamil
tonian systems that remain invariant under the action of a 
group, the moment map construction 1 unifies the derivation 
of constants of motion. These, in tum, allow the elimination 
of a number of variables and the construction of a reduced 
phase space for the system. 2 Also, in bifurcation problems, 
symmetry considerations are particularly useful in the deri
vation of the branching equations.3 

Although various genericity results already exist for 
equivariant diffeomorphisms,4,5 symmetries do not seem to 
have played as important a role in the study of discrete dyna
mical dynamics as they have for flows. 

By a discrete dynamical system, we mean a pair ( M,J) 
where M is a differentiable manifold andf a smooth map. 
Mostly we will think of M as an open set in Euclidean space 
R n. A discrete dynamical system will have a symmetry iffis 
equivariant for the action of a diffeomorphism ¢, i.e., 

¢-Iofo¢=f (1.1) 

Now letfbe equivariant for the action of a local one-param
eter group ¢,. Let a = d¢,1 dt I, ~ 0 be the corresponding Lie 
algebra element. Then, differentiation of (1.1) yields 

a 0 f = Df(a) (1.2) 

[in local Euclidean coordinates aV(x)) = d(x) :~ P(X)]. 
Notice that Eq. (1.2) may, in principle, have a solution 

even when there is no corresponding one-parameter group of 
diffeomorphisms. When (1.2) has a nontrivial continuous so
lution, the map f will be said to have an infinitesimal symme
try. 

As in the "continuous-time" systems, one may, in some 
cases, construct constants of motion from the knowledge of 
the symmetries. The following result is due to J. T. Duarte.6 

Lemma: Letfbe a R "-.R "map of constant Jacobian. 
Iff has a symmetry ¢, then det D¢ is constant on the orbits of 

f 
Proof· From ¢ 0 f = fo ¢, differentiating, and comput

ing the determinant, one obtains 

det D¢ (f(x))det Df(x) = det Df(¢ (x))det D¢ (x). 

Because det Df = const, the result follows: 

det D¢ (f(x)) = det D¢ (x). • 

Notice that the same result holds if, instead of 
¢ - 1 0 fO ¢ = f, one has ¢ - I 0 f 0 ¢ = f 0 h with det Df 
= const and det Dh = 1. 

The main problem I will be concerned with in this paper 
is the relation between the existence of symmetries and the 
dynamical properties of maps. Here, I will restrict this study 
to one-dimensional maps. For them, a relation is established 
between nontrivial symmetries and the existence of stable 
periodic orbits. 

II. SYMMETRIES AND STABLE PERIODIC ORBITS IN 
ONE-DIMENSIONAL MAPS 

Let us examine the question of the existence of infinite
simal symmetries. For this purpose, one seeks the general 
solution a(x) to the functional equation 

a 0 fIx) = j'(x)a(x), (2.1) 

wherefis a differentiable function defined in an interval [a,b ] 
with a finite number of critical points in that interval. The 
method used is inspired by a technique of Kuczma7 (see, in 
particular, Theorem 1.3, Chap. I, p. 40). However, the parti
cular form of Eq. (2.1) allows an important simplification in 
the construction of the solution, namely, one avoids entirely 
explicit reference to the family f,t- I of inverses off Further
more, it is also possible to define the solution in all the inter
val, whereas Theorem 1.3 of Kuczma gives it only in a sub
modulus set E (f(E) C E). 

Given a critical point xf, let E ~ be the set of antecedents 
of xf plus the critical point itself, 

Ef = {x: 3k;;.0, PIx) =x~}. 

Each E ~ may contain other critical points besides xr We call 
ground-level critical point one for which the set E ~ contains 
no other critical points [i.e., xEE~ and x#x~=>j'(x)#O]. 

Z-orbit is the equivalence class defined by 
x-y iff 3 m,n:fm(x) =/" (Y), m,n;;'O. This should not be 
confused with the notion of orbit of x, i.e., ! y: 3 k;;.O, 
PIx) = y}. ThesetE = [a,b] - UjEf will play an important 
role: In [a,b] we consider the classes Ck • k;;.O, x E Ck , k;;. 1 
iff 3 j:p + k (x) = P(x), j being the smallest integer for which 

the equality holds, x E Co otherwise. UK> I C k is the set of 
points that either belong to a periodic orbit or fall into one. 

We now define the class offunctions which will be used 
to construct the general solution to the functional equation . 
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A real-valued function t/J is said to belong to the class t,b[A ] 
when the following is true. 

(a) t/J is defined in a set A C [a,b]. 
(b) t/J (x) = ° if x E Ck (k #0) andf(i+ k)'(X)#Ji'(x), i.e., 

the periodic orbit where x falls has a multiplier different 
from unit (fk' # 1). 

(c) t/J (x) = 0 if x E E and 3 m >0, n>O, and 
x~fm(x~) = r(x), i.e., x E E and is in the Z-orbit of a critical 
point. 

(d) t/J (x) = ° if XE UiE ~ and x is not a ground level criti
cal point or one of its antecedents. 

After these preliminaries we can state the following 
theorem. 

Theorem 2.1: LetA be a set which has exactly one point 
from each Z-orbit contained in E = [a,b ] - UiE ~ plus all 
ground level critical points. Then, for every function ao(x) 
belonging to the class t,b[A ], there exists exactly one function 
a(x) defined in the interval [a,b] that satisfies the functional 
Eq. (2.1) and such that a(x) = ao(x) for x EA. This function is 
given by the following. 

(a) ForxEE, 

a(x) = ao[a(x)] F~[a(x)]!fm~(x), (2.2a) 

where a(x) is the point in A which belongs to the Z-orbit of x, 
and nx and mx are chosen such that 

fnx[a(x)] =fmX(x). 

(b) If x E UiE f and x is not a ground-level critical point 
or one of its antecedents, then 

a(x) =0. (2.2b) 

(c) If x is an antecedent of a ground-level critical point 

(2.2c) 

withfmX(x) = xf· 
Proof The existence of the setA follows from the axiom 

of choice. 
It is easy to check that Eqs. (2.2) are solutions to (2.1) 

under each ofthe stated conditions. For example, for (2.2a), 
because a(f(x)) = a(x), 

a 0 fIx) = ao[a(x)] F~[~(x)] = j'(x)a(x). 
lm, - 1) [fIx)] 

The choice of ao(x) in the class t,b[A ] guarantees that 

(Iv + k )'(x) - p(x))a(x) = 0 

holds whenever x E Ck as required by (2.1). Finally, to prove 
unicity, letz(x) be another function satisfying (2.1) and such 

thatz(x) = ao(x), x EA. Then, fromFX[a(x)] =fmX(x) and 
z[a(x)] = ao[a(x)], 

z(lnX[a(x)]) =fn~[a(x)]z[a(x)] =z(fmX(x)) =fm~(x)z(x), 

which implies 

z(x) = ao[a(x)] F~[a(x)]!fm~(x) = a(x). • 
Formulas (2.2), defining a solution to the functional 

equation (2.1), parametrized by an arbitrary function of class 
t,b[A ], are too general to be ofimmediate use in the characteri-
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zation of the dynamics. This arises from the fact that no 
practical prescription is given to find the set A, and no re
strictions are imposed on ao(x) besides being of class t,b[A ]. A 
useful restriction is continuity of the solution. This motivat
ed our definition of an infinitesimal symmetry a(x) off to be a 
continuous solution to the functional equation (2.1) in [a,b ]. 

For the next result, I will restrict myself to the class of 
symmetric S-unimodal maps. A one-dimensional map f of 
[ - 1,1] into itself is symmetric S-unimodal if 

(l)f(O) = 1, 
(2)f(x) = f( - x), 
(3)fis C 3

, 

(4) The Schwartzian derivative Sf(x) < 0, x #0, 
(5)1'(0) = 0 andj'(x) #0, x#O, 
(6)fis strictly increasing in [ - 1,0). 
For this class of maps we prove the following theorem. 
Theorem 2.2: For f symmetric S-unimodal, there is a 

continuous nontrivial solution to the functional equation 
(2.1) if and only iff has a stable periodic orbit. 

Proof Symmetry off implies a(x) = - a( - x), and 
continuity at x = ° leads to a(O) = O. The functional equa
tion then implies a = 0 for all the antecedents of the critical 
point, i.e., a(x) = 0, x E E c. Iffis S-unimodal and has no 
stable periodic orbit, then the set of antecedents of 0 is dense 
in [ - 1,IV By continuity, a = 0 in the whole interval. 
Therefore the existence of a stable periodic orbit is a neces
sary condition for a nontrivial infinitesimal symmetry. 

When there is a stable periodic orbit, one proves the 
existence of continuous solutions by showing that the setA of 
Theorem 2.1 may be chosen to contain one or two intervals, 
where ao(x) is defined as a continuous function. 

Let the stable periodic orbit have period n. Then there 
are n fixed points offn, where lfn'l < 1. A choice of semi-open 
B-intervals is made which is better described by Fig. 1, where 

O(fn '( 1 f n ' cO f n ' =0 
/ 

/ 

/ ~ 
/ 

/ 
/ 

/ / ~ '1 / -j 

,l) , ( ) ( ) () 
Xl Xo Xo Xl Xo Xl Xl Xo 

_l<fn~ 0 fn I ",1 / fn I =1 
/ 

~/ 
/ 

/ 

~ //( 
( 11 () ( ] 

Xo Xl Xo Xo Xl 

FIG. 1: B-intervals for the proof of Theorem 2.2. 
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the several possibilities for the behavior ofr near the fixed 
points are illustrated. 

It should be further specified that all B-intervals are 
chosen in a small enough neighborhood of one of the fixed 
points ofr such thatpB n B = 0,k = 1, ... ,n - 1. Also, by 
construction,r B n B = 0. 

Any two points x,yeB, x =1= y belong to distinct Z-orbits. 
Any point that converges to the stable periodic orbit is either 
in the Z-orbit of a point in B or in the Z-orbit of the periodic 
orbit. 

Let A be the union of the B-interval(s) and a point S of 
the periodic orbit. For S-unimodal maps, it is known that the 
Lebesgue measure of those points which do not converge to 
the stable periodic orbit is zero. Therefore A contains one 
point from each Z-orbit of almost all points in the interval. 

We now define a nonzero function ao(x) in A such that 

(1) ao(x) is continuous in B, 

(2) ao(S ) = 0, 

(4) ao(x) is of class ",[A], 

(5)ao(a(xc)) = 0, where a(xc)E A is the point of A that is 
in the Z-orbit of the critical point. 

Continuity of the solution a(x) now follows from the 
continuity of algebraic operations of continuous functions 
and Eqs. (2.2) of Theorem 2.1. Lety be a point that converges 
to the stable periodic orbit such that a( y) [i.e., the point in A 
that belongs to the Z-orbit of y] falls in the interior of B. 
Then, from Eq. (2.2) 

a(y) = ao[a(y))/fm;(y), (2.3) 

with a( y) = f m
,( y). 

Suppose now that for every a E B, there is a point Za in 

the neighborhood of y such that a = fm'(za)' In this case, by 
using (2.3) for all points a E B, one constructs a continuous 
solution in an interval containingy. Furthermore, because of 
our condition (3) on ao(x), the solution will vanish at the 
endpoints of the interval. 

If, however, there are some points a E B which have no 
antecedent of order my in the neighborhood of y, it means 
that near y, there is an antecedent f3 of the critical point of 
orderless than my. In this case, one uses (2.3) to construct the 
solution in an interval around y that has f3 as an endpoint. 
Again, the solution vanishes at the endpoints because they 
are either antecedents of the endpoints of B or of a critical 
point. 

Now we pick another point that tends to the stable orbit 
where the solution is not yet defined and repeat the construc
tion. Repeating the procedure until all points that tend to the 
stable orbit are exhausted, it follows from unicity and the 
conditions on ao(x) that a continuous solution is defined in 
disjoint intervals vanishing at their endpoints. For the set of 
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points outside the intervals which do not tend to the stable 
periodic orbit, the solution is defined to be zero. The vanish
ing of the solution at the endpoints of the intervals insures 
continuity in the whole interval [- 1,1]. • 

Using methods of iteration theory, the existence of con
tinuous solutions to a functional equation was shown to be 
equivalent to the existence of a stable periodic orbit. This 
result provides an analytical handle on a dynamical problem 
because, in some cases, the existence of solutions to a func
tional equation can be decided purely by methods of analy
sis. 

To close, I will add some remarks concerning directions 
of future research in this problem. 

First, it would be interesting to know whether the rela
tion between existence of symmetries and characteristic 
properties of the orbits can be extended to higher-dimension 
maps. 

Once the relation between dynamical properties of 
maps and solutions of functional equations is established, 
such a relation becomes useful if, by analytical methods, one 
can decide about the existence or nonexistence of solutions 
with the required properties. 

At least for one-dimensional maps, this could be 
achieved by writing the solution as a series in orthogonal 
functions G (x) in [ - 1,1]: 

(2.4) 

By substitution in the functional equation (2.1), this one is 
converted into an (infinite) set of algebraic relations. If 
maxI -1,1 JiGn (x) I is finite, for a(x) to be continuous, it suf
fices that the solution a = {an} E /1. 

Forf(x) = 1 - ItX2, for example, if {Gn (x)} is the set of 
Chebyshev polynomials, the proof of aperiodicity of the 
It = 2 point becomes a trivial calculation because the only 
solution is an = 0. 

With other orthogonal sets of appropriate weight, it is, 
in principle, possible to decide by purely analytical methods 
on the existence of stable periodic orbits for other It values. 
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We determine the form and solutions of all possible stochastic differential equations driven by 
fermion Brownian motion for a fermion system of one degree of freedom. 
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1. INTRODUCTION 

Much work has been done recentlyl-3 on the construc
tion and solution of stochastic differential equations of the 
form 

da = dA t F + G dA + H dt, (1.1) 

generalizing equations for "classical" diffusions of the type 

dY = DiY) dQ + m(Y) dt, ( 1.2) 

where Q is classical Brownian motion. 
In Refs. 1 and 2 the process (a,; tER+) describes the 

evolution of a boson system of one degree of freedom obeying 
the commutation relation 

(1.3) 

(wherein a; is the adjoint of a,), and the family of pairs 
(A" A n represent a quantum-mechanical Wiener process of 
boson type.4 

Since the right-hand side of the commutation relation 
(1. 3) is time-independent, the process (a, ) may be regarded as 
a quantum stochastic process in the sense of Ref. 5. 

In this paper, we seek to extend these ideas to fermions. 
In this connection it should be noted that a theory of stochas
tic integrals against fermion Brownian motion has recently 
been developed. 3 

2. STRUCTURE OF FERMION DIFFUSIONS 

A fermion system with one degree of freedom is de
scribed by a pair of operators (dO), a(Olt) acting in a Hilbert 
space Ao and satisfying the relations 

! a lOI , a lolt J = I, ! a(OI, alO) J = ! a(OIt, a(Olt J = 0, (2.1) 

where! , J is the anticommutator 

!A, B J =AB +BA. 

An example of such a pair is given by the matrices 

a(OI = [~ ~], dOlt = [~ ~] (2.2) 

acting in the Hilbert space 1(;2. 
The fermion analog6 of the von Neumann uniqueness 

theorem states that any pair of operators satisfying (2.1) is 
unitarily equivalent to a direct sum of copies of the pair given 
by (2.2) and in particular, any pair which acts irreducibly is 
unitarily equivalent to (a 10) , a(O)t ). 

Let r (L 2(R +)) be fermion Fock space over L 2(R +), and 
forf, gEL 2(R+) let a(f), at (g) be annihilation and creation 

81 Work carried out while this author was supported by the Science and 
Engineering Research Council. 

operators (respectively) in r (L 2(R +)). By direct analogy with 
the boson case,2,4,7 fermion Brownian motion is described by 
the family of pairs (A" A n where for tER+, 

At = a(x[O, t ]), A; = at(x[O, t ]), 

and expectations are determined in the vacuum state, 
n (A) = (1, 0, 0, ... ). (In Ref. 3 the field Q, = A, + A; plays 
the role of Brownian motion.) We consider a quantum sto
chastic process generated by pairs (a" an for tER +, which 
satisfy the fixed time relations 

! a" an = I, ! a" at J = ! a;, an = ° (2.3) 

subject to the differential equation 

dat = dA ;Ft + GtdA t + Htdt, 

dar = dA ;G; + F;dA t + H;dt, 

where each of the at's are operators in 

Ao ® (L 2(R+)), 

(2.4) 

Ao being some "initial" Hilbert space. For convenience, we 
choose Ao to be 1(;2 and let 

a o = alO) ® I, a6 = a(O)t ® I, 
where the precise meaning of these operators will be given in 
the next section. 

We further select FlO), G (0), andH (0) to be operators in 1(;2 
and we observe that by the fermion uniqueness theorem, at 
and a; are unitarily equivalent to a direct sum of copies of dO) 
and a(Olt. We define Ft , Gt , and H t to be the pre-images of 
F (0), G (0), andH (0) under this unitary equivalence ofthecorre
sponding direct sum of copies of F(OI, G (01, and H IO). 

3. Z2-GRADED HILBERT SPACE 

By a Z2-graded Hilbert space, we mean a Hilbert space 
direct sum 

A=A+fBA_, 

where A +, A_are called the even and odd subspaces, respec
tively. 

An operator TEE (A) is said to be 

even if T A + ~ A + and T A _ (;;;,/f-
and 

odd if TA+ ~A_ and TA_ c;;,A+. 

We note that B (A) is a Z2-graded algebra in the sense of Che
valley.8 The following rules hold for Z2 grading the products 
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of operators of definite parity: 

"odd X odd = even X even = even," 

"odd X even = odd." 

Let hI' h2 be l2-graded Hilbert spaces and let T 1, T2 be 
operators of definite parity in B (h I)' B (hz), respectively. 
Then if!IEhIJzEhz are each either odd or even, we define 
TI ® T2 by 

(TI ® T2)(!1 ®!2) = + Tdl ® Tzf2' (3.1) 

wherethe - sign is taken onlyifT2 and!1 are both odd. The 
definition extends to arbitrary T I, T2 by bilinearity and to a 
bounded operator on hI ® h2 by continuous, linear exten
SIon. 

If SI ® S2 is another such operator, we obtain 

(SI ®Sz)(T1 ® T2) = +SITI ®S2T2' (3.2) 

where the - sign is taken only if S2 and TI are both odd. 
Fermion Fock space can be l2 graded as follows: 

00 00 

[F(h)] + = Ell h l2nl, [F(h)l_ = Ell h l2n + II, 
fJ=O n=O 

where h lnl is the antisymmetric tensor product of n copies of 
h. Annihilation and creation operators are thus seen to be 
odd. 

We also l2 grade the Hilbert space ho by taking (hoh: to 
be the spans of the vectors n =t= ' respectively, where n + is the 

vacuum (~). and fl _ the antivacuum (~). The operators 

01°1 ,a(Olt are clearly odd. 
We shall require that theoperatorsal' a; of(2.3) are odd 

throughout their evolution. 
We recall that F (L 2(K +)) is naturally isomorphic to the 

tensor product F [L 2[0, t [) ® F (L 2[t, 00 D. A more correct 
notation for a" a; recognizes them to be operators in 
ho®F(L 2(K+)) of the form 

t ~ t ~ 

a, ®IT(L'[', 00 Ii , at ®IrrL ,[,. ooIi' 

Similarly, the differentials dA" dA ; are correctly written 
~ ~ t 

I",,®r(L'([o,,[)) ®dA" I",,®A(L'I[O, '[II ®dA ,. 

Thus, we obtain the conditions 

{a" dA t ] = {a" dA n = {a;, dA t ] = {a;, dA n = 0. 
(3.3) 

Furthermore, we see from (2.4) that if a, is to be odd, then F, 
and G, must be even and HI odd throughout the evolution. 

In the remainder of this paper, we will formally drop 
the index t from our operators except where it is essential for 
clarity of understanding. 

4. CONSISTENCY EQUATIONS 

Before solving (2.4), we obtain conditions on the coeffi
cients F, G, and H. We evaluate products of differentials by 
bilinear extension of the rules 

0=(dA)2=(dAtf=dA t dA, dAdAt =dt. (4.1) 

These may be deduced formally from the fact that A, acts on 
the total family of vectors 
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(4.2) 

as 

A,atUn)' . . at(ft)n 

=jtl (-I)"-j LJ';!-r)dr(iJI atuk))n, (4.3) 

k #j 

suggesting the formal relation 

dAtatUn)" .atUdfl 

= dt jt ( -I)" -1j(t) ( JJI a tUk ))n, (4.4) 

k7'j 

whence (dA,)2 = (dA;j2 = dA ; dA, = 0, since the matrix ele
ments between vectors of the form (4.2) involve (dt f = 0, 
whereas by the anticommutation relations 

dAI dA ; = - dAldA ; + dt = dt 

(see Ref. 1 for the boson case). 
Differentiating the relation {a, at ] = I, we obtain 

0= d {a, at] 

= Ida, at] + {a, dat ] + Ida, dat ] 

= [dA t F + G dA + H dt, a] 

+ {a,dAtGt +FtdA +Htdt] 

+ fdA tF+ GdA +H dt, dA tG 

+ FtdA + Htdt J, (4.5) 

and differentiating {a, a J = ° yields 

° = {da, a] + {a, da] + {da, da] 

= 2{ dA t F + G dA + H dt, a] 

+ {dAt F+ GdA + Hdt, dAtF 

+ GdA +H dt]. (4.6) 

To simplify (4.5) and (4.6), we require the following result: 
Lemma 4.1: 
(i) {X,Z] =~{XY,Z] =X[Y,Z], 

(ii) {Y,Zj =~{Xy,ZJ = -[X,Z]Y. 

Proof (i) 

!XY,Zj =XYZ+ZXY 

=XYZ -XZY=X[Y, Z]. 

(ii) follows similarly. 
Application of Lemma 4.1 to (4.5) and (4.6) gives 

O=dAt([F,at ] + [G\a]) 

+ ([a,Ft] + [at, G ])dA 

+(FtF+GGt + [H,at ] + {a, HtJ)dt 

and 

0= dA t [F, a] - [G, a]dA + (!H, a] + GF)dt. 

Hence we obtain these consistency equations: 

[F, at] + [Gt, a] = 0, 

{H,at ] + {a,Ht] = -(FtF+GGt), 

[F, a] = 0, 

[G, a] = 0, 

{H,a] = - GF. 

D. Applebaum and R. L. Hudson 
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(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 
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5. SOLUTIONS OF THE CONSISTENCY EQUATIONS 

We find all possible coefficients F, G, and H satisfying 
the conditions (4.7)-(4.11). We recall that F and G are even 
and hence their most general form is given by 

F = AI + Kat a, where A, K, f.1, VEe, 

G=f.11 + vat a. 

From (4.7) we obtain 

0= [AI + Kat a, at] + [jiI + vat a, a] 

= Kat + va~K = V = 0, 

so the only admissible solutions are those in which F and G 
are complex multiples of the identity. 

When F = G = 0 we observe that 

H = i[dY, a], where dY = ~, 
satisfies (4.8) and (4.11). 

This describes the deterministic (Hamiltonian) evolu
tion of the system /fo in the absence of "noise" effects, as 
given by the Heisenberg equations of motion: 

da =Hdt, 

dat = Ht dt, 

with solutions 

Now suppose that F, G #0. Then (4.11) gives 

I H, a l = - A f.1 

~H = - A f.1a t + aa, where aEC 

Substituting this equation into (4.8), we obtain 

I-Af.1at +aa,atl + la, -Jjia+aatl 
= _ (IA 12 + 1f.112)I 

~ + a = - (IA 12 + 1f.11 2). 

(5.1) 

(5.2) 

Hence Re a = -!( IA 12 + 1f.11 2), so the general form of His 
given by 

H = - A ;lOt - !(IA 12 + 1f.112)a + i tJa, 
where fJER (fJ = 1m a). 

We will show that the term i fJa corresponds to the Ha
miltonian aspect of the evolution. Let H = H' + Ho where 
Ho = i[ dY, a). Now H is odd, so Ho = ya + oat, 3 y, DEC 
dY is required to be self-adjoint; thus 

dY = tI + ilia + wat + zat a, 

where t, zER, iliEC Hence 

ya + oat = i[tI + ilia + ilia t + zat a, a] 
= jw(at a - aat ) - iza. 

~=O, y= -iz. 

Now, it can be shown that any stochastic differential 
equation of the type (2.4) containing a Hamiltonian term 
corresponds to a cocycle perturbation of the same equation 
without the Hamiltonian term. 9 Hence it suffices to consider 
the equations 
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da=AdA t +f.1dA -(Af.1at +!(IA 12+ 1f.111)a)dt, (5.3) 

dat = ji dA t + J dA - (J jia + !(IA 12 + 1f.112)a t )dt. (5.4) 

The probabilistic properties of fermion Brownian motion are 
invariant under the group V( 1), so we can make the gauge 
transformations 

A ~ e - ie A, A t >---+ eie At. 

We can also make the gauge transformations 

a >---+ e··· id> a, at >---+ eid> at, 

since these leave the relations (2.4) unchanged. Let 

e = ~(argA - argf.1), rP = ~(argA + argf.1). 

These transform (5.3) and (5.4) to forms where A and f.1 are 
real and nonnegative. 

We now introduce the Brownian motion (P" Q,), where 

P, = - itA, -A n, Q, =A, +A r, 
and the process (PI' q,) for which 

p, = - ita, - an, q, = a, + a;, 

satisfying the fixed time relations 

q; = P; = I, I p" q, l = O. 

The addition of(5.3) and (5.4) yields 

dq = (A + f.1)dQ -!( A + f.1fq dt, 

and subtracting (5.4) from (5.3) gives 

dp = (f.1-A )dP- !(f.1-A fpdt. 

(5.5) 

(5.6) 

These have solutions in terms of stochastic integrals as fol
lows: 

q, = e -11/2 1P"qo + p i' e -11!2lp'(I- r1dQr' (5.7) 

PI = e -11I210'PO + e it e _11/218'(,_ rldPr, 

where 

p = A + f.1 and e = f.1 - A. 

(5.8) 

This pair is the unique solution of Eqs. (2.4) in the case ofa 
single degree of freedom and represents a fermion analog of 
the classical Ornstein-Vhlenbeck velocity process, which 
may be compared with the boson Ornstein-Vhlenbeck pro
cess 10.11 and is a special case of a fermion process found in 
Ref. 12. 
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In this continued study of the connection between classical c-number spinor models and their 
quantized Fermi partners, we elaborate further necessary consequences of the bosonization. The 
genuine (c-number) path integral representation oftr exp( - iHt) is derived for the Fermi 
oscillator and simple lattice Fermi models. We find that the underlying Hamiltonian of the Fermi 
systemHF can beequivalentlywrittenasPHBP, whereHB is the related Bose Hamiltonian, Pis an 
appropriate projection in the state space of the Bose system, and [P, H B] _ = 0, H F = PH BP, 
Grassmann algebras are not used. We prove further that both for the massive Thirring model 
(MT) and the chiral invariant Gross-Neveu model (CGN), the Bethe ansatz eigenstates for the 
Fermi Hamiltonians are exact eigenstates of the Bose MT and CGN Hamiltonians, so introduced 
that H F = PH BP, [P, H B ] _ = O. As a consequence, through studying the c-number path 
integral representation for tr exp( - iHFt), we establish a class of classical (c-number) spinor 
solutions of the underlying field equations, which at the same time make stationary both the c
number Bose and c-number Fermi actions. 

PACS numbers: IUO.Cd 

1. MOTIVATION 

As is well known, for simple scalar field theory models, 
the U matrix of the scattering theory in the coherent state 
representation is identical with the conventional Feynman 
integral 

U(t,t') = (IP (t')lexp[ - iH(t' - t)lllP (t)) 

= (IP (0) lexp(iHot )exp( - iH (t' - t)) 

X exp( - iHot )IIP (0)) 

= f[;:]exp[ir'd4X~(q;,IP)]' (1.1) 

However, in the case of Fermi fields the analogous formula 
exists only if the classical spinor fields to be used in the path 
integral are elements of the anticommuting function ring 
(Grassmann algebra). It created a folklore belief that the gen
uine classical c-number spinor fields have no meaning for the 
construction and then understanding of the canonical Fermi 
field theory. In fact, if one would follow the route (1.1) by 
using the c-number spinor field Lagrangian and the measure 
with respect to c-number spinor paths, the received result 
would certainly not coincide with the result known by other 
(Grassmann algebra) means to be correct for the respective 
Fermi model. 

However, in the preceding series ofpapers J
-

3 (see also 
Ref. 4), we have demonstrated that it is not meaningless to 
talk about a connection of classical c-number spinor fields 
with their quantized Fermi partners. Some other intuitions 
about a possible quantum meaning of classical c-number 
spinor fields can be drawn from Refs. 5-8. Our approach to 
the quantization of spinor fields problems originates from 
Klauder's9 idea to avoid the use of Grassmann algebras in 
describing the canonically quantized Fermi fields, but is dif
ferent from that work. 

We have found previously that a formulation of the cor
respondence rule between quantized Fermi and classical c-

number spinor fields is in principle possible, provided the 
Fermi model allows for bosonization. Different aspects of 
this problem were studied before in Refs. 1-3. However, a 
fundamental problem we were confronted with, the quan
tum meaning of classical c-number spinor models (with the 
Fermi-Dirac statistics in mind), has remained unsolved. 

In the present paper we give a path integral reconstruc
tion oftr exp( - iHt ) in terms of genuine c-number trajector
ies for simple Fermi models, to prove that it is at all possible 
without any reference to Grassmann algebras. We do not, 
however, conclude (as Klauder did) that Grassmann alge
bras are an unnecessary addition to the mathematical phys
ics. We believe they are extremely useful for explicit pertur
bative calculations. They suffer, however, from a serious 
drawback: they do not carry any true physical content, 
against the naive (but popular) expectations. In the light of 
the results presented below, it is possible to recover a new 
face (physical content) of Fermi models, the face which is 
completely obscure in the Grassmann algebra formulation. 

For lattice Fermi models, the Jordan-Wigner transfor
mation allows us to introduce the equivalent spin ~ lattices. 
The corresponding Hamiltonians can be considered as pro
jected Bose Hamiltonians (in the Hilbert space of the appro
priate Bose system), 

where [P, HB ] _ = O. One should notice that 

1 = IB = P + (1 - P)~tr exp(iHBt) 

(1.2) 

= tr exp(iHFt) + tr exp( - (1 - P)HB(1 - P)t), 

(1.3) 

and the only problem is to extract the Fermi contribution to 
the Bose formula, which is known to be provided by using 
Grassmann algebra methods to compute tr exp( - iH Ft ). 

If there exists a countable family of projections 
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then 

L Pk = 1, PkPI = /)kIPk' [Pk, HB ] _ = 0 V k, 
k 

(1.4) 

00 

tr exp( - iHBt) = L tr exp( - iH~t), 
k=1 

(1.5) 
H~ =PkHBPk , 

and the respective Bose model can be viewed as a (infinitely) 
reducible Fermi one or even as a tower of possibly distinct 
Fermi models, each one with its own Hamiltonian H~. 

For the (continuous) massive Thirring model, we prove 
that Bethe ansatz eigenvectors of the Fermi Hamiltonian are 
the exact eigenvectors (with the same eigenvalues) of the 
Bose massive Thirring model Hamiltonian, see also Ref. 4, 
i.e., 

H~P = PH~Tp, [P, H~T] _ = O. (1.6) 

Previously,4 by using indirect (the inverse spectral trans
form) methods we have concluded that the mass spectrum of 
bound states is the same for the Bose and Fermi massive 
Thirring models. If to combine it with our Bethe ansatz ob
servation, we find supported the conjecture of Ref. 4 that the 
Bose massive Thirring model can be equivalently rewritten 
as the (infinitely) reducible Fermi one. Next, we deduce the 
spin! type version of H ~T for which a path integral repre
sentation of tr exp( - iH Ft ) is constructed in terms of c
number trajectories. We prove that spinor trajectories such 
that 0"; = ¢ ~¢; <.A < 00, i = 1,2, A being arbitrary, give ex
actly the same contributions to both Bose and Fermi path 
integrals via the c-number massive Thirring model action. 
Its stationary points are the classical spinor solutions of the 
respective field equations satisfying 0"; <.A < 00. 

Finally the analogous properties are established for the 
chiral invariant Gross-Neveu model. Our analysis is con
fined to 1 + 1 dimensions where explicit solutions for the 
spectral problems are available. We expect, however, that 
the Bose-Fermi interplay described here will prove useful in 
1 + 3 dimensions as well, see, e.g., also Ref. 2. 

2. QUANTUM OSCILLATOR PROBLEM: BOSE VERSUS 
FERMI 

The Bose oscillator 

LB = ib ·(t)b (t) - tUb ·(t)b (t) = b ·(t) (i :t -tU )b (t) 

(2.1) 

A A A A 

U£I.::1t) = exp( - ihF.::1t)edF - i.::1thF = 1F(1- i.::1thB)lF 

is determined by using the CCR algebra generators (equal 
time variables omitted) 

[b, b·1- = 1B, b 10) = O. (2.2) 

The Hamiltonian reads 

(2.3) 

hence the infinitesimal propagator of the model is given by 

(2.4) 

In the c9..,herent state representation, the infinitesimal ker
nel lo of UB(t) reads 

UB(.::1t) = exp( {3.{3 - ih ~.::1t), 

h ~ = <f3lhB 1{3) = tU{3·{3 , (2.5) 

1{3) = exp( {3b· - {3·b )10), 

so that through the standard arguments, 11 we arrive at the 
following (formal continuum t limit) path integral represen
tation oftr exp( - ihBt): 

IB = tr exp( - ihBt) = f [d{3 ][d{3·] exp i f U{3 ·(t lP (t) 

- tU{3 ·(t){3 (t) Jdt = f [d{3 ][d{3·] exp i f LB(t )dt . 

(2.6) 
One should realize that IBis given with the accuracy up to 
the normalization factor. 

Let us define the Fermi oscillator 

(2.7) 

by using the Fock representation of the CAR algebra, which 
is completely embedded in the CCR algebra as follows: 

[a, a·] + = IF' a·IO) = 10 = b ·10), alO) = 0, 

a.2 = 0 = a2
, 

a· = b .: exp( - b ·b ):, a = : exp( - b ·b ):a, 

IF = : exp( - b·b): + b·: exp( - b·b ):b . 

(2.8) 

The CAR generators act invariantly on a proper subspace 
h F = 1 Fh of the Bose oscillator Hilbert space, but neverthe
less, allow a trivial extension to the whole of h. Consequently 

A ~ 

the Fermi propagator UF(.::1t) = exp( - i.::1thF) can be repre-
sented in the Hilbert space of the Bose oscillator, thus allow
ing one to follow the previous path integration route. We 
have 

= : exp( - b ·b ): + b .: exp( - b ·b ):b - itU.::1tb .: exp( - b ·b ):b , (2.9) 

so that the infinitesimal kernel reads 

863 

UF(.at)S!!: ({311F - i.::1thF)I{3) • exp( /3./3) 

= 1 +/3·/3-itU.::1t/3·/3= (1 +/3·{3)[l-itU.::1t{3·/3/(l +/3./3)] 

S!!: exp[ln( 1 + /3.{3) - itU.::1t{3·{3 1(1 + /3./3)] . 
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Furthermore 

A f it i(3 *P - w(3 *(3 f it LE(t) IF = tr exp( - ihFt) = [d(3 ][d(3 *] exp i dt = [d(3 ][d(3 *] exp i dt , 
o 1 + (3 *(3 0 1 + (3 *(t )/3 (t ) 

which is a c-number alternative for the usual,6 Grassmann 
algebra path integral. 

Remark: The semiclassical quantization procedure for 
the continuous Heisenberg system 12 resulted in the intro
duction of the spin path integral with respect to genuine (i.e., 
c-number, non-Grassmann) paths in the phase space of the 
classical spin system. The genuine c-number path notion is 
also inherent in the approach of Refs. 13-16 based on the 
SU(2) phase variables, and making use14- 16 of spin coherent 
states, these being well known in the many-body physics. 
The general method of Ref. 16 to construct measures for spin 
variable path integrals can be immediately adopted to either 
a single spin! or to the many-body spin ~ problem. 

Attempts to introduce probabilistic ideas (i.e., probabi
listic measures) to the studyl7,18 of Fermi fields start from an 
appealing assumption. Consider the classical harmonic os
cillator problem. View its equations of motion as stochastic 
differential equations and then add information that one is 
considering a two-level Fermi system instead of the ordinary 
Bose one. It results in specifying the class of stochastic pro
cesses in which solutions of the would-be classical oscillator 
equations of motion are to be found. The underlying pro
cesses are Markov processes with values in Z2 which demon
strates that, except for the form of the equations of motion, 
the classical paths of the Fermi system are as unrelated to the 
Bose oscillator paths as the Grassmann algebra paths would 
be. An analogous line is followed in Ref. 19, though in a 
different Poisson processes framework. 

3. SPIN I LATTICES, LATTICE FERMIONS, AND c
NUMBER PATH INTEGRALS 

It is well known that at least in 1 + 1 dimensions, the 
lattice Fermi systems can be equivalently described as lat
tices of spins !, and conversely. It happens so due to the 
Jordan-Wigner (JW) transformation, realizing fermions as 
strings of spins! in the linear chain. An easy example is here 
in the Ising model in 1 + 1 dimensions, whose Hamiltonian, 

(3.1) 

after making the JW transformation, and then Fourier trans
forming the image Fermi variables, goes over to the one20 

which can be unitarily transformed into 

with 

864 

H = 2>q(5:5q - !), 
i 

Eq = cosh-If cosh 2(J - J/) 

+ (1 - cos q)sinh 2J/ sinh 2J J , 

J/ = tanh-I exp( - 2J), 
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(3.2) 

(2.11) 

(3.3) 
q = (21rIN)p, p = 0, ± 1..., ± (N - 2)12, N 12. 

Since 5:5 q is a particle number operator of the qth mode 
with eigenvalues 0,1, we can replace it by the equivalent one 
given in terms of Pauli operators 

5 :5q = uq+ U q- = b:: exp( - b :bq): bq , 

[bq, b:' ] _ = Oqq' , [bq, bq, ] _ = 0, 

bq 10) = ° = 5q 10) = uq-IO) 't/ q, 

b :10) = 5:10) = uq+ 10). 

The operator unit contributing the! term to H equals 
IF = nq Iq, with Iq = : exp( - b :bq ): 

(3.4) 

+ b:: exp( - b :bq ): bq • The Ising Hamiltonian acquires 
thus the Bose form 

Consequently, the infinitesimal propagator 

UALit) = exp( - iHJ1t) 

~ II (I q - iJ1tHq) = IF - iJ1tH 
q 

~ II exp( - iHqJ1t), 
q 

IF = II Iq 
q 

allows for the following infinitesimal kernel: 

UF(J1t)~ (exp ~ (3: (3q) . ((J 1 I} (I q - iJ1tHq)I(3) 

= II {(I +(3*(3 )[1- iJ1tEq (3:(3q -I]} 
q q q 2 1 + (3: (3q 

(3.5) 

(3.6) 

[ 
iJ1tE (3" P - 1] 

~ exp I In( 1 + (3 : (3 q) - --q- q q , 

q 2 l+(3:(3q 
(3.7) 

where 

(3.8) 
q 

and so 

Piotr Garbaczewski 864 



                                                                                                                                    

IF = tr exp( - iHt) 

= f [d/:1 ][d/:1 *] 

'i t
" i/:1: Pq - (Eq/2)(/:1: /:1q -1) dt 

X~l ~ . 
o q 1 +/:1:/:1q 

The lattice Fermi model of Ref. 21, 

H F = -iL [I/I~I/In+1 -I/I~+II/Inl, 
n 

[I/In' I/Im ] + = 0, [I/In' I/I! ] + = 8nm , 

if. = -! (I/In+ I - I/In - I)' 

(3.9) 

(3.10) 

can be equivalently rewritten in terms oflattice spins !: 

However, a straightforward application of the previous bo
sonization recipe to the spin! generators u;; is not efficient at 
all. It is much more reliable to make first a lattice Fourier 
transformation of the original Fermi variables, 

I/In = N -1/2 L Cq exp(iqn), 
q 

(3.12) 
q = (21T/N)P, p = 0, ± 1, ... , ± (N - 2)/2, N /2 , 

where the familiar lattice identity (N is large) 

~ L exp[ - iq(n - m)] = 8nm N q 
(3.13) 

guarantees that both I/In' I/I~, and cq , c; are the CAR algebra 
generators, and moreover 

i 1 
H F = --L-

2 n N 

XL [e - iqnei(n + I)PC;Cp - eipne - iq(n + I)C;Cp l 
p.q 

= - ~ L(~Le-in(q-p))[eiPc;cp-e-iqc;cp] 
q,p n 

= - ~ L [eiqc;cq - e - iqC;cq] = L (sin q)c;cq . 
q q 

(3.14) 

Now the previous route applies apparently, and then 

= f [d/:1][ d/:1 * ] 

. it " i/:1; Pq - (sin q)/3; /:1q 
X expl ~ dt. 

o q 1 + 13: 13q 

(3.15) 

The path integral formulation for simplest Fermi models on 
the lattice, in terms of genuine c-number paths is thus possi
ble, though certainly not well suited for less trivial examples, 
like, e.g., the lattice version of the massive Thirring model,22 
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N { iv 
HMT = n= ~N+I 2;(~I/In+1 -~+II/In) 

+(-I)"~(I/I~I/I~+1 + I/In+ 11/1.) 

- ~ (I/I~I/In - ~ )(I/I~+ 1 I/In+ 1 - ~)} - Eo, 

(3.16) 

a being the lattice spacing. By using the JW transformation, 
one arrives at the equivalent spin! xyz model Hamiltonian 
(with cyclic boundary conditions), 

HMT = -~ L {(~+ m)~~+1 
2 n 2a 2 

+ (~ - ~ )~~ + I + ~ ~~ + I } - Eo , 

which is also 

HMT = IFH~IT IF' 

H:'u = -~ L {-V-(b~bn+1 +b~+lbn) 
2. 2a 

+ m (b~b~+1 +b.bn+d 
2 

(3.17) 

- ~(b~bn -+)(b~+lbn+1 -f)} -Eo, 

IF = II [: exp( - b~bn): + b~: exp( - b~bn): b] 
n 

(3.18) 

Here H B is considered as an operator in the Hilbert space 
Yr' N = h .. 2N, while HF in IFYr' N = hF .. 2N, hF = Ph. Be
cause 1 F is a projection operator in Yr' N' we have 

HB = HF + (1 - IF)HB IF + IFHB(1- IF) 

+ (1 - IF)HB(1 - IF)' (3.19) 

and consequently for any 11/1) = 1 F 11/1) E Yr' N we find 

Hence the necessary and sufficient condition to fulfill 

is that 

(3.22) 

Then if HFII/I) = EII/I) we get automatically HB 11/1) = EII/I) 
and conversely (provided 1 F 11/1) = 11/1»)· 

Since we work in the Hilbert space Yr' N' the respective 
spectra are discrete, and Yr' N is spanned by a complete 
(countable) eigenfunction system of H B' IF is a projection in 
Yr' Nand 1 FYr' N is spanned by these eigenvectors of H B 
which obey IF 11/1) = 11/1). Notice that ifHFII/I) = EII/I), then 
necessarily 
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HB I¢) = HB I aa I¢, a) = I aaEa I¢, a) 
la) la) 

= HFI¢) = EI¢) = E I aa I¢, a), 
la) 

i.e., E = Ea V a E (a). (3.23) 

It means that once any H B is obtained for which 
HF = 1FHB IF for a given Fermi model H F, then automati
cally the eigenfunction system of H F is a subsystem in this of 
H B, and moreover the respective eigenvalues of HB and HF 
do coincide. It then follows that 

tr exp( - iHBt) = tr exp( - iHFt) 

+ trexp[ - (1- 1F )HB (l-l F )]. 

(3.24) 

In the N-particle linear chain, the operator IF = TInPn is 
composed from projections on two lowest levels in each sin
gle site Schrodinger problem. Obviously, there is an infinity 
of other choices. In particular, if to imagine a sequence 

{l~=IIP~ such that I 1~ = 1, 1~ .1~ =okl1~, 
k 

then 

tr exp( - iHBt) = I tr exp( - iH~t), 
k (3.25) 

H~ = I~HB1~, 

provided [HB , 1~] _ = ° V k = 1,2, .... In principle any 
two states at each site can be used for our construction. How
ever, the need for the last commutation rule may play the 
role of the constraint capable of removing a non uniqueness 
appearing in the construction of IF' The Bose system may 
thus happen to be equivalent either to a reducible Fermi one, 
or to the whole tower of might-be-distinct Fermi systems. A 
speculation on the possibly infinite tower of fundamental, 
say, leptons generated by the relatively simple Bose system, 
does not seem to be hopeless. 

Let us mention that the expansion of the Bose trace into 
a sum of Fermi traces resembles the expansions which ap
pear in the path integral quantization of spin systems. 13 

Then the Green's function is known to propagate all spins 
simultaneously. Nevertheless the recovery of the usual Pauli 
spinors is possible by projecting to a specific spin subspace 
which is propagated into itself. One deals then with a Bose 
system, which describes a particle allowed to live in several 
(infinity in fact) spin states. 

To compute a particular Fermi trace, we may not refer 
to the original (Bose) phase-space variables, but instead we 
can use the conventional Grassmann algebra tools. They 
prove to be successful, indeed, once remaining in the particu
lar Fermi sector of the Bose model. 

4. MASSIVE THIRRING MODEL: FROM FERMIONS TO 
BOSONS 

A spectral problem for the Fermi model, 

HF = J dx[ - i(¢fax¢1 - ¢!ax¢z) + m(¢f¢z + ¢!¢I) 

(4.1) 
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has been solved by means of the Bethe ansatz in Ref. 23. One 
assumes to work with a Fock representation of the CAR 
algebra, 

[¢i(X), ¢j(y)] + = oijo(x - y), 

[¢i(X), ¢j(Y)] + = 0, ¢i(x)IO) = 0, 

V i = 1,2, x E R I . 

Then after introducing 

la l , .. ·, an) = J dx l ••• 

n 

X II ¢*(Xi' a;)IO), 
i= t 

X II [1 +iA(apaj)E(xi -xj )], 
1<i <j<n 

¢(X, a) = eaI2¢I(X) + e - a12¢2(X), 

A(ai,aj )= -!gtanh~(ai -aj ), 

(4.2) 

(4.3) 

one demonstrates (see, e.g., the Appendix of Ref. 23) that 

HFla l , .. ·, an) = ( ~ m cosh ai)la j , ... , an)' (4.4) 

Let us now assume that the fields entering H F satisfy not the 
CAR algebra relations (4.2), but the CCR algebra ones, 

HF-HB =HF(¢-~)' 
(4.5) 

[~i(X), ~ j(y)] _ = oijo(x - y), [~i(X), ~j(Y)] _ = 0, 

provided the CAR algebra (4.2) is constructed in the Fock 
representation of the CCR algebra, according to Ref. 24. It 
means that if to introduce the antisymmetric function of Ref. 
24, 

(73 = (7, X k ER I, i k = 1,2, V k = 1,2, ... , n, 
(4.6) 

where u(x j , i l , ... , Xn' in) = 0, ± 1 depending on the choice 
of the (x,i) sequence; then the operator 

¢k(X) = I ~ 
n n! 

Xu(X, k, YI' i l , .. ·, Yn' in) . ~ ~(y.J ... ~ r n (Yn)' 

X: exp{ - itl J dz~ r(Z)~i(Z)} : 

X~k(X)~il(y.J"'~iJYn)' XER I, k= 1,2 (4.7) 

is the CAR algebra generator of (4.2), and together with its 
adjoint, obeys 
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¢ i"(xliO) = ¢i"(X) 10), ¢i(x)IO) = 0 = ¢i(x)IO) 'tJ f, x, 

¢~(xd'" ¢~(xn)IO) 

= u(x l, f l,···, Xn, i n)¢ ~(xd'" ¢ ~(xn)IO), 

[¢i(X), ¢j(y)] + = ~ij~(X - y)IF , (4.8) 

with 

1F= ~ ~! it~inf dXI···f dXnu2(XI,il,· .. ,xn,in) 

X¢ ~(xd'" ¢ ~(xn): exp{ - itl f dz¢ i"(Z)¢i(Z)} : 

X¢it(xd··· ¢i.!Xn), (4.9) 

which is a projection in the Hilbert space of the Bose system 
selecting the Fermi subspace in it. 

Consequently the Bethe ansatz states for the original 
Fermi model can be generated from the vacuum by using the 
Bose operators. We have 

[eat /2¢t(xd + e - a t /2¢t(xIl] .. , 

[ean12¢t(xn) + e - u
n12¢!(xn)] 10) 

= I {u(xI,il"",xn,in)¢~(XI)·"¢~(xn)IO) 

where i k = 1,2, and obviously 

IT [eUk12¢t(xk ) + e - Uk
12

",!(X k )] 10) 
k=1 

Hence 

la l ,···, an) 

with 

= f dX I ... f dxnX(xl, .. ·,xn, a l,···, an) 

X i~n u(xlil, .. ·, X n , fn )[ exp.f (- l)i
k

+ lak /2] 
X¢ ~(XI)'" ¢ ~(xn)IO) 

= f dx l··· f dXn I 17(X, a, i)¢ ~(XI)'" ¢ ~(xn)IO), 
Ii} 

(4.12) 

n 

17(X, a, i) = x(x,a)u(f,x)exp I (- l)ik + la k /2. (4.13) 
k=1 

In Ref. 4 we have proved via the inverse spectral transform 
method, a close connection between the Bose and Fermi ver
sions of the massive Thirring model. To make this connec
tion more explicit, we shall demonstrate that vectors (4.13) 
are eigenvectors of the Hamiltonian H B arising as 
HB = H F (",* ..... ¢ *,,,, ..... ¢). For the kinetic term of 
H B , l:;= I¢ i"(X)aX¢i(X)( - lY+ I by commuting it through 
the product of ¢ *'s, and then integrating by parts we arrive at 
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X i {( - l)ik + I [( - iVkX)u 
k=1 

+x(-iVka)] expCtl (-I)ij +laJ2) 

X¢ ~(xd'" ¢ ~(xn)}IO) 

= f dxl· .. f dXn ktl (-iVkx)",*(al,x l ) .. · 

X (eu ';2"'t(xk ) - e - Uk
12

"'t(Xk)) ... "'*(an, Xn )10) 

= f dx l··· f dxnX(x l ,· .. , Xn, al>'''' an) i~n 
X i (- l)ik+ I( - fVka) 

k=1 

X ( exp jtl ( - 1 fj + I aJ2 )¢ ~ (x I) ... ¢ ~ (xn ) I 0) 

= H~nlal"'" an) + IA). (4.14) 

AnexactformofH~nlal"" an) was given in Ref. 23, and we 
shall concentrate on the spurious term IA ) in 
H~nlal"'" an). By virtue of(4.6), we have formally 
( - iV k )a(xli l , .. ·, Xn, fn) 

= (- iVk)~n+ l{x jil>""xn, fn) 

= (2n + l)a 2n( - iV k )a = (2n + l)a 2( - iV da 
=(-iVda, n=1,2, ... , (4.15) 

which holds true for all integers and all possible choices of 
sequences {(x,i) J while inserted in (4.14). Hence the identity 
(4.15) can be satisfied if and only if (up to a set of measure 
zero) 

(-iVk)a(xjil"",xn,in) 0, 'tJ k=I,2, ... ,n. (4.16) 

It however means that IA ) = 0 which proves the property 

(4.17) 

Remark: As an example of a = U 3 used in the above, 
one can take 

u(xl.iI, .. ·,xn,in )= II Pjk' 
1<:J<k<.n 

Pjk =~ifk[8(xj -xk)-8(Xk -xj )] 

+1 ' 'I( l)e(xj -Xkl lk -lj - , 

where 8(x - y) = 1, x>y, 0, otherwise. 
For Ij = i k we have 

Pjk =8(xj -xk)-8(Xk -xj ), 

which equals either 0 or ± 1. 
For Ij =lfk we arrive at 

(4.18) 

(4.19) 

Pjk = ( - l)e(xj -x.I, (4.20) 

which equals ± 1. Consequently Pjk = 0, ± 1 and in addi
tion to the manifest antisymmetry property, 
(ijxj ) +-+ (i kX k ) ~ a ..... - a, we have satisfied the property 
a 3 = a as required by our previous definition. Notice that a 
vanishes if and only if a pair (i, x) appears more than once in 
the sequence {(i, x) J . 

Piotr Garbaczewski 867 



                                                                                                                                    

For the mass term of H B we get 

H';lap- .. , an) 

= m f dx, ... f dxnX(x" ... , Xn' a" ... , an) 

X i~" O'(x" i" ... , Xn, in)eXpCt, ( - lfJ+ 'aJ2) 

X [ kt\ exp( - l)ikak ]¢ ~(x,) ... ¢ ~(xn )1 0 ) 

= m f dx, ... f dxnX(x\, ... , Xn' a" ... , an) 

X ± ["v*(a"xd···(e~ak/2"vT(ak,xk) 
k~\ 

+ eak/2"v~(ak' xk) J •.. "v*(an, xn)] 10) 

=H~la, ... an), 
and for the interaction term 

=2g f dx!' .. f dxnX(x" ... ,xn,a" ... ,an) 

X i~" [expCtl (- l/)+ 'aJ2)] 

X L L 8(Xk - Xl) [ 81ik D2il + 81iID2ik ] 
k l#k 

X"v~(XI)'" ~(xn)IO) = 4g f dx, ... 

f dxnx(x
" 

... , Xn, a l ,· .. , an) 

X L I 8(Xk -Xl)( -l)k~l+'€(k_l) 
k l#k 

X sinh ~ (ak - a/I"vT(xk)"v!(xll 

(4.21) 

X "v*(a J, xd ., '"v*(anxnIIO) = H~t(a", .. , an)' 
(4.22) 

and by virtue of Ref. 23 we thus arrive at 

(H~n + H'; + H~t)la""" an) = HFla" ... , an) 

Needless to say, 

IF la" ... , an) = la" ... ,an), 

i.e., indeed 
HF = lFHB IF' [HB, IF] ~ = 0 

(4.24) 

(4.25) 

holds true for the continuum field theory, the massive Thir
ring model. 

Let us notice that in contrast to lattice Fermi models we 
have not made any explicit transformation of Fermi varia
bles into spin ~ type variables. The formula (4.24) proves that 
such a transformation exists. 

Remark 1: By Ref. 4 the spectrum of H Band H F is the 
same in the physical Hilbert space (which is not the Fock 
space), but the spectrum of H B appears as infinitely degener
ate. As a conjecture we have suggested that the Bose massive 
Thirring model can be rewritten as a reducible Fermi one. 
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From the heuristic point of view we find evidence that 

= oc 

H B = L 1 ~H B 1 ~ = L H ~ , 
k~1 k~1 

00 

l}l~ =8kl l}, ~B = Ell ~}, ~} = l~~B' 
k~1 

(4.26) 
00 

tr exp( - iHBt) = L tr exp( - iH}t). 
k~1 

Remark 2: A relationship between thee-number (classi
cal) and Fermi massive Thirring models is thus established 
as follows. 

(1) Take HB = H F(¢ * ,¢) and a coherent state of the 
Bosespinorfield 197) such that (971¢ 197) = (Ol¢ + 971 0) = 97 
is a classical e-number solution of the MT model field equa
tions. 

(2) Construct a separable Hilbert space IDPS( 197») by 
using the CCR algebra generators (¢ *, ¢ J. 

(3) Check (see Refs. 3 and 25) whether 197) allows for the 
existence of Fermi states in IDPS(I97»), i.e., that lFI"v) 
= l"v) E IDPS(I97»)' If so, then look for eigenvectors of HB 

which are Fermi vectors, they are then the eigenvectors of 
H F' SO the Fermi model appears and the (irreducible) Fermi 
fields can be introduced. 

Remark 3: One must realize that Fermi states of the 
Bose system are allowed to exist in a very restrictive subset of 
the set of all non -F ock sectors of the Bose modep·25 This 
restriction follows from the assumption that Fermi states are 
admitted to arise in Hilbert spaces (in fact in the incomplete 
direct product ones of von Neumann) which are generated 
about coherent states of the Bose system. The latter are nec
essary to satisfy the (weak) correspondence principle 

(97 I: H B (¢ *, ¢ ):197) = H(97 *,97) = Hc1assical' (4.27) 

where Hc1assical is a classical Hamiltonian of the e-number 
spinor field satisfying the field equations of the massive Thir
ring mode1.26 

5. MASSIVE THIRRING MODEL: c-NUMBER PATH 
INTEGRAL REFORMULATION AND ALL THAT 

To strengthen the above introduced links between the 
classical e-number and Fermi massive Thirring models, we 
shall try to derive the path integral expression for 
tr exp( - iHFt) in terms of genuine e-number trajectories. 
We are not aiming at any practical application (for which the 
Grassmann algebra formulation perfectly suffices); our 
problems are rather of the foundational nature. The observa
tion that H F = 1 FH B 1 F suggests that Bose operators in H B 

should be replaced by spin! objects like in the lattice cases. 
The lattice spins suitable for our purposes are given by 

O'i+ (k) = ¢ r(k): exp( - ¢ r(k )¢i(k )): , 

O'i~ (k) = : exp( - ¢ r(k )¢i(k)): ¢i(k), 

k=O, ± 1, ... , i= 1,2, 

[O'i~ (k), O'i+ (k)] + = l~(k), 
2 

IF(k) = II l~(k), IF = II IF(k), 
i= I k 
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where we assume 

tP~(k) = (1/{8) r dxxdx)tP~(x), 
JR' 

(5.2) 

{
I, xELlk' 

Xk(X)= 0 h . [tP;(k),tPi(p)]-=tJkptJij, 
, ot erwlse, 

tJ being the length of each intervalLl k • Since we assumetJ< 1, 

one can formally write 1,6 ~(k )e{8tP ~(xd, i.e., a reasonable 
continuum limit would arise after rescaling fields 1,6 ~(k ) by 

1/$ as then tJkp - tJkP /{8 - tJ(x - y). It is inconvenient to 
work explicitly on the continuum level of quantum field the
ory, hence to avoid inconsistencies we shall use the appropri
ately discretized model and the transition to continuum will 
be investigated after achieving the c-number level of the the
ory. 

The mass and interaction terms of HB we discretize as 
follows: 

H';(k) = m [1,6 f(k )tP2(k) + 1,6 !(k )tP,(k)], 

H ~t(k) = (2g/tJ)tP f(k)tP !(k )tP2(k )tP,(k), 

so that for tJ< 1 we would formally have 

H';(k ) etJH';(xd, 

H~t(k )etJH~t(xd. 

(5.3) 

(5.4) 

The main difficulty, as usual with Fermi models, comes from 
the kinetic term, and we shall use a trick which differs from 
those used in the literature, see for example Ref. 21. 

We introduce 

tP;(k, a) = _1_ r xdx)tP;(x + a), 
{8 JR i 

:a 1,6 ~(k )tP;(k, a)la=o 

= _1_ 1,6 ~(k) f dx xdx)axtP;(x), 
$ 

which allows for the following computation: 

a 
aa u;"(k )u;(k, a)la = 0: 

= 1,6 ~(k): exp(tP ~(k )tP;(k)): 

a 
x aa I: exp( - 1,6 ~(k, a)tP;(k, a)) :tP;(k, a)) la = 0 

(5.5) 

= 1,6 ~(k): exp( - 1,6 ~(k )tPi(k )):aa1,6; (k, a)la = 0 

-tP~(k):exp( -tP~(k)tPi(k)): !(aatP~(k,a)la=o) 

x: exp( - 1,6 ~(k )tP;(k)) : 1,6 ;(k) + 1,6 ~(k) 

X :exp( - 1,6 ~(k )tP;(k)) : (aatP;(k, a)la=o)tP;(k)J 

=1,6 ~(k): exp( - 1,6 ~(k )tP;(k)) : JatP;(k, a)la = o. (5.6) 

Consequently we introduce 

H~n(k) = - i[ 1,6 f(k )aA,(k, a) - 1,6 ~(k )aatP2(k, a)] la=o' 
(5.1) 
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With such HB, the formula HB(k) - IF(k )HB(k )IF(k) 
arises through replacing all Bose operators by appropriate 
spin! operators: 

HB(k)-HF(k) 

= - i[ 1,6 f(k): exp( - 1,6 f(k )tP,(k)) : aatP,(k, a)la = 0 

- 1,6 !(k): exp( - 1,6 !(k )tP2(k)) : aatP2(k, alia = 0] 

+m[tPf(k):exp( - jtltP~(k)tPi(k)):tPl(k) 

+ 1,6 !(k): exp( - jtl 1,6 r(k )1,6; (X)) : tP2(k)] 

+ 2g 1,6 f(k)tP !(k): 
tJ 

X exp( - jtl 1,6 i(k )tPj(k)) : tP2(k )tP,(k). (5.8) 

An infinitesimal propagator for H F(k ) reads 

U~(Llt) = exp(iHF(k)LIt)e IF(k) - iLltHF(k), (5.9) 

and its functional kernel is 

U~(Llt) = [exp jt/i(k ).Bj(k)] . <P 1U;(Llt )IP) 

= l-i[Pf(k)aaPI(k,a)la=o expp!(k).B2(k) 

- P!(k )aaP2(k, a)la =0 exppf(k ).B,(k)] 

+ m[pf(k ).B2(k) +P~(k ).B1(k)] 

+ (2g/tJ)IPI(k W/P2(k W)( - iLlt) 

+ {I + ;tlP~(k).B;(k)+ IPI(kWIP2(kW} 

: = (1 -IAtH(k )/Ili= 1,2(1 + IP;(k W)) 
2 

X exp I In(l + /Pi(kW) 
i+ I 

e exp { ;tl In[1 +P~(k).B;(k)] 
- iLltH(k )/Ili= 1,2(1 + P~(k )/J;(k)). (5.10) 

We compose a product of such kernels for all sites: 
U F = Ilk U;, and by repeating the Fermi oscillator argu
ments, we arrive at the following expression on a lattice (time 
is continuous): 

tr exp( - iHFt) = f [dP ][dP*) exp ~ i f dt 

X [ ± i P r(k lPi(k) 
i= 1 1 + P~(k ){3;(k) 

H(k) ] (5.11) 
- Il i = 1,2(1 + pr(k ){3;(k)) . 

If now to notice that the coherent state representation of 
tP;(k) reads 

P;(k)=_l_JXdX)/Ji(X)dX e .j8p;(x) xELl k ,(5.12) 
$ 

we arrive at 
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tr8 exp( - iRFt) 

= f [d/3 ] [d/3 *] exp ~ i f dt 

x { ± io /3 t(x)i3j(x) - [( _ io)( /3 fix) 
j~ 1 1 + o/3t(x)/3j(x) 

xa/31(X) exp(o/3 t(x)/3z(x)) - /3 t(x)a/3z(x) 

x exp(o/3 f(x)/31(X))) + mo (/3 f(x)/3z(x) + /3 t(X)/31(X)) 

+ 2gol/31(XWI/32(XW] /Jl,z (1 + 0/3 1 (X)/3i (x)) } . 

(5.13) 

Under an assumption that we restrict path integrations to 
these c-number paths only for which lTi(x) = /3 1 (X)/3i (x) < 00 

on the whole space axis, we can consistently achieve a con
tinuum limit. Then contributions from factors 
exp(o/3 1 (X)/3i (x)), ll7 ~ 1(1 + 0/3 1 (X)/3i (x)) become negligi
ble; if compared with 1; hence 

trA exp( - iRFt) 

= ( [d/3 ][d/3 *]exp i (' dt f dx 
J'U,<A < = I Jo 

x {jtl i/3 t(x)/3j(x) - [( - i)( /3 fa/3z - /3 ta/3t1 

+ m(/3f/32 +/3t/3tl + 2gl/3l 121/3212] (X)} 

= ( [d/3 ] [d/3 *] exp i r dt f dx 
J1a,<A<=1 Jo 

(5.14) 

It does not overcome problems with the continuum limit if 
no restrictions on trajectories are imposed, but at the same 
time it selects a subset of trajectories on which these prob
lems disappear. Then the Fermi and Bose formula for the 
trace has an identical contribution from this subset, and the 
solutions of the original classical field equations do make 
stationary the action for both cases. Because of the impor
tance of such stationary points in the semiclassical physics, 
we conclude that it makes sense to talk about the quantum 
meaning of classical c-number spinor fields in the Fermi 
quantized case. 

6. REMARKS ON THE CHIRAL INVARIANT GROSS
NEVEU MODEL 

The Hamiltonian density of the model reads 
N 

RF(x) = - i I (¢:+ a¢a+ - ¢:- a¢a_) 
u=l 

N 

+ I 4g¢:+ ¢t- ¢b+ ¢a- . (6.1) 
a,b 

The Hamiltonian R F is diagonalizable in the Fock space of 
the Fermi fields ¢aa (x), a = 1,2, ... , N, a = ±, 

[¢aa (x), ¢~b (y)] + = OapOabO(X - y), 
(6.2) 

¢aa(X)IO) = 0, V a, a, x. 

The respective eigenvectors have the general form27 
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n 

·S(al,· .. ,an) II ¢:'ai(Xi ) 10), (6.3) 
i=1 

where F (x,a) is an eigenfunction of the n-particle Hamilton
Ian 

h = - i i ajaj - 4g I O(Xi - Xj)Pij[~(l - aiaj )]. 
j~ I iJ 2 

(6.4) 

pij is an operator which exchanges chiralities a i and aj . Let 
us assume that the CAR algebra representation (6.2) is em
bedded in the CCR algebra representation, as in Ref. 24. For 
this purpose we need an antisymmetric function 

(6.5) 

which changes a sign if triplets (x, a, a) in ! (x, a, a) J are in
terchanged and takes the values 0, ± 1. Then, we arrive at 

n 

II ¢:'ai(xi)IO) 
i= ] 

= IT(x I, aI' a l ,. .. , Xn, an' an)¢ :,a, (Xl) ... ¢ :naJXn )10), 
(6.6) 

where ¢, ¢ * are the corresponding Bose operators (with the 
same iso-indices as the fermions). 

If F(x, a) is an eigenfunction of h, then 

Fa(x, a) = F(x, a)· u(x, a, a) (6.7) 

is an eigenfunction again, because formally 

ailT = ailT 2n + I = (2n + l)lT 2nailT = (2n + lIlT 2ai lT 

=> ailT - 0, (6.8) 

which yields (up to a set of measure zero) 

- i I aAFa(x, a) - ( - i I ajajF) . IT . (6.9) 
J 1 

On the other hand 

IO(xi - Xj)pij[~ (1 - aiaj)]Fa(Xla) 
ij 2 

.. [ 1 ] = ~ O(Xi - Xj)P'l T(l - aiaj ) 

xF(··· Xi'" xj , ... , ... , a i··· aj ... ) 

XlT(' .. Xi' .. Xj " . a i ' .. aj ·· .) 

= {~O(Xi -Xj jPij[f(l-aiaj )]F}'lT (6.10) 

provided IT is symmetric under an interchange of a i and aj at 
Xi = Xj and (a l , ... , an) fixed. As an example of such IT we 
propose 

IT(Xl' aI' a l ,· .. , Xn' an' an) = II Pjk' 
l<J<k<n 

Pjk =OapkOapk[G(xj -Xk)-G(Xk -Xj)] 

+oapkG(laj -akfH _1)I+B(xj- Xk l 

+ Oapk G (faj - ak f)( _ I)B(x} - xkl 

+ (1 - oapkHI - oapkH - 1jB(xj- X kl. 
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Notice that at Xi = Xj we have 

Pik(Xj = xk) = 8af'.8(laj - a k I) - 8af'.8 (iOj - Ok I) 

+ (1 - 8af'.)(1 - 8af")( - 1). (6.12) 

One should notice also that an eigenvalue problem for h 
arises from an eigenvalue problem for H F after commuting 
the annihilation operators to 10) through the product of if!*'s 
and then integrating the gradients by parts. If now to use the 
Bose CGN Hamiltonian HB = HF(if!* ~ rp *, if! ~ rp) the 
procedure is exactly the same and the eigenvalue problem for 
h arises again, but with a wave function Fa(x, a) instead of 
F(x,a). 

Consequently the Bethe ansatz eigenvectors of H Fare 

also eigenvectors of H B, and satisfy the property 
IFIF, s) = IF, S), where IF is the operator unit of the bo
sonized Fermi algebra. All the arguments applied before to 
the massive Thirring model apparently apply in the CGN 
case, and for example it is not difficult to check that the 
coherent state expectation value of the bosonized Fermi Ha
miltonian reads 

(p IIFHB IF 1.8 ) 

871 

~ I {8( - i) I [.8:+ exp( - 8.8: +.8a + )a.8a + 
k a 

- .8 : _ exp( - 8.8 : _ .8 a _ )a.8 a _ ] 

+ 4g8 I.8:+.8L exp( - 8 I [.8:a.8aa 
ab a 

+.8 ta.8ba ]).8b +.8b - ~ f dx 

X { + ( -i)(.8: + a.8a + -.8:- a.8a_ 

+ 4g I.8: +.8 L .8H .8a - } 
ab 
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(6.13) 

for all c-number spinor functions which are regular enough, 
i.e., satisfy O'aa(x) =.8 ~a(xV:1aa(x)<A < 00. The respective so
lutions of the classical CGN model field equations thus have 
a quantum meaning both in the Bose and Fermi quantization 
cases (see in this connection also Ref. 28). 
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An integral involving the product of two associated Legendre polynomials and inverse powers of 
(1 - X2) is carried out using the operator form of Taylor's theorem and an integral over a single 
associated Legendre polynomial. 

PACS numbers: 02.90. + p, 14.40. - n, 23.20.Js 

I. INTRODUCTION 

The integrals involving associated Legendre polynomi
als occur in many branches of physics. I Since associated Le
gendre polynomials P 7'(X) multiplied by (1 - X 2) are poly
nomials in X, in principle such integrals can easily be 
evaluated involving double or triple sums. However, it is not 
an easy matter to resum such series into a simpler form. 
Because of this, various other techniques are used to evaluate 
these integrals which directly give simpler forms. The pur
pose of the present work is to describe a new technique, 
based on the operator form of Taylor's theorem, to evaluate 
integrals involving the product of two associated Legendre 
polynomials and inverse powers of (1 - X 2). Laursen and 
Mita2 have recently pointed out that such integrals are need
ed in meson physics and have evaluated some of them using 
special properties of hypergeometric functions. Since asso
ciated Legendre polynomials can be coupled using vector
coupling coefficients, I such integrals can be used to derive 
additional sum rules for the vector-coupling coefficients. 3 

We present this formulation in Sec. II. Concluding remarks 
are presented in Sec. III. 

II. FORMULATION 

Let us consider the integral 

I = JI dx [P7'(x)PZ(x)] 
P_ I (1 - X 2y + I ' 

(I) 

with /, m, k, n, p being positive integers, t>m, k;;,.n, 
p«m + n - 1)12, and / + k - (m + n) even. We shall use 
Taylor's theorem to write it as an integral over a single asso
ciated Legendre polynomial. The operator form of this 
theorem is written as 

fIx + h ) = exp(h D )f(x), (2) 

where D = d /dX is the differential operator. Using expres
sion (2), the integral in (1) can be rewritten as 

Ip = J~I dx(I-X 2)-n/2- p- I p7'(x) 

xexp[(I-X2)~]An/2PZ(~)1 . (3) 
JA ,<=0 

The function A m12p7'(~) can be written in terms ofa 
hypergeometric function using the relation4 

F(a,b;a+b+~;X) 

xX 112(1/2 - a - blp 112 - a - b(~1 - X). 
a-b-1/2 (4) 

Substituting expression (4) in expression (3), expanding the 
exponential, and making use of the integral4 

fT dt (sin t)a - Ip ;JL(cos t) 

(5) 

Re(a ± f1;) > 0, 

we get 

XF(( - / - m + I)/2)F((/ - m + 2)12)]-1 

"" 1 _F...!.!( (_k ....:.+_n_+-,---,I )....:./2_+,--t !.....)F-,(.:....( -_k--'.+_n..:..)1_2_+....:.t.....:..) 
X t~O t! F(n + 1 + t)F((n - 2p + / + 1)/2 + t) 

xF((n - 2p - m)l2 + t)F((n - 2p + m/2) + t). (6) 
r ((n - 2p -1)/2) 

By using specific values of P 7' in expression (4) we find that a 
phase factor has to be added to it. Similarly, there is a phase 
factor in expression (5). These phases are added to expression 
(6). Further in the derivation, we have assumed 1+ m to be 
even; this restriction will be dropped in the final result. To 
arrive at the final expression, we express the sum over t as a 
generalized hypergeometric series. The final expression for 
Ip is given by 
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x r ( n - 2P: I + 1 )r (n - ; - I) ] ~ 1 

F( k+n+l -k+n 
X 4 3 2 ' 2 ' 

-2p+n-m 
2 

-2p+n+m. 
2 ' 

n I n - 2p + I + 1 n - 2p - J . I) 
+ , 2 ' 2 " 

where 4F3 is the generalized hypergeometric series. 

(7) 

For the special case in which one has squares of asso
ciated Legendre polynomials, we get by putting k = I and 
n = m, the following expression: 
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1= (/+m)!(m-p-l)!re+~+1)re-~+2+p) 
p 

(
/+m+l I-m 

X4F3 , - --,m-p, -p;m+l, 
2 2 

1+ m + 1 - 2p - I + m - 2p . 1) (8) 
2 ' 2 ,. 

As a simple check on expression (8) we find by setting 
p = 0, that 

~=~+mp~, ~ 
(/-m)l m 

the same value as given in Ref. 4. 

III. CONCLUDING REMARKS 

We have shown that a new technique based on the oper
ator form of Taylor's theorem can be used to evaluate inte
grals involving associated Legendre polynomials and inverse 
powers of (1 - X 2). The technique enables us to express this 
integral in terms of the generalized hypergeometric series 

4F3' 

'D. M. Brink and G. R. Satchler, Angular Momentum (Oxford V.P., Prin
ceton, 1962); A. R. Edmonds, Angular Momentum in Quantum Mechanics 
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2M. L. Laursen and K. Mita, J. Phys. A: Gen. Phys. 14, 1065 (1981). 
IN. Ullah, Indian J. Phys. 56A, 296 (1982). 
4M. Abramowitz and A. Stegun, Handbook of Mathematical Functions 
(Dover, New York, 1965), Chaps. 8,15. 
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A geometric approach for variational principles with constraints is applied to obtain the equations 
of motion ofa classical charged point particle with magnetic moment interacting with an external 
eletromagnetic field. 

PACS numbers: 03.20. + i, 03.30. + p 

I. INTRODUCTION 

In this paper we obtain a set of equations of motion for a 
classical charged point particle with spin and magnetic di
pole moment. These equations are completely consistent and 
are generated according to a projective Lagrangian formal
ism introduced by C. M. Amaral and P. Pitanga. 1 This for
malism is based on a geometric view of the constraints, 
which represent hypersurfaces in the space of coordinates 
and velocities. The basic assumption is that the physical 
movement of the representative point belongs to the inter
section of those hypersurfaces. 

The nonintegrable condition of orthogonality between 
the spin tensor and the four-velocity is conserved by the the
ory. The equations of motion do not have, however, the spur
ius helicoidal solutions usually present in these theories2

-
5 

and that appear even in the free field case. These helicoidal 
motions are usually eliminated when one assumes the ortho
gonality between the spin and the mechanical movement. 6-8 

In the present theory both conditions are equivalent since 
the momentum and the velocity are parallel. 

We could obtain the same set of equations9 by using in a 
correct form the Lagrangian formalism with nonintegrable 
constraints via Lagrangian multipliers. 10.11 

In Sec. II we define the space of coordinates and veloc
ities for a particle with spin as well as the form of the con
strained variational principle. In Sec. III we propose a spe
cific Lagrangian so as to obtain the equations of motion. In 
Sec. IV some conclusions are pointed out. 

II. THE SPACE OF VELOCITIES AND COORDINATES 

Consider a classical point particle with spin described 
by a set of four coordinates 

xl" =xI"(1') (2.1) 

related to an arbitrary Lorentz frame. The parameter l' is the 
proper time, in the sense that 

I' dxl' u =-
d1' 

(2.2) 

satisfies the canonical condition 12 

ul'ul' = 1. (2.3) 

We can introduce additional degrees of freedom defin
ing two spacelike four-vectors 

8) Partially supported by FINEP. 

b (i)1' = b (')1'(1'), i = 1,2 

on the trajectory of the particle. Later they will be associated 
with the spin. We assume that these vectors are normalized 
to - 1 and are orthogonal to each other and to the velocity 
ul'. 

We could introduce a third spacelike four-vector b (3)p. 
to complete a vierbein field, where b (0)1' is identified with the 
four-velocity ul'. This is not necessary, however, because the 
spin tensor is antisymmetric [see expression (3.3)] and its six 
non-null components can be described only by b (I)p. and b (2)1' 
put in a convenient form. 

The conditions of orthonormality satisfied by b (')1' and 
ul' are expressed by the constraints 

¢ (I) = b (1)I'UI' = 0, 

¢ (2) = b (2)I'UI' = 0, 

if> (3) = b (lll'b (1)1' + 1 = 0, 

if> (4) = b (2)l'b (2)1' + 1 = 0, 

if> (5) = b (1)l'b (2)1' = 0. 

(2.4a) 

(2.4b) 

(2.4c') 

(2.4d') 

(2.4e') 

We can use an equivalent set of constraints, replacing 
(2.4c')-(2.4e') by 

db(!) 
¢ (3) = b (I)I'-==--..E.... = 0, 

d1' 
(2.4c) 

db (2) 
¢ (4) = b (2)1'-==--..E.... = 0, 

d1' 
(2.4d) 

db (2) db (III' 
¢ (5) = b (1)1' __ 11_ + --b (2)1' = O. (2.4e) 

d1' d1' 

The constraints (2.4) represents five hypersurfaces in 
the space of coordinates and velocities (CV -space). CV -space 
has dimension D = 24 and is spanned by all the representa
tive 24-dimension "position vectors" of the particle 

IR ) = (Xl' b (lll' b (211'. dxl' db (1)1' db (2)p.) 
, , 'dr' d1' ' d1' 

(2.5) 

where 

iO)1' = xl', X(I)I' = b (1)1', and X (2)p. = b (2)1'. 

The metric of CV -space is 

gmn = gmn = diag (+ - - - , ... , + - - -), (2.6) 

since X (')1' and dX iiiI'; d1' are Lorentz four-vectors. 
The physical trajectories of the representative point in 
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CV-space must belong to the intersection of the hypersur
faces 1,6 (I) = 0. Consequently the tangent vectors ofthese tra
jectories have to be orthogonal to each one of the vectors 

cv ( atPI a¢/) 
leI) = V¢/ = ai'l~; a(dX(iil'ldr) . (2.7) 

Because 1,61 = ° are five independent conditions, we can 
define a local five-dimensional metric 

glJ = (eI Ie) 
and its inverseglJ. 

The projector I 

A = l-gIJ(eIle) 

(2.8) 

(2.9) 

will subtract from an arbitrary vector belonging to CV -space 
its linearly dependent part with the vectors leI). 

In this way, if we define 

IA) =A IA), (2.10) 

we see that 

(e jA) = 0, J = 1,2, ... ,5. (2.ll) 
We will now see how to apply these ideas to the vari

ational principle. In its free form, we have 

L
A2 

t5A = t5L d)' 
AI 

= rA2{~i')~ + ~L DX(I)~} d)' = 0, (2.l2) 
)A, aX(I)~ i ')1' 

where). = ). (r) is an arbitary function of proper time and the 
dot represents did),. 

By assuming a null variation at the end points, and by 
making an integration by parts, we see that 

(2.l3a) 

where 

E(I)=~ ~L _~ (2.13b) 
~ d). ai')1' aX(I)~ 

is the Euler vector. We assume the sum convention for the J.l 
and (i) indices. 

Equations (2.13) are equivalent to 

{j (I)~ 
E(I)~=O 

I' {j). 

for an arbitrary {jX (I)~. 

In CV -space this corresponds to the equation 

if we define the 24-dimensional Euler vector 

(2.14a) 

(2. 14b) 

(2.l4c) 

We note that this vector has non-null components only 
in V-space, i.e., the subspace of CV -space spanned by the 
arbitrary 

( 
dX(i)~) 

jR)= O;~. (2.15) 
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To introduce the constraints, we replace the free vari
ation DX by 

8.1' = A{jX, (2.16) 

and the corresponding one to Eq. (2. 14b) is now 

which is equivalent to 

which implies that 

A TIE) =0 

since the {jX are all independent. 

(2. 17a) 

(2.17b) 

(2.18) 

jE) belongs to the V -space and it is, however, enough to 
calculate the projector A T in this space. In this way, we will 
list only the V-projection of jeI ),1 = 1 to 5. 

From (2.7) and (2.4) they are 

leI) = (b (1)1.1,0,0), 

le2) = (b (2)1.1,0,0), (2.19) 

le3
) = (O,b (I)~,O), 

le4
) = (O,O,b (2)~), 

jeS ) = _l_(O,b (2)1.1, b 1111.1), 

J2 
where the leI) are presented in a normalized form. 

It is trivial to see that 

glJ = (eI jeJ) = _ t5lJ, (2.20) 

and soglJ = glJ. 
The projector 

Q = 1 - A (2.21) 

IS 

° 

° b2b2+~ 
2 1''' 

We note that (2.22) 

(Q
(I)(J))T = Q(JW) = Q(I)(]) i e 
/J-V VJ.1.. J.£V'· ., 

(2.23) 

III. EQUATIONS OF MOTION 

To generate equations of motion for a classical point 
particle with spin in an external electromagnetic field, we 
choosel 3 

L = (mo + k 12SI.I"F~v)(V2)1/2 

+ eA~ v ~ + (h 12)(h 1i)l.Ib~) - b (1)l.Ih ~)), (3.1) 

which is the simplest Lagrangian that is homogeneous in 
v ~ = dx" I d)' describing the interaction of a charge e with a 
magnetic dipole moment 

(3.2) 
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with the electromagnetic field. Although not present in Ref. 
13, the included b (II" terms are necessary to generate the 
precession equation for the spin, defined as 

S"v = h (b (I)"b (2)v _ b (I)vb (2),,), (3.3) 

where h is a constant related to the spin modulus. 
Those terms represent the energy of proper rotation of 

the particle.4 

Let us obtain the precession equations. The Euler vec
tors for b (i)" are 

E (I)" = h (b (2)" _ kF"Vb ~)(V2)1/2), (3.4a) 

E (2)" = _ h (b (i)" _ kF"Vb ~1(V2)1/2), (3.4b) 

and Eqs. (2.18), (2.22), and (2.23) imply that 

E(1)" + (b Ib 1+ b 2b 2/2y"v E~) + (b 2b l/2r E~I = O. 
(3.5) 

From (3.5) and the constraints, we get 

db (2)" 
-- = kF"vb ~I. 

dr 

In an analogous way, we see that 

db!I)" 
__ = kF"vb (II 

dr v 

and from (3.3) we get 

dS"v __ =2kF["Sv)u 
dr a' 

where f1 and v appear in an antisymmetric form. 

(3.6a) 

(3.6b) 

(3.7) 

From (3.7) we see that the spin modolus is conserved, 
i.e., 

(3.8) 

Let us now obtain the last equation of motion. From 
(3.1) 

d)' E (0) _ d ( ) F v k S uf3F - "--mu,, -e "v u -- uf3,,, , 
dr dr 2 

(3.9) 

where 

m = mo + (k /2)saf3Faf3 (3.10) 

is the effective mass of the particle, 
Ifwe use (2.18), (2.22), (2.23), and the identity 

s"usv 
y=(b 1b 2 _b 2b 1y"", (3.11) 

which is a consequence of (3.3) and the constraints (2.4), we 
obtain :r (mu,,) = eF"u UU + ~ saf3Fuf3,,, 

S"u
Suv 

{ k F p k ... f3rF } - h 2 (e - m ) vpU + 2'"' f3r,v' 

From (3.7), (3,10), and (2.4) we see that 

u"~ = ~ dS
af3 

Faf3 = 0, 
dr 2m dr 

which expresses the conversation of(2,3). 
Similarly, we prove that 
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(3.12) 

(3.13) 

(3.14) 

and as a consequence, the conservation of the condition 

(3,15) 

which is in agreement with (2.4) and (3.3). 
Equations (3,8), (3,13), and (3,14) are the consistence 

conditions of the theory. 

IV. CONCLUSION 

The present set of equations obtained by a geometrized 
constrained variational principle could also be obtained in a 
more traditional way by using Lagrangian multipliers.9 

The geometrical treatment is, however, more intuitive 
and it can avoid the null momenta conjugate to the Lagran
gian multipliers, which may be inconvenient for the quanti
zation of constrained systems. 

It is interesting to point out that the coupled equations 
(3.7) and (3.12) are more satisfactory than those similar equa
tions found in the literature. For example, in the elucidative 
text of A. Barue 3 we have 

(4,1) 

and 

dS"v (42) dr + 2P["uv) = 2kFp["Sv)P . 

in lieu of (3.12) and (3,7), when we consider (2.2). The me
chanical moment P" satisfies the relation 

(D~ - uUu,,)Fu = s"v du
v 
+ 2kFp["Sd uV, (4.3) 

dr 

which follows from (3.2) and (4.2). 
Equation (4.3) has two negative features: (i) it cannot be 

truly inverted because it is a projective relation, and (ii) it 
depends on the acceleration, which implies that Eq. (4.1) is of 
third order in proper time and so it admits free helicoidal 
solutions. These spurious solutions are characteristic of all 
theories that treat condition (3.15) as a holonomic one,2-4 

It is possible to avoid the third-order character of the 
equations of motion if we assume the orthogonality between 
spin and mechanical moment,6-8 which in general is not par
allel to four-velocity. Thus it is difficult, however, to find a 
closed simple form for the mechanical moment and in these 
theories the canonical condition (2.3) is not preserved. 14 

None of these negative features are present in Eqs. (3.7) 
and (3.12), and the conditions (2.3) and (3.15) are conserved 
in a simple way. 

We could also point out that if we define the spin four
vector as 

Sp = ~ET"VPU"S"v, (4.4) 

where ET"vp is the usual Levi-Cevita tensor, we obtain from 
(3.7), (3.10), and (3.12) the precession equation 

dS = k {Fp"S" - (uTFT"S" )up ) 
dr 
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- Up {~Fl-'vUv + ~SYTFvr.1-' }SI-', (4.5) 
m 2m 

which was first established by Bargmann, Michel, and Te
ledgi 15 for the special case of the homogeneous electromag
netic field. 

Our equations can be generalized so as to include curva
ture and torsion effects if considering space-time as a Rie
mann-Cartan variety, by using a minimal coupling proce
dure. These considerations will be presented in a later 
paper. 16 
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We examine a system described by two first-order nonlinear differential equations from the point 
of view of integrability. The singularity analysis in the complex-time plane is used to investigate 
the Painleve property, which according to the Ablowitz-Ramani-Segur conjecture is a 
prerequisite for integrability for infinite-dimensional systems. We show that for such low
dimensional systems, the Painleve analysis is still a most useful guide, but integrable cases also 
exist which do not possess the Painleve property. 

PACS numbers: 03.20. + i, 02.30. + g 

I. INTRODUCTION 

In the last few years, a new method has been developed 
for investigating the integrability of dynamical systems. The 
principle of the method is old. It is based on the relation 
between integrability of nonlinear differential equations and 
the analytic behavior of their solutions. The names of 
Fuchs,1 Kowalevskaya,2 Painleve,3 and Gambier 4 have 
been associated with the early developments of this ap
proach. This method has been resurrected recently by 
Ablowitz, Ramani, and Segur (ARS)5 in relation to their 
conjecture on the integrability of nonlinear partial differen
tial equations (PDE's). They have conjectured that a PDE is 
integrable whenever it possesses the Painleve property, i.e., 
the only movable singularities are poles. This conjecture was 
implemented through a powerful algorithm for the study of 
the singularity structure of all the reductions of the PDE's to 
ordinary differential equations (ODE's). 

The fact that the initial studies of the past century math
ematicians concerned ODE's, combined with the existence 
of numerous interesting physical systems described by 
ODE's led to a natural "tacit" extension of the ARS conjec
ture5 to systems of ODE's. The works ofBountis, Segur, and 
Vivaldi6 as well as of Tabor et al. 7 and Segur8 have demon
strated the usefulness of the conjecture for a dynamical sys
tem. They have led to the discovery of new cases of integra
bility for dissipative as well as for Hamiltonian systems.9 

One important question which can be formulated in relation 
to the conjecture concerning ODE's is whether the Painleve 
property, i.e., absence of movable singularities in the com
plex time plane "worse" than poles, is a prerequisite for inte
grability. Now, there certainly exist examples of integrable 
systems which do not possess the Painleve property. 10,11 

Such examples are mostly encountered in low-dimensional 
systems. This remark has motivated the present study. 

In this work, we explore the connection between the 
Painleve property and integrability in systems of two first
order ODE's of the form 

x =f(x,y), y =g(x,y) , 

wheref,g are polynomials of second degree in x, y (see Sec. 
II). Such systems are known to arise in several conservative 
or dissipative physical models. 12 Complete integrability in 
this case is associated to the existence of two time-dependent 
(analytical, single valued) integrals of motion. Alternatively, 
a single time-independent integral suffices to determine the 
trajectories in the x-y plane, and then the time dependence of 
the motion can be obtained through quadratures. Systems of 
this kind are encountered in the modelization of dissipative 
physical phenomena. However, we will also call completely 
integrable, systems which reduce to linear, nonautonomous 
differential equations. 

For the system at hand we will show that the singularity 
analysis leads to cases where the Painleve property is asso
ciated to integrability. However, we have been able to show 
that there exist whole classes of cases which do not possess 
the Painleve property, and yet do possess one time-indepen
dent integral. Sometimes, they even reduce to x = h (x), say, 
in which case they are, of course, immediately integrated by 
quadratures. 

In Sec. III, the singularity analysis is presented, and the 
integrals of motion are obtained in Sec. IV for cases with and 
without the Painleve property. The paper ends with a more 
extensive discussion in Sec. V, on the relation between the 
Painleve property and the question of integrability of dyna
mical systems, in general. 

II. A SIMPLE NONLINEAR DIFFERENTIAL SYSTEM 

Let us consider the following system: 

x = - x2 + axy + ax + f3y + A , 

Y = - y2 + bxy + yx + 15y + }i , (1) 

where the dot denotes differentiation with respect to the time 
t. 

If we limit ourselves to the higher-order part 

x = - x2 + axy = - xIx - ay) , 

y = - y2 + bxy = - y(y - bx), (2) 
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we see that each variable can be factorized in its respective 
time derivative. It is interesting to introduce here the unique 
(up to a multiplicative constant) extra linear combination of 
x andy that has the same property, namely 

z = (1 + b )x - (a + 1) y . 

Indeed 

Z= -z(x+y). 

Note that if either a = - 1 or b = - 1, z is not distinct 
ofxory. 

It should be made clear that our aim is to study the 
relation between integrability and the singularity structure 
and illustrate it through the above system, rather than study 
this system for its own sake. Therefore, we will not attempt 
to study it exhaustively. In particular, we will limit ourselves 
to the generic case where x, y and z are all distinct, i.e., 

(a + 1)(b + 1)#0. 

Moreover, generically, one can define new sets of varia
bles (x' ,z') and ( y" ,z") such that the reduced system (2) can be 
written 

x' = - x' 2 + ax'z' 

Z' = - z' 2 + cx'z' 

or, alternatively 

y" = - y" 2 + by" z" 

Z" = - z" 2 + cy" z" , 

where 

with 

and 

1 1 1 --+--+--= 1, 
a+l b+l c+l 

z' = z x' = 
- a+ 1 ' 

(b + 1)x 
c+l 

z"= z " (a + l)y 
+b+l' y = - c+l 

Since we start with (a + l)(b + 1)#0, we will never get 

(3) 

(4) 

(5) 

c + 1 = 0 from (5). We will also discard the case where (5) 
does not define a finite c, namely ab = 1. Note that we will 
never get either bc = 1 or ac = 1, as that would correspond 
to either a or b infinite. With the above restrictions, the sys
tems (2), (3), and (4) are completely equivalent. In an analo
gous way, the full system (1) possesses two other equivalent 
expressions in terms of (x' ,z') and (y" ,z"). 

System (1) can be further simplified through transla
tions. Indeed, if a # 0 and b # 0 the terms f3 y and rx can be 
eliminated. The case ab = 0 will be studied separately. 

Other convenient translations (which exist even if 
ab = 0) are those for which A and J.l are made to vanish. 
There are in general four such translations. In these frames, 
the origin is a fixed point. The character of this fixed point 
can be very different, depending on the values of a,/3,r,{j. If 
a{j - f3r < 0, the origin is a saddle point. 12 If a{j - f3r> 0, it 
is unstable when a + f3> 0 ["unstable spiral" if moreover 
(a - {j f + 4{3r < 0], while it is stable if a + {j < 0 ["stable 
spiral" if (a - {j f + 4f3r < 0]. The most interesting case is 

879 J. Math. Phys., Vol. 25, No.4, April 1984 

the one where a + {j = 0 and a{j - f3r> 0 [or equivalently 
(a - {j )2 + 4{3r < 0]. Then the two linear eigenvalues are 
pure imaginary. This would suggest that the origin is a cen
ter, i.e., that all trajectories in a finite neighborhood ofthis 
fixed point are closed orbits. This, however is not necessarily 
true due to the nonlinear terms. In fact, in general, the origin 
will be a spiral point either stable or unstable and only excep
tionally a center. 

We have numerically observed all these behaviors in 
one particular case, namely a = 1, b = 2, andf3 = - a. 
Along the a + {j = 0 line suggested by the linear stability 
analysis, we found a center only for r = 2a which translates 
to a frame where f3 and r vanish giving {j = ( - 3/2)a, 
A = J.l = O. Quite remarkably, this very same set of values 
will be encountered again in the Painleve analysis of the sin
gularity behavior. 

Moving away from the a + {j = 0 line, we have also 
observed limit cycles enclosing the origin, where the linear 
instability is balanced by a nonlinear stability. 

Thus, this quite simple nonlinear system can exhibit the 
full variety of orbit behavior of two-dimensional systems. 

III. PAINLEVE ANALYSIS 

System (1) can be written as a simple second-order dif
ferential equation in terms of either x or y (or z!), and one 
could wonder whether any of these equations can be reduced 
to one of the fifty canonical forms enumerated by Painleve 
and Gambier. 3.4 There does not exist, however, a systematic 
way to ascertain that a given equation does or does not re
duce to one of these canonical forms. On the other hand, 
there is a straightforward, if somewhat tedious, algorithm to 
check directly for the Painleve property. 5 

The first step of this Painleve analysis is the research of 
the leading behaviors. For this system, there are three possi
ble leading behaviors near the (arbitrary) singularity at 
t = to: 

1 
x andy----, z-(t - to)e, 

(t - to) 

1 
x andz----, y-(t - to)b, 

(t - to) 

1 
yandz----, x-(t-tot. 

(t - to) 

Any of these behaviors is absent if the corresponding expo
nent a,b,c, is less than - 1. Because of (5), however, at least 
one of these numbers must be larger than - 1. Therefore, 
there exists at least one possible leading behavior. For the 
Painleve property to be satisfied, one immediately sees that a 
necessary condition is that those of the exponents a,b,c that 
are larger than - 1, be integers. (Incidentally, if a and bare 
equal to - 1, z and c are not defined, but the Painleve prop
erty could still hold, depending on the linear and constant 
terms in (1). As we explained in the previous subsection, this 
degenerate case will not be dealt with.) It is easy to find all 
solutions of(5) where the exponents a,b,c are either less than 
- 1 or nonnegative integers. Up to permutations, these so-

lutions are: 
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(i) a=O b=n c= - 2 - n, n nonnegative integer, 

(ii) a=1 b=2 c= 5, 
(iii) a=1 b=3 c= 3, 
(iv) a=2 b=2 c=2. 
Note that a = b = I allows us to define z, but not c, because 
the equation for x in terms of x and z is 

x = -xz/2 

and cannot be rewritten in the form (3) by an appropriate 
scaling. We will again discard this degenerate case. 

Consider firstthe case a = O. If Pis zero in (I), theequa
tion for x separates and is of Riccati type, and therefore has 
the Painleve property. 3,13 Once the equation for x is integrat
ed, and a solution for x is chosen, the equation for y 

Y= -y2+(bx+8)y+(yx+,u) (6) 

is again of Riccati type, and the movable singularities for y 
(at given x!) are poles. However, whenever x has a pole, the 
behavior of y must be studied in more detail. Indeed the 
Riccati equation (6) could a priori exhibit a "fixed" singular
ity worse than a pole. However, this "fixed" singularity for y 
is really a movable singularity of the original system (I), be
cause the pole of x is movable. If it were worse than a pole, 
the original system (I) would not possess the Painleve prop
erty. A first necessary condition for this property to hold is 
just that b be an integer other than - I, which is precisely 
condition (i), up to the permutation of band c. A second 
necessary condition, which will then be sufficient, can be 
obtained as the vanishing of some polynomial in a, y, 8, A, 
and,u. This polynomial is homogeneous of degree b + I, 
provided each A and,u is counted as a factor of degree two. 
(Here b is the nonnegative integer, while c = - b - 2 is neg
ative.) 

For instance, this necessary condition for b = 0 is obvi
ously 

y=O. 

For b strictly positive, y can be absorbed by a translation ofy, 
and in this frame the condition is 

for b = I ,u = 0 , 

for b = 2 ,uta + 8) = 0 , 

for b = 3 ,u(2a2 + 3a8 + 82 
- A + ,u/2) = 0 . 

For b strictly positive, the vanishing of,u in this frame is 
always sufficient, but clearly not necessary (for b;>2). 

(7) 

If P is not zero, then the system (I) does not have the 
Painleve property. In fact, whenever y diverges faster than x, 
then the leading behavior of y is 1/(t - to) and x behaves as 
In(t - to). Moreover, because of the - x 2 term in the time 
derivative of x, even exp(x) is not free from logarithms. 

In the three remaining cases, it is immediate to show 
that the reduced system, where all linear and constant terms 
are taken equal to zero is indeed Painleve. We are now inter
ested in the different choices of a, p, y, A, ,u that preserve 
this property. Since neither a nor b vanish, one can translate 
x and y so as to absorb P and y. System (I) thus becomes 
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x = - x 2 + axy + ax + A , 

Y = - y2 + bxy + 8y + ,u 
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(8) 

with properly redefined a, 8, A and,u. 
In case (ii) it is easy to check that 

A=O 

is a first necessary condition for the Painleve property. Fin
ally, there are eight distinct cases unique up to a scaling, that 
preserve the Painleve property, namely 

8 = - 3a/2 ,u = 0, (9) 

8=a=0 ,u free, (10) 

8=a ,u =0, (11) 

8= -4a ,u =0, (12) 

8= -a ,u = 6a2/25 , (13) 

8= -a ,u = - 6a2/25 , (14) 

8 = - 8a17 ,u = 0, (15) 

8 = - 13a/7 ,u = O. (16) 

Once these cases are identified, one can look for the reduc
tion to a canonical form3

,4,13 of one of the second-order ordi
nary differential equations equivalent to this system. It is 
easier to do so for the equation in terms of x. We find that all 
these cases are reducible to equation (X). 13 

d
2
W = _ W dW + W 3 _ 12q(Z) W + 12q'(Z). 

dZ 2 dZ 

For cases (9) and (10) q is zero while it is a nonzero 
constant proportional to a 2 in case (II )-( 13), Finally for 
cases (14)-(16), q(Z) is a Weierstrass elliptic function. The 
relation between (W,Z ) on the one hand, and (x,t ) on the 
other is complicated and need not be explicited here. 

In case (iii), one can also easily check that 

A=O 

is again a necessary condition. We finally obtain three dis
crete cases (up to a scaling) 

8= -5a 

8= -a 
8=a 

,u =0, 
,u = 4a2/9, 
,u = 0, 

and, in addition, a continuous family governed by 

(17) 

(18) 

(19) 

8 = - 2a ,u free. (20) 

Since b = c, there exists a symmetry with respect to the ex
change of y and z as far as the dominant terms are concerned, 
i.e., (2) and (3) have the same form. When the system is com
plete with linear and constant terms, this symmetry ex
changes the cases (17) and (18) while cases (19) and, of course, 
(20) remain invariant. 

Again, one can look for reductions of the second-order 
differential equation for x. Cases (17-19) reduce to the ca
nonical form (VII)13 

d
2
W =2W3 , 

dZ 2 

while case (20), in general, reduces to the type (VIII) 

d 2 W 
--=2W3 +pW+y. 
dZ 2 

Case (iv) has the Painleve property in one discrete case 
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t)=a A=I"=O, 

and one doubly continuous family 

t) = - a A free, I" free . 

(21) 

(22) 

Both cases (21) and (22) can be reduced to the canonical form 
(XXX) 

d2W _ 1 (dW)2 
dZ 2 - 2W dZ 

+ 3W
3 

+4aW2+2/3W_L. 
2 2W 

Here, a = b = c, and (2), (3), and (4) all have the same form. 
Clearly cases (21) and (22) are each invariant with respect to 
permutations of x, y, and z. 

To conclude, we can remark that all the Painleve sub
cases of (ii), (iii), and (iv) can be integrated in terms of elliptic 
functions, but the explicit form of the solutions are usually 
very complicated. 

IV. INTEGRATION OF THE EQUATIONS OF MOTION 

While the explicit expression of the solutions of (ii), (iii), 
and (iv) are quite involved, one can obtain, rather easily, inte
grals of the motion. Since several changes of variable must be 
made "en route," these integrals are not always time inde
pendent in the original coordinates. In fact this is true for 
cases (11)-(19) and (21) while in cases (9), (10), (20), and (22) 
we find genuine constants of the motion. The latter are 

case (9) x 3y2(Z - 3a) 

=[x + x 2 
- axf[ - 2X + x 2 

- ax] = const , (23) 

case (10) (x y + I" )2(XZ + 1") 

=[x + x 2 + 1"]2[ - 2X + x 2 + 1"] = const , (24) 

case (20) x 2 - X4 + 2ax3 - (a2 + 1")x2 = const, (25) 

case (22) [x2 
- X4 + 2ax3 - (a 2 + 41" - U )x2 

- A 2]lx = const . (26) 

We can immediately note that all these constants (and 
also the time-dependent integrals of the other cases) are 
"perturbations" of a fundamental constant of the motion for 
system (2), namely 

xll(a + I) yll(b + I) Zll(c + I) = const, 

which can be rewritten as 

X(l-<J)/(I + a)(x + x 2)1I1b + I) X - __ x 2 = const. (27) ( 
b+ 1 )IIIC + I) 

c+l 

This quantity is a genuine constant for any value of a 
andb [withcgivenby(5)], whether integer ornot. Therefore, 
the homogeneous system (2) is always integrable, whether it 
has the Painleve property or not. In some cases [other than 
(i)-(iv)] one can even solve Eq. (27) for x = h (x), whence the 
corresponding system would be explicitly integrable by qua
dratures. Although this contradicts the naive form of the 
Painleve conjecture, this is not too surprising due to the sim
plicity of the homogeneous system (2). 

At this point the question arises, as to whether the only 
ways to perturb system (2) through linear and constant 
terms, while preserving integrability, lead to Painleve cases. 
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This turns out not to be true. There exist at least three 
families of integrable perturbations of (2), generically not 
Painleve. 

These families are, in the frame where f3 = r = 0: 

(i) t) = - alb + 1 )/(a + 1), A = I" = 0; a,b,a free, (28) 

Xilia + I) yllib + I) [z _ (b + l)a] I/lc + I) = const, 

or, equivalently 

Xii - a)/11 + a)(x + x 2 _ ax)lIlb + I) 

X [ - (a + 1)X + (ab - l)(x2 
- ax)] IIlc+ I) = const, 

(29) 

(ii) alb - 1) = 2 (i.e., b = C),A = 0, at) + 2a = 0; a, a,1" 

free, (30) 

X(I - a)/2a(x - X4 + 2ax3 - (a2 + l"a2)x2) = const, (31) 

(iii) a = 1, a = t) = A = 0 ; b, I" free, (32) 

[xy + I"I(b - 1)] 1I1H I)(XZ + 1")IIIC + I) = const, 
(33) 

or, equivalently 

[x + x 2 + I"I(b - 1 W [ - 2X + (b - 1)x2 + 1"] b - I 

= const. (34) 

Case (9) is a subcase of(28), case (10) is a subcase of(32) 
and case (20) is a subcase of(30). There does not seem to exist 
any integrable family, generically non-Painleve, that encom
passes case (22). Incidentally, the Painleve cases associated 
with integrals of motion depending on time in the original 
coordinates, can sometimes be embedded in a continuous 
family, generically non-Painleve, for which there exists one 
such integral. Since this integral is unique and time depen
dent, this does not suffice for integrability in general. To our 
knowledge, the Painleve subcases are the only integrable 
ones. 

One could wonder at this point whether system (1) is not 
always integrable. Numerical studies cannot easily settle the 
question because, in two dimensions, chaos cannot be pres
ent. Although a limit cycle is usually an indication of non in
tegrability, its existence does not preclude integrability, as it 
could be associated to a time-dependent integral. The best 
indication of nonintegrabiIity is perhaps the presence of a 
nonlinear spiral point where the linear analysis suggested a 
center. And indeed, as we noted in Sec. II, for the one-dimen
sional family (up to a scaling) 

a = 1, b = 2, A = I" = 0, f3 = - a, a + t) = 0, r free, 

we obtained a center only for r = 2a, which was the only 
case for which we found an integral [it translates to case (9)]. 
We can thus surmise that system (1) is not generically inte
grable. Still, the class of integrable cases is larger than the 
class identified by the Painleve property. 

Finally, consider case (i), withf3 = O. The first equation, 
in terms of x only, is easy to solve. Substituting the solution 
x(t) into Eq. (6), we obtain a Riccati equation for y. This 
equation can be reduced to a linear second-order equation, 
for all values of the other parameters, whether it possesses 
the Painleve property or not. Conversely, the cases that do 
have this property are not any "more integrable" than the 
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others, i.e., their solutions will generally not be expressible in 
terms of quadratures. 

V. RELATION BETWEEN PAINLEVE PROPERTY AND 
INTEGRABILITY 

As we have seen in the previous section, the Painleve 
analysis has revealed several integrable cases. For some of 
them (14)-(16), the integrals have so intricate an expression 
that they could not have been obtained by pure guess work as 
may be done with (29), (31), and (33). Thus, the Painleve 
criterion is a most useful integrability detector. However, as 
was explained in the previous section, there exist whole 
classes of integrable cases which, generically, do not possess 
the Painleve property. This is not astonishing. One degree of 
freedom Hamiltonian systems are integrable by a simple 
quadrature. First-order autonomous differential equations 

x=f(x) 

are also trivially integrable whatever their singularities. 
When the equation in question is nonautonomous, integrabi
lity is not automatic. However, one can always find integra
ble systems which do not satisfy the Painleve criterion (see 
Appendix). So it is clear that the Painleve approach would be 
an over-restrictive condition for integrability for such sys
tems. 

The case of two degree offreedom Hamiltonian systems 
has been dealt with in detail, in previous publications. IO

•
11 

Our conclusion was that whenever such a Hamiltonian sys
tem is integrable without satisfying the Painleve criterion, 
then either the undesirable singularities are obvious in the 
structure of the Hamiltonian itself, or, when this is not the 
case, the weak Painleve property9 is satisfied. In this paper, 
we have treated two-dimensional systems described by two 
first-order autonomous ODE's. Our analysis resulted in the 
discovery of integrable systems, quite similar in structure, 
some of which were Painleve and some not. Conversely, for 
very similar non-Painleve systems, some were integrable and 
some not. So the Painleve approach, though undeniably 
fruitful, does not offer for these simple systems a clear-cut 
distinction between integrable and nonintegrable systems. 

On the other hand, the concept of integrability needs to 
be more clearly defined. Consider, for instance second-order 
nonautonomous ODE's. Painleve3 and Gambier4 have ana
lyzed these equations from the point of view of the singular
ity structure. Their analysis resulted in fifty equations hav
ing no movable singularities but poles. Most, but not all, of 
them are integrable in the classical sense: the solution can be 
given through quadratures. Some (type V, Ref. 13, or Ric
cati) can be reduced to linear nonautonomous equations. 
The solution of the latter generally cannot be written in 
terms of quadratures. Finally, six are integrable only inas
much as their solutions are the new transcendents intro
duced by Painleve. At this point, the definition ofintegrabi
lity may appear somewhat circular. However, the 
introduction of the Painleve transcendents as new "special 
functions" is precisely justified by the regularity of their 
structure in the whole complex plane. This point was 
brought to our attention by M. D. Kruskal. A posteriori, the 
particular usefulness of these transcendents, due to their fre-
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quent appearance in equations of nonlinear physics, illus
trates the power of Painleve's intuition. 

For higher-order non-Hamiltonian systems, very few 
results exist. Our analysis of several examples of third-order, 
coupled, nonlinear autonomous ODE'sI4 has identified sev
eral new integrable systems possessing the Painleve proper
ty. We have also found several cases, which are integrable, 
without satisfying the Painleve conditions. 14 However, these 
cases tum out to have a simple structure and their integrabi
lity can be assessed at a glance. When one goes to still higher 
orders the relation between integrability and the Painleve 
property appears to become more intimate. 14.15 However, 
one must bear in mind that it may tum out that new trans
cendents are needed for the integrability of higher-order sys
tems, just like the six ones introduced by Painleve at order 
twO. 16 So far, no confirmed example of such a new transcen
dent is known. However, some good candidates can be pre
sented. Consider the modified Korteweg-de Vries (mKdV) 
hierarchy related to the Korteweg-de Vries hierarchy by the 
Miura transformation. 17 The nth equation of the mKdV 
hierarchy is a PDE of order 2n + 1, which reduces to a non
autonomous ODE of the same order through the ansatz 

u(x,t) = t ~ l/(2n + I) U(5) with 5 = xt ~ l/(2n + I) . 

This equation can be integrated once, leading to a nonauton
omous ODE of order 2n. It has been shown 18 that the singu
larities with algebraic leading order of the three first 
members of this hierarchy are indeed pure poles. Although 
this is not a full proof of the Painleve property, the ARS 
conjecture5 asserts that all of those ODE's have only mova
ble poles. The lowest member, in fact, is nothing else but the 
second Painleve transcendental equation. It is tempting to 
surmise that these equations could lead to new transcen
dents. 

In Hamiltonian systems of N degrees of freedom (2N
dimensional phase space) the concept of complete integrabi
lity is defined by the existence of N independent, analytic, 
single valued, global integrals in involution. 19 As mentioned 
earlier, several such integrable systems have already been 
identified by the Painleve property.6.10 Now, it does happen 
sometimes that upon integrating such a system by quadra
tures, one arrives at one degree offreedom motion, which is 
plagued by the "uglier" singularities imaginable. 20 It has 
been our experience, however, that the "uglier" the singular
ities, the easier it is to see what variable transformations are 
needed to uncouple the degrees offreedom and integrate the 
equations completely. 11 

Concerning infinite-dimensional systems described by 
PDE's, it appears that the Painleve property is indeed a pre
requisite for integrability. For some very simple examples, 
integrability results from a reduction to a linear PDE by a 
local change in the dependent variable. For instance, the 
Burger's equation 

Ur + Uxx +2UUx =0 

becomes 

Vr + Vxx = 0 with U = ~ , 
V 

or the Liouville equation 
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UXI = exp(U) 

reduces to tpXI = 0 with U = In(2tpx tp, I tp 2). However, for 
the vast majority of the so-called "integrable" nonlinear 
POE's, integrability is associated with the Inverse Scattering 
Transform (IST).21 In this case the solutions are obtained 
through linear integral equations, the kernel of which obeys 
a linear partial differential equation. So integrability for 
POE's is related to the existence of some linear problem 
which is sometimes simple and sometimes of considerable 
complexity. 18 

Incidentally, these POE's are related by similarity 
transformations to OOE's of the Painleve type.5 Thus the 
integrable character of Painleve equations as well as of the 
equations of the hierarchy mentioned above is once more 
exemplified by the fact that they can now be linearized in 
terms of linear integral equations. 22 

VI. CONCLUSION 

We have examined in this paper, on a second-order au
tonomous differential system, the relation between integra
bility and (movable) singularities of the solutions in the com
plex t-plane. We have found, for this system, that 
integrability can exist independent of the Painleve property. 
However, we have shown that the singularity analysis offers 
a very useful and direct method for identifying integrable 
systems, which would otherwise be very difficult to discover. 
This appears to be all the more true for systems of higher 
dimensionality, where there is evidence that there are deeper 
connections between integrability and the Painleve proper
ty. This is in perfect agreement with the ARS conjecture5 for 
infinite-dimensional systems (i.e., POE's). 
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APPENDIX 

Consider the obviously integrable equation 

dx 3 
-=X +ax+b, 
dt 

(AI) 

where a and b are constants. This equation never has the 
Painleve property in terms of x. In terms of x 2

, it does not 
have this property either, if b #0. Ifwe make the following 
transformation 

x = y1/l(T) + zIT) , 

t = tp(T) with (A2) 

Eq. (AI) becomes 

:; =y3 +A (T)y2 +B(T)y + C(T). (A3) 

A, B, and C are given by 
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A =3u, 

B = 3u2 + av2 + v'lv, (A4) 

C = u3 + auv2 + bv3 + v'ulv - u' , 

where u = z11/l, v = 1/1/1. 
For general A, B, and C, Eq. (A3) is not integrable. 

Whether A, B , Care given by (A4) or not, Eq. (A3) never has 
the Painleve property. Still, it is integrable whenA, B, and C 
are given by (A4). Of course, on the view of (A4) as it stands, 
one could guess that u and v can be used to change back to 
the "right" variables. However, when definite expressions 
for A, B, C, are given, for example 

A = T+ 3, 

B = 2T + 3 + 1/T, 

C= T+ I + 1/T, 

(u = 1 + T 13 , v = T, a = - 1/3 , b = 2/27) , 

it is not obvious anymore that a change of variables of the 
form (A2) is adequate. Thus, this integrable equation cannot 
be distinguished at a glance from similar nonintegrable equa
tions, and would not be singled out by a Painleve analysis 
either. For such systems, integrability is not related to the 
analytic properties of the solutions. 
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I. INTRODUCTION 

A recent theme in the study of nonlinear pde's has been 
to find evolution equations possessing infinitely many high
er-order symmetries and recursion operators for these sym
metries. l

-4 The KdV equation is the prototype of this situa
tion.5 An important class of nonlinear equations is that of 
fluid dynamics of which the simplest one-dimensional exam
ple is isentropic compressible flow. In this paper, we estab
lish the existence of higher-order symmetries of this system, 
that is, evolution systems of order greater than one whose 
flows commute with the flow of the fluid system. Also, a new 
conserved functional, associated with one of the third-order 
symmetries via Noether's theorem, is determined. 

Starting with the Riemann invariants as dependent var
iables, in Sec. II we find three recursion operators by using 
the hodograph transformation. Each of these operators, 
when applied to a known symmetry generator, will produce 
a generator of higher order. These operators immediately 
settle the question of the existence of infinitely many higher
order symmetries which, for systems, does not automatically 
follow from the existence of one higher-order symmetry as 
seems to be the case when there is only one dependent vari
able.6 In Sec. III, we exhibit the huge variety of new higher
order symmetries and begin classifying them. In Sec. IV, the 
fluid equations themselves are discussed, with particular ref
erence to the consequences of their Hamiltonian structure. 
Because of the correspondence between conserved function
als and Hamiltonian symmetries (asserted by Noether's 
theorem), it is natural to ask which of the higher-order sym
metries is associated with a higher-order conserved func
tional. Owing to computational difficulties, so far only the 
third-order symmetry mentioned earlier has been shown to 
be Hamiltonian. However, the existence of infinitely many 
higher-order conserved functionals seems likely. 

An infinite number of conserved densities could also be 
generated by a simple density by applying the infinite num
ber of symmetries to it. It is still computationally difficult to 
check which of these symmetries are nontrivial. 

II. DERIVATION OF THE RECURSION OPERATORS 

We begin with some basic definitions. Let 
u = (u I,u2

, ••• ,Uk (be a k-tuple of dependent variables de
pending on an I-tuple of independent variables 
x = ( X I , x 2

, .•• ,Xl) T. The T denotes transpose, so that these 

vectors are column vectors. A system of pde's for u is 
K = (K 1,K 2, ... ,K k)T = 0, where the K i are pdf's (partial 
differential functions-smooth functions of x, u, and deriva
tives of the ui with respect to the xi). A symmetry of the 
system K = 0 is a (possibly local) one-parameter family of 
solutions of K = 0 with parameter s satisfying the evolution 
system au/as=:=us = P = (P I,p 2, '" ,pk(, where the pi are 
also pdf's. P is called a symmetry generator of K = O. These 
symmetry generators form a vector space. The condition 
thatPgenerateasymmetryofK = OisDsK ~ O. This means 
that if we take the total derivative of each K i with respect to 
s, each resulting pdf vanishes when we make substitutions 
using the equations K = O. More explicitly, 

D =~ DJPi~ 
s ~ auj , 

where J = UI,j2' ... ,jk) is a multi-index, 
uj = a" +h + ... +J.u i/ax {'ax;2 ... ax//, 

D J = D~' D ~2 ... D~' is a mixed-total derivative, and the 
'2 k 

sum is for O<,J<.k, andjl ,j2' ... ,jk >0. The above operator 
acts on pdf's and is denoted V (P). Hence the condition that P 
be a symmetry generator for K = 0 may also be written 
V (P )K ~ O. Often, one of the independent variables is singled 
out as time. An evolution system is of the form 
au/at =u, = K, where each K i is independent of t and of t
derivatives of u. The condition that P generate a symmetry 
for u, = K is D,P - DsK ~ 0, where D, and Ds are total 
derivatives and ~ indicates that substitutions using u, = K 
are made. This may be rewritten as ap / at + V (K )P 
= V(P)K, where ap fat means the derivative of P with re
spect to explicit t-dependence and = is used instead of ~ 
since all substitutions for u, are made automatically when 
we write V(K). Ifweset V(P)K - V(K)P = (P, K), the con
dition is ap / at = (P, K ). The bracket ( , ) is a sort of com
mutator for generators of evolution equations, and, in fact, 
the vector space of symmetry generators of a given system of 
pde's is a Lie algebra with respect to this bracket. 7-9 

First, we find symmetries of the evolution system 

(U,) = ((U + EV)Ux ) • 

v, (v + EU)Vx 

(1 ) 

Here, E is a positive parameter not equal to one. When E = 1, 
the solutions of (1) are always simple waves, which means 
that they are of the form 
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(U) = (F(O (X,t))) , 
v G(O(x,t)) 

with F and G real-valued functions. The results of this paper 
depend on the fact that (1) has two dependent variables, 
whereas in the case of a simple wave there is essentially only 
one. 

The order of a symmetry generator is the order of the 
highest derivative in it. Higher order means order greater 
than one. The classical Lie symmetries are first order and are 
of the form 

(
au, +bux +C), 

av, + bvx + d 

where a,b,e,d are functions of t, X,U,V. They can be solved by 
the method of characteristics and are equivalent to ode's in 
t, X,U,V. To find the first-order generators for (1) we assume 
the most general possible form for this generator and substi
tute it into the formula which a symmetry generator must 
satisfy: 

a (P(X,t,u,v,Ux,Vx )) 

at Q (x,t,u,v,ux'vx ) = 

I(P( x,t,u,v,Ux,Vx )) , 

\ Q (x,t,u,v,ux ,vx ) 

(
(U + EV)Ux )) • 

(v + EU)Vx 
Expanding this using the definition of the bracket, we find, 
after a calculation, that all first-order generators of (1) are of 
the form 

(
aux + b), 
evx +d 

where a,b,e,d are functions of x,t,u,V satisfying the eight 
equations 

aa E aa aa 
- = --Ie-a), --f- =b+Ed, 
av g-f at ax 

ae E ae ae b 
- = --(a-c), - -g-=d+E, 
au f-g at ax 

~ =0 ~ -f~=O, 
av 'at ax 

ad = 0 ad _ g ad = o. 
au 'at ax 

Heref= u + EVandg = v + EU. These equations have many 
solutions. Those where band d are independent of x and t, 
and where a and c are linear in x and t are of special interest. 
There are exactly three linearly independent solutions of this 
type having nonzero band d. They are 

a=c=(1 +E)t, b=d= 1, 

a = e = - x, b = u, d = v, 

a=~x+(~ +U2+EV2)t, 
l-E I-E 

c= -g-x+(~ +v2 + EU2) t, 
I-E I-E 

b = u2
, d = v2

• 

(2) 

(3) 

(4) 

Solution (2) corresponds to Galilean invariance. The corre
sponding one-parameter family is 
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(
U( x + s(1 + E)t,t) + s). 

v( x + s( 1 + E)t,t ) + s 

Solution (3) is a scaling symmetry 10 with one-parameter fam
ily 

(
eSu(e - SX,t )) . 

e'v(e - SX,t ) 

Solution (4) has no simple interpretation. 
Viewing x,t as the dependent variables and u,v as the 

independent variables is called the hodograph transforma
tion. 11 First derivatives transform according to the formulas 

(5) 
Vx = - Jtu , Ux = Jtv ' 

whereJ = uxv, - U,Vx = (g - f)uxvx = (1 - E)(V - u)uxvx 
is the Jacobian of the transformation. When E = 1, the trans
formation is singular. Using (5), we can rewrite (I) as a linear 
system 

(
Xv + /tv) = (0) . 
Xu + gtu 0 

(6) 

If (P,Q ( generates a symmetry for (1) then 
(xuP + xvQ,tuP + tvQ (will be the corresponding symme
try for (6). Derivatives with respect to x and t can be turned 
into derivatives with respect to U and v using the chain rule 
for total derivatives: 

Dx = u"Du + v"Dv' 

D, = u,Du + v,Dv ' 

Conversely, 

Du = xuD" + tuD" 

Dv =xuD" + tuD,. 

Hence it is possible to rewrite the derivatives of u and v in P 
and Q as derivatives of x and t to obtain pdfs in the new 
dependent variables. 

Consider the first-order symmetries of (I). Their gener
ators become 

(

bXU + dxv + ag - Cf) 
g-f 

c-a 
btu +dtv + -

g-f 

(7) 

For these to be linear in x and t, band d must be independent 
of x and t, and a and e must be linear in x and t. The three 
linearly independent cases where (7) is linear and truly first 
order are already listed as solutions (2), (3), and (4). These 
three generators are obtained by applying three linear opera
tors to the vector ( x,t f. By a well-known theorem in the 
theory of symmetries, 12 these three linear operators are re
cursion operators for (6). That means that by applying any of 
these operators to a known symmetry generator of (6), we 
obtain a new symmetry generator of (6). Since the operators 
all have order one, the new generators are of a higher order 
by one. Thus (6) and, in turn, (I) have infinitely many higher
order symmetries. 
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The three recursion operators are 

(
0 l+€) 

R I = Du + Dv + ° ° ' 
~) , 

- €U
Z 

- 2uv - €VZ) 
l-€ 

2(u +v) . 

l-€ 

(8) 

(9) 

(10) 

Any sum or composition of recursion operators is again a 
recursion operator, so these generate an infinite algebra of 
recursion operators. Their commutators must also be recu
sion operators. These are 

[RI,Rzl = R I , 

[Rz,R3l = R 3. 

(I is the identity.) 

III. THE HIGHER-ORDER SYMMETRIES 

We can apply the three recursion operators repeatedly 
to the wide variety of first-order symmetries to obtain a mul
titude of higher-order symmetries. Now the higher-order 
symmetries of the known examples of equations possessing 
recursion operators are all obtained by repeated application 
of the recursion operators, so it is a reasonable conjecture 
that all of the symmetries of (6) and (1) are obtained in this 
manner.13 An important subclass of symmetry generators 
for (1) consists of those independent of x and t. (The various 
well-known infinite sequences of symmetries are of this 
type. 14) Since R I' R z' and R 3 do not depend on x and t expli
citly, they preserve this property of a generator. As it is im
practical to write out the symmetry generators of higher or
der in full owing to their length, we will classify such 
symmetries according to their highest-order terms. 

A generator for (6) transforms to a generator of (1) ac
cording to 

( P) ---+ (U" U,) (P) = (U" fU,,) (P) 
Q v" v, Q v" gv" Q 

= ((P + fQ )U,,) . 
(P+gQ)v" 

Let = denote equality of highest-order terms. The highest
order part of the recursion operators looks like 
fiJ = bDu + dDv • So if R is one of the recursion operators, 
we have 

R (~)_fiJ (~) = (!~) . 
Hence R acts on the transformed symmetry by 

R ((P + fQ)u,,)=((fiJP + ffiJQ)U x) . 
(P+gQ)v" (fiJP+gfiJQ)vx 

Assuming that P and Q have order two or more, it follows 

886 J. Math. Phys., Vol. 25, No.4, April 1984 

that R =fiJ. Using the chain rule for total derivatives, we get 
fiJ = b (xuDx + tuD,) + d (xvD" + tvD,). But from (1) we 
have 

on U,Ux' 00.' 

on v,v,,' 00 •• 

Thus on U and derivatives of U 

fiJ b (xuDx + tu fDx) + d (xvDx + tv fDx) 

= b (xu + tu fJDx = b ( - gtu + tu f)Dx 

+ b (f - g)tuDx = (b lux )D". 

All but the first are true equalities. A similar result holds for 
v. To sum up, 

R={(bIUx)Dx on u,Ux' 00. , 

(d IVx)Dx on V'Vx' 00 •• 
(11) 

This gives the action of the recursion operator with highest
order part bD u + dD v on symmetries of (1) whose generators 
have order two or more. 

An explicit but somewhat lengthy calculation shows 
that there are exactly three linearly independent symmetry 
generators of (1) of order two that are independent of x and t. 
Their highest-order terms are 

(::~), (u~x;) , (u;:~). 
Vxx vVxx v v,," 
- -- ---
Vx Z Vx Z Vx z 

(12) 

These could also be obtained by applying R 1
Z

, R1Rz, and 
R z 

2 + R z, respectively, to the trivial symmetry generator 
(x,t f of(6) and transforming back to the uv coordinates. (R3 
cannot be used in such a manner because terms containing x 
and t would result.) Applying (11) to (12) we see that the 
higher-order symmetry generators independent of x and t 
obtained by the recursion operators have highest-order 
terms 

(p~~~n ), 

p(v)vn 

v n 
x 

where Un and Vn are the nth x derivatives and p is a polyno
mial of degree 2(n - 1). 

IV. ONE-DIMENSIONAL ISENTROPIC COMPRESSIBLE 
FLOW 

The equations are 

w, + WWx + (l/p}Px = 0, 

p, + pw" + wp" = 0, (13) 

where W is fluid velocity, p is fluid density, and p is pressure. 
We will assume p = Apr, but we can get rid of A by scaling. 
This results in the system. 

w, + WWx + ypr- 2px = 0, 

p, +pw" + wPx = 0. (14) 

With definitions 

John Verosky 886 



                                                                                                                                    

U( x,t) = 1 + y[W( x,t) ± 2yl/2 plr- 11/2( x,t )], (15) 
v( x,t) 4 y-I 

the fluid equations (14) take on the form (1) withE = (3 - y)1 
(1 + y). (The forbidden value E = 1 corresponds to the for
bidden value y = 1.) 

We note that when y = 2, (14) is equivalent to the slop
ing beach equations l5 : Letting 0' = 21/2p l/2, we get 

w, + ww" + 20'0'" = 0, 

0', + ~uw" + wu" = 0. 

These are equivalent to (1) with E = ~, so our results also hold 
for these equations. 

System (1) is essentially the system of equations for the 
Riemann invariants, !6 but minus signs in those equations 
make (1) more convenient when performing long calcula
tions. 

The main point of this paper can now be made: The 
compressible flow equations (14) have infinitely many high
er-order symmetries. [These are in one-to-one correspon
dence with the symmetries of (1).] Using the chain rule, we 
note that 

( Ws) = (Wu Wv
) (Us) ; 

Ps Pu Pv Vs 

hence if (P,Q )T is a symmetry generator of (1), then 
J -!(F,Q)T is a symmetry generator of (14), where J is the 
Jacobian matrix of the transformation (15) and F,Q means 
that we have used (15) to substitute for U and v wherever they 
occur in P,Q. Direct manual calculation of even the second
order symmetries, independent of x and t, is almost hopeless 
in the wop coordinates, but the results of the previous para
graphs assure us of symmetries of all higher orders. It is 
unknown whether the more complex fluid systems (e.g., two
dimensional flow) that are not equivalent to linear systems 
have higher-order symmetries. 

We now use the theory of Hamiltonian pde's. The Ha
miltonian structure!7 of(14) is given by 

(;). = (-:x -:x) G~~;)[+pW2 + y~ 1 prJ . 

(16) 

In fact, (16) is a one-dimensional restriction of the Hamilton
ian structure of three-dimensional compressible fluid flow 
considered by others. 18-20 In a future paper, we show how 
this compressible Hamiltonian structure passes over to the 
incompressible one.2! 

A pdf T is a conserved density of ( 14) if 

D,T=DxX 

for some other pdf X. In the formal variational calculus, all 
functions are assumed to vanish rapidly at infinity, so the 
above is equivalent to 

D, f: 00 Tdx = f: 00 DxX dx =X(oo) -Xl - 00) = 0. 

Note that if Pis a symmetry of an evolution equation u, = K, 
and if Tis a conserved density, then V (P )Tis also a conserved 
density. For P to be a symmetry means that if Us = P, then 
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D,Ds = DsD,. ThusDY(P)T=D,DsT 
=~~T=~~X=V~~X=~V~~ 

The Hamiltonian 1pw2 + (lI(y - l)lor is a conserved 
density of(14), the energy density, in fact. By Noether's 
theorem22 for Hamiltonian pde's, every conserved density T 
(possibly depending on higher derivatives) gives rise to a 
symmetry (called Hamiltonian) according to 

where Ew and Ep are Frechet derivatives with respect to w 
andp. We have discovered a new first-order conserved den
sity of compressible flow: 

T=px/(w/-ypr-3p/). (17) 

In fact, we can give the flux X explicitly: 

D,T= Dx((wxp - wpx)/(w/ - ypr- 3p/)), 

so the proof is an exercise in differentiation. Twas originally 
found bysolvingD,T = D"X in the u,v coordinates of (1) for 
all T, X of first order, independent of x and t. The unique 
solution was then transformed to the w,p coordinates using 
(15). Note that although Tis formally a conserved density, it 
may not be meaningful on an arbitrary solution of (14). For 
example, the denominator of T vanishes identically on sim
ple waves. However, there are many smooth (for a short 
time, at least) solutions of(14) where Twill be a genuine 
conserved density. More about this unusual conserved den
sity will be given in a future publication. 

The density (17) gives rise to a third-order symmetry of 
(14) corresponding to the third-order symmetry generator of 
(1) with highest-order terms 

(
UxxxIUx:) . 
vxxxlvx 

Since density (17) is the only first-order density of(14) that is 
independent of x and t, the other third-order symmetries of 
(14) that are independent of x and t must be non-Hamilton
ian (do not come from conserved densities via Noether's 
theorem). As Ew and Ep double the differential order, and 
Dx adds one to it, an nth-order conserved density leads to a 
(2n + l)th-order Hamiltonian symmetry. So, only an odd
order symmetry can be Hamiltonian. Which of the higher
odd-order symmetries actually are Hamiltonian and what 
their corresponding densities are is an open question which 
we will address in a subsequent publication. If the analog 
with the KdV equation is correct, there would be a con
served density of each positive-integer order leading to a Ha
miltonian symmetry of each odd order. 

There is another way infinitely many conserved densi
ties might be produced. If Us = P is a symmetry and T is a 
conserved density ofu, = K then V(P)Tis also a conserved 
density. For if D, T = DxX then D, V(P)T = D,Ds T 
= DsD,T= DsDxX = V(P)DxX = Dx V(P)X. We know 
that (14) has infinitely many symmetries to use in this man
ner. It is possible, however, that the new conserved densities 
would be trivial (of the form T= Dx V), and the computa
tions are prohibitively lengthy. 
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The variational method has been used to obtain approximate solutions of the nonlinear Klein
Gordon equation and KdV equation by Hsieh, and the numerical solitary wave solutions of 
cylindrical nonlinear KdV equations by Chwang and Wu. The author has already used the 
Galerkin method to obtain approximate solutions of some highly nonlinear KdV equations and 
Schrooinger equations. In the present paper, we shall employ the Galerkin method to obtain 
approximate solutions of cylindrical nonlinear equations. 

PACS numbers: 03.40.Kf, 02.30.Hq, 47.35. + i 

I. INTRODUCTION 

Great interest in the propagation of one-dimensional 
long waves has been generated by the exact solutions of the 
KdV equation found by Miura et al. 1 Recently, growing at
tention has been devoted to the study of solutions of highly 
nonlinear KdV equations and cylindrical nonlinear KdV 
equations. 

The variational method has been used to obtain ap
proximate solutions of the nonlinear Klein-Gordon equa
tion and KdV equation by Hsieh,2 and the numerical solitary 
wave solutions of cylindrical nonlinear KdV equations by 
Chwang and Wu.3 

The author has already used the Galerkin method to 
obtain approximate solutions of some highly nonlinear KdV 
equations and Schrooinger equations.4 In the present paper 
we shall employ the Galerkin method to obtain approximate 
solutions of cylindrical nonlinear equations. 

II. GENERAL SCHEME OF THE GALER KIN METHOD 

The method to be developed is a generalization of the 
Galerkin methodS from the perspective of the variational 
method. The essence of the Galerkin method may be de
scribed as follows. Take the differential equation 

L[x(t)]=O. (1) 

A trial solution is taken in the form 
N 

X = L CjXj(t) , (2) 
;= I 

where {xdt)J is a set of given functions. Then choose a set of 
weighting functions { Wj (t ) J. The parameters { C j J are to be 
determined by the following set of algebraic equations: 

f (L [j~1 CjXj])JJf dt = 0, j = 1, ... ,N. (3) 

The weighting functions { Wj(t) J were originally chosen by 
Galerkin to be identical to {Xj (t ) J. Now there is some ambi
guity in the choice of suitable form of L, since, for example, 
f(x)L [x(t)] = 0 will be equivalent to (1) for any fix). The 
scheme proposed will remove this ambiguity. 

Consider a differential equation schematically repre
sented by 

aJ"Jn leave from Wuhan Institute of Hydraulic and Electric Engineering, 
Wuhan, People's RepUblic of China. 

L [x(t),a] = 0, (4) 

where a is a parameter. As examples, take the following 
differential equations representing oscillations with linear 
and nonlinear dampings: 

x" + 2ax' +x =0 (5) 

and 

x" + a(x')3 + x = 0 (6) 

when a = 0; a functional J can be found and a proper vari
ational formulation exists. Then L1 J = 0 will lead to the rela
tion 

f L [x(t );O]L1x dt = 0 . (7) 

This L is now unequivocally determined by the variational 
formulation. Then for a sufficiently small, we expect that a 
similar relation 

f L [x(t );a ]L1x dt = 0 (8) 

is also valid. This is the essence of the general scheme of the 
proposed Galerkin method. 

III. APPROXIMATE SOLUTIONS OF THE CYLINDRICAL 
KdV EQUATION 

We consider the following equations which govern the 
propagation of three-dimensional long waves in water of 
constant depth: 

1], + 11]r + (1 + ~E1])1]r + (J.l2/6)1]rrr = O. (9) 

The fluid is assumed to be incompressible and inviscid and 
the motion irrotational. The vertical z axis is measured from 
the still water level. The displacement of the free surface 
from the still water level is 1]{r,t ) and the solid bottom is at 
z = - h. The fluid is supposed to be unbounded in the radial 
(r) direction. E = ao/h, J.l = koh, ko = 21T/Ao, AD is the 
wavelength and aD is the characteristic wave amplitude. E 

andJ.l2 are assumed to be of the same order. 
Equation (9) is the cylindrical KdV equation for waves 

moving in the positive r direction. This equation was first 
formulated by Maxon and Viecelli6 for an ion-acoustic wave 
propagating in a collisionless plasma, and it was applied later 
to long waves propagating in water of constant depth by 
Miles. 7 
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The two-dimensional version of Eq. (9) is the well
known KdV equation: 

1], +(1 +~E1])1]x + (/1,1/6)1]",xx =0. (10) 

Thus Eq. (9) is the KdV equation plus an additional term 
1]/2r. 

Now we consider the cylindrical KdV equation 

1], + !1]r + (1 + ~E1])1]r + (J.l2/6)1]rrr = O. (9) 

Let 

O'=r-t,1'=Et; (11) 

then (9) becomes 

1]r + !1]11' + ~1]1]u + MJ.l 2/E)1]uuu = O. (12) 

In order to eliminate the term 1]/1', suppose 

U = 1](1'11'0)1/2, (= 1'~/2(1'1/2 _ 1'~/2) . (13) 

Then (12) becomes 

U; + 3uuu + (J.l2/3E){1'11'0)1/2uuuu = O. (14) 

We use the Galerkin method: 

r' f + 00 [U; + 3uu" + J.l2(.!..-) 112 u"o"" ]..1U dO'd( = O. (15) 
Jo - 00 3E 1'0 
Let us take the trial solution of the form 

U =A (0',t)'P [(0'- 0'0)1;:: t] , 
(1'11'0) 

where A is a slowly varying function of (0',( ): 

U; = A;'P - Alj; (1'11'0)-1/4 , 

Uu = Au'P + Alj; (1'/1'0)-1/4, 

UUu =A'P (Au'P + Alj; (1'11'0)-1/4] 
= AAu'P 2 + A 2'Plj; (1'11'0)-1/4 , 

UUU(T = Auuu'P + 3A"ulj; (1'/1'0)-1/4 

+ 3AA?(1'11'0)-1/2 + Aip (1'11'0)-3/4 , 

..1u = 'P..1A + A..1'P . 

Substituting these expressions into (15), we obtain 

(J.l2/3E)ip + 3A'Plj; - lj; = 0 (16) 

if A = const. This integrates immediately to 

(J.l2/3E)iP + 3A'P2/2 - 'P + C1 = 0 (17) 

with a further integration to 

(J.l2/6E)lj;2 + A'P 3/2 - 'P 2/2 + CI'P + C2 = 0 . (18) 

In the special case when 'P and its derivatives tend to 
zero at 00, then C1 = C2 = O. Therefore the equation may be 
written 

(J.l2/3E)lj;2 + A'P 3 - 'P 2 = 0 , 

h2 fiE [(0' - 0'0) - (] 
'P = sec 2j.t (1'!1'0) I 14 ' 

'P = sech2 (fiE/2j.t)(1'of1')1/4[(0' - 0'0) - ( ] 

if A = 1. From (11) and (13) we obtain 

1] = (toft )1/2sech2! fiE/2J.l(toft )1/4 

(19) 

(20) 

X [(r - ro) - (t - to) - Et bl2(t 1/2 - t bI2
)] l. (21) 
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The position for the maximum 1] at a given time tmax is 
found at 

r max = r 0 + (tmax - to) + Et bl2(t ::;x - t ~/2) , 

and the phase velocity of the wave is 

C=- =1+ __ 0_. drl E ( t )112 
dt r ~ rmax 2 tmax 

(22) 

(23) 

For simplification, we let ro = to' Therefore the maxi
mum value of the wave amplitude becomes 

1]max = (rofrmax)1/2 + o (E) , (24) 

as is expected from the leading order solution. The phase 
velocity can be written as 

(25) 

The behavior of the wave predicated by Eqs. (24) and 
(25) is in agreement with the numerical solution of Chwang 
and Wu.3 

IV. FAMILY OF APPROXIMATE SOLUTIONS OF THE 
CYLINDRICAL KdV EQUATION 

In the past, almost all the analytical solutions for cylin
drical solitary waves contained a sech2 function; the main 
difference between them is how the wave amplitude and 
wave width change during propagation. 

A cylindrical outgoing solitary wave in water of con
stant depth is governed by the equation 

1]r +! 1]11' + ~ 1]1]u + !(J.l2/E)1]uu(T = O. (12) 

In order to eliminate the term 1]11' and obtain a general solu
tion, let 

U = 1](1'11'0)1/2, t = r:;(rl l -It) - rld -It)) . (26) 

Then (12) becomes 

U- + 3 (.!..-)It - 112 UU 
, 2( 1 - n) 1'0 (T 

I J.l2 ( l' )n _ + - - UU(TU - 0 . 
6(1 - n) E 1'0 

(27) 

We use the Galerkin method 

i; f + 00 [ 3 ( l' )n - 112 
u- + - uu 

o _ 00 ' 2(1 - n) 1'0 (T 

1 J.l
2
(1')n] A + - uuuu..1u dO'dt = O. 

6(1 - n) E 1'0 
(28) 

In order to obtain a general solution, let us take the trial 
solution of the form 

A [ (0' - 0'0) - g(l ) ] 
U = A (O',t )q:7 , 

(1'/1'0)"/2 
(29) 

where A and the derivative of g are slowly varying functions. 
Substituting (29) into (28) as before, we obtain 

---~;p + .!..- 'Plj; - lj;g = 0 . 
1 2 3A ()n - 112 

6(1 - n) E 2(1 - n) 1'0 

Let 

A = (1'of1')n - 112, g = !(I - n); 

then (30) becomes 

Fengsu Chen 
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(/l2/3€)ij:1 + 3q;ip - ip = 0 . 

Integrating twice, we obtain 

(/l2/6€)ip2 + q;3/2 - q;2/2 + Clq; + C2 = O. (31) 

In the special case when q; and its derivatives tend to 
zero at 00, then CI = C2 = O. Therefore the equation may be 
written 

(/l2/3€)ip2 + q;3 _ q;2 = 0, (32) 

h2 ..j3€ [(a- ao) -g(l)] q;=sec -- , 
2/l (rhor12 

q; = sech2 {..j3€/2tt)(rolr)n/2[(a - ao) - g(l)]). (33) 

From (26) we obtain 

u = (rolr)n -112 sech2{ ..j3€/2/l)(rolr)n/2[(a - ao) - g(r)] J , 

17 = (rolr)n sech2{(..j3€/2tt)(rolr)"/2[(a - ao) - g(r)] J , (34) 

where 

g(r) = (1/2(1 - n))r;;(.f l
- n) - .fol 

- n)) + g(ro) . (35) 

Therefore from (34) and (35), we note that with n = ~ the 
result is our solution, i.e., Eq. (21), and with n = j the result is 
Cumberbatch's solutions. 8 

As in previous sections, we shall let to = ro for simpli
city; then the position of the maximum value of 17 is found at 

r max = tmax + (€t ~/2(1 - n))[t (I - n) - t(1 - n)] . 

Therefore the maximum value of 17 is 

17max = (rolrmaxr + O(€), 

and the phase velocity is 

C = 1 + (€/2)(rolr max)n + 0 (e) . 
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V. DISCUSSION 

By means of a Galerkin method we have obtained ap
proximate solutions of cylindrical nonlinear KdV equations. 
It may be remembered, in contrast to many other asymptotic 
methods, that the perturbation method is not easily adapted 
to solve highly nonlinear equations, and the variational 
method is not intrinsically a perturbation method and there
fore is well adapted to treat a certain class of nonlinear equa
tions. 

The method presented above is simple in concept and 
straightforward in application, yet it yields a great deal of 
information. It is clear that much work is still needed to 
answer the many questions raised by the proposed Galerkin 
method and to explore its wide ranging potentials. 
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The intermediate long wave equation is a physically important singular integrodifferential 
equation containing a parameter, referred to here as 8. For 8 ~ 00 it reduces to the Benjamin
Ono equation. It has been recently shown that the inverse scattering transform schemes of the 
above equations have certain significant differences. Here it is shown that for 8 ~ 00, the inverse 
scattering transform scheme of the intermediate long wave equation reduces to that of the 
Benjamin-Dno equation. 

PACS numbers: 03.40.Kf 

I. INTRODUCTION 

The intermediate long wave (IL W) equation arises in 
the context oflong internal gravity waves in a stratified fluid 
with finite depth. 1-6 Moreover, it arises in other circum
stances as well (e.g., long waves in a stratified shear flow. 7

•
1 

The IL W equation can be taken in the dimensionless form 

u, + (l/8)ux + 2uux + Tuxx = 0; 

(Tv)(x)=*,_1 Joo coth(1T(S-X))v(s)ds, (1) 
28 -00 28 

where Cauchy principal-value integrals are assumed if need
ed. In the internal gravity waves problem, the parameter 8 
can be thought as the ratio of depth to wavelength; Eq. (1) 
reduces to the Korteweg-deVries (KdV) equationS as 8 ~ 0 
(shallow-water limit) 

u, + 2uux + (8/3)uxxx = 0, (2) 

and to the Benjamin-Dno (BO) equation9 as 8 -+ 00 (deep
water limit) 

u, + 2uux + Huxx = 0; (Hv)(x)=*' ~ Joo ~ ds. 
17' -ooS-x 

(3) 

Equations (1 )-(3) are special cases of an equation dis
cussed by Whitham. 10 N-soliton solutions, an infinite num
ber of conserved quantities, Biicklund transformations, and 
Lax pairs for the IL Wand BO equations have been estab
lished in Refs. 3,4,6, 11, and in 12-16, respectively. 

The inverse scattering transform (1ST) scheme, a meth
od for solving suitable initial-value problems for certain non
linear equations, was discovered in connection with the KdV 
equation. 17 The 1ST schemes for the IL Wand BO equations 
have been recently established in Refs. 11, 18, and 19, respec
tively. The limit of the 1ST scheme ofthe ILW equation to 
that of the KdV equation (8 -+ 0) is rather straightforward 
and was given in Refs. 6 and 18. However, the limit of the 
1ST scheme of the IL W equation to that of the BO equation 
(8 -+ (0) presents certain difficulties. This is a reflection of 
the fact that the 1ST schemes of the IL Wand BO equations 

., Permanent address: Istituta di Fisica, Universita di Rama, 00183 Rama, 
Italy. 

have significant differences. Actually the 1ST scheme of the 
IL W equation is conceptually similar to that of the KdV 
equation (see subsec. IIA below); on the other hand, the 1ST 
scheme of the BO equation is similar to that of the Kadomt
sev-Petviashvili equation (a two-dimensional analog of the 
KdV equation).20 Hence the limit process 8 -+ 00 in a sense 
provides a limit between two different types of 1ST forma
lisms, appropriate for one and two dimensional problems, 
respectively. 

In this paper, it is established that as 8 -+ 00, the 1ST 
scheme of the IL W equation reduces to that of the BO equa
tion. 

II. REVIEW OF THE 1ST FOR THE ILW AND BO 
EQUATIONS 

A. The ILW equation 

The following results can be found in Ref. 18. 

1. The direct scattering problem 

The direct scattering problem of the IL W equation is 
based on the x-part (4a) of the "Lax pair" 

LoW=*'iWx+ + [S+(A)+ l/28](W+ - W-)= -uW+, 
(4a) 

iW / - 2iS + W x± + W x~ 

+ [+iu, - Tux +Po]W± =0, (4b) 

where 

Ae±Ao _ 1 
S±(A)=*' ± +-tl0 _ e- AO 28 

Po (A )=*'AS + + (A /2f + v, v 

is an arbitrary constant, A is a constant and is interpreted as a 
spectral parameter. Given u, Eq. (4a) defines a Riemann
Hilbert problem in a strip a/the complex x plane; W ± (x) 
represent the boundary values offunctions [Le., t/J± 
(x) = limy-.O t/J(x ± iy)) analytic in the horizontal strips 
between 1m z = 0 and 1m z = ± 28, and periodically ex
tended vertically. Importantly, Eq. (4a) can also be solved 
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without appealing to Riemann-Hilbert theory since it can be 
viewed as a differential-difference equation. This follows 
from the periodicity condition 'P-(x) = t/J+(x + 2i8). 

Let us concentrate on the ( + ) functions and let M, M 
denote the ( + ) "left" eigenfunctions, while N, N denote the 
( + ) "right" eigenfunctions. These eigenfunctions, in addi
tion to solving (4), also satisfy the following boundary condi
tions 

M-l, M_eiAX+A8 asx_ - 00; N_l, 

N_eiAX+A8 asx- + 00. (5) 

The eigenfunctions M, M, N, N satisfy the following Fred
holm integral equations 

(M(X,A)) ( 1 ) 
W(x,A) = eiAX+A8 

where 

G ± (x,y, t+(A)) 

1 f eiplx-y) 

=*' 21T c± dp p _ [t+(A) + 1128](1 _ e-2P8) ' (7) 

where C ± are the contours Re (p + iO). 
The eigenfunctions M, N, N are related through the 

scattering equation 

M(x, A) = alA )N(x,A) + (}(t+(A) + 1I28)b(A )N(x,A), 
(8) 

where 

and 

(}~)=1 furA>~ 8~)=0 furA<Q 

The "bound states" correspond to those A/ for which 

a/ =*,a(A/) = 0, 1= 1,2, ... ,n, 

M/(x)=*,M(x,A/) = b(A/)N(x,A/)=*,b/N/(x). 

(lOa) 

(lOb) 

2. The inverse scattering problem 

The solution of the inverse problem is based on Eq. (8). 
Given alA ), b (A ), and appropriate information about the 
bound states, find M, N, N. In order to view (8) as a Rie
mann-Hilbert problem in the complex t + (A ) plane, one 
needs to establish analyticity properties in t + (A ) for the ei
genfunctions M, N, N. The Kernels of the integral equations 
satisfied by M, N are ( + ) and ( - ) functions, respectively, in 
t + (A ), i.e., they are analytically extendable in the appropri
ate regions of the t + (A. ) plane. Since the forcing in both cases 
is unity, Fredholm theory implies that the solutionsM andN 
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are also ( + ) and ( - ) functions in t + (A ), provided that there 
exist no solutions to Eqs. (6) (when 8 is finite, it can be shown 
that for suitable potentials this is actually the case). Further
more, Eq. (9a) implies that a(t +) is a ( + ) function in A. 

In order to solve (8), one needs to establish an analytic 
connection or symmetry condition between Nand N. This 
follows from the relationship 

N(x,A)=N(x, _A)eiAx+A8, (II) 

which is a consequence of 

G ± (x, y, Ii ) = G ± (x, y, - A )eiA 
Ix - YI. (12) 

Equation (8), using the above analytic properties of M, 
N, and a, as well as Eq. (11), defines a Riemann-Hilbert 
problem in t + (A ). From this, the following integral equation 
is obtained (see Appendix A): 

N(t ) - _I foo p(t'+ )N(t'+) dt' 
+ 21Ti - 1m t'+ - (t + - iO) + 

n eN 
= 1 + iI J J , 

j~lt+-t+j 
(13) 

where 

(14) 

The Gel'fand-Levitan-Marcenko equation given in Ref. 18 
can be easily obtained by taking an appropriate Fourier 
transform of (13), supplied by the analytic information (11). 

We shall also need the following relationship, which is 
obtained from (13) asymptotically as t + - 00 (see Appendix 
A): 

I f= n 
u+(x) = -. p(t+)N(t+)dt+ - iI Cj~; 

2m - 1/28 j~ I 

u+(x)=*, -. cosh u(y)dy. 1 foo ( 1T(y - X - iO) ) 
418 - 00 28 

(15) 

And finally, the reality ofu(x) implies that u(x) = u+(x) 
- u-(x) = u+(x) + (u+(x))*. 

Equation (13) definesNin termsofp, cjJj , and Eq. (15) 
defines u+ in terms ofp, Cj ' N~ Hence Eqs. (13) and (15) 
define u + (x) in terms of p, Cj , Aj' the so-called scattering 
data. However, the scattering data need only be evaluated at 
time t = 0 [i.e., in terms of the initial data u(x, 0) only] since 
their evolution is known. 

IAj(t) = Aj(O), 

CJ(t) = CJ(O)exp (iAj [Aj coth(Aj 8) - 1I8J t) U~ I' 
pIA, t) =p(A,O)exp [U (A cothA8 - 1I8)t]. (16) 

The above evolution of the scattering data follows easily 
from the t-part (4b) of the Lax pair. 

B. The BO equation 

The following results can be found in Ref. 19. 

1. The direct scattering problem 

The direct scattering problem of the BO equation is 
based on the x part (17 a) of the "Lax pair": 
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Lw=;:.iwx+ + A (w+ - w-l = - uw+, (17a) 

iw,± - 2i4wx± + wx~ - 2i[uL±w± = -pw±, (17b) 

where 

[ul ± =;:. ± u/2 + (l/2i)Hu. (17c) 

Given u, Eq. (17a) defines a differential Riemann-Hilbert 
problem in the complex x-plane; w ± (x) represent the bound
ary values of functions analytic in the upper ( + ) and lower 
( - ) half x-plane, i.e., w ± (x) = limy->o w(x ± iy). 

The eigenfunctions m, m, n, n satisfy the boundary con
ditions 

m-? 1, m-?eiAx asx-? - 00; 

n -? 1, n -? eiAx as x -? + 00, (18) 

and are characterized through the following Fredholm inte
gral equations: 

(
m(x, A l) (1) 
mIx, A) eiAx 

J'" (m( y, A )) 
+ _oog+(X,y,A)U(y) m(y,A) dy, (19a) 

(
n(x, A)) (e

iAX
) J'" (n(y, A l) 

n(x,A) = 1 + _oog-(x,y,A)U(y) n(y,A) dy, 

(19b) 

where g +, g _ are the ( + ) and ( - ) parts of sectionally holo
morphic function 

1 1'" ei(X - y)p 
g(x,y,A)= - dp--, 

21T 0 P - A 
(20) 

and A denotes the complex extension of A, i.e., 

1 Saoo ei(x - y)p 

g+ (x,y,A)= - dp . 
- 21T 0 P - (A ± iO) 

(21) 

The eigenfunctions m, n, n are related through the scat
tering equation 

mIx, A ) = nix, A ) + e (A ){J (A )n(x, A ), 

where 

/3 (A) = J: 00 u( y)m( y,A )e - iAYdy. 

2. The inverse scattering problem 

(22) 

(23) 

The solitons of the IL W equation correspond to "bound 
states" which are generated from the zeros of alA ). However, 
in Eq. (22) [which is the analog of(8)], the coefficient ofn is 1. 
Hence the solitons of the BO equation are generated through 
a different mechanism; the integral equations (19), in con
trast to the integral equations (6), may have homogeneous 
solutions <Pj' for some Aj' where Aj < 0, i.e., 

(24) 

The kernels of the integral equations for m, n are ( + ) and 
( - ) functions respectively in A. Hence 

n Cj<Pj(x) 
m(x,A)= 1 + L +m+(x,A), (25) 

I A -Aj 
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nix, A) = 1 + ± Cj<Pi(x) + n_(x, A), 
I A -Ai 

(26) 

wherem+, n_ are ( + ) and ( - ) functions, respectively, inA. 
It turns out that 

Cj = Cj = - i, j = 1,2, ... ,n. 

In order to view Eq. (22) as a Riemann-Hilbert problem 
in the complex A plane, one needs to establish analytic infor
mation about nand n. This follows from 

J AA-JA (n(x, A )e - I X) = 1("1,, t )e' Xn(x,A ); 

1 J'" 1(,,1, ) =;:. - - u(y)n(y,A )dy. 
21TA - 00 

(27) 

Equation (27) is a consequence of 

a~' g ± (x, y, A ) = - _1_ + i(x - y)g ± (x, y, A ). 
/l- 21TA 

(28) 

Using (28), one also finds that 

Equation (22), using (25)-(27), and (29), defines a nonlo
cal Riemann-Hilbert problem in the complex A plane which 
is equivalent to the integral equation 

1 100 

n(x, A,t ) = - h (x, t, A, 1)/3 (I, t )n(x, t, I )dl 
21T 0 

n 

+ L <PI(x, t)h (x, t, A, AI) = u(x, t, A ), (30) 
I~ I 

(31) 

where 

u(x, t, A)=;:' f ([(I, t )eiX(A -I) + Is(l )eiXA )dl; Is (A ) = A l~ A ' 

(32a) 

h (x, t, A, l)~ei(A -1)XJ:U(s, A )e- i(A -l)sds, 1>0, 

h (x, t, A, Aj)=;:.ei(A -l)x {U(s, A)e - i(A - A,ISds 

+ ei(A - A,I(x - a) (A (/(1, t )eia(A - I) + Is (I) )dl. 
Jo Aj -I Aj 

The following equation is also valid: 

and assuming ureal, u(x) = u+(x) + (u+(x))*. 

(32b) 

(32c) 

(33) 

Equations (30)-(33) define [u]+ in terms of Ai' Yj,/3 (A ), 
I(A ). However, the scattering data need only be evaluated at 
time t = 0, since their evolution is known from (17b): 
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\Aj(t) = Aj(O), Yj(t) = Ujt + Yj(Onj= 1> 

/3 ( A, t) = /3 (A,O)ea 't, f( A, t) = f(A,O)eiA 'to (34) 

III. THE LIMIT FROM THE ILW EQUATION TO THE BO 
EQUATION 

In this section, we will show how the 1ST scheme ofthe 
BO equation can be obtained from the 1ST scheme of the 
IL W equation. 

A. The direct scattering problem 

As noticed in Ref. 18, the limit 8 - 00, A > 0, of the Lax 
pair (4) goes directly to the system (19); the strips between 
1m z = ° and 1m z = ± 28 become the upper and lower half 
z-plane, and then w ± (x) = lims--oo W ± (x) are nothing but 
the boundary values of functions analytic in the upper ( + ) 
and lower ( - ) half z-plane. 

It is straightforward to show [see (B2)] that lim&-.0o G ± 

(x,y, b +(..1 )) = g ± (x,y, A ), A> 0, where the Green functions 
G ± andg ± are defined in (7) and (21), respectively, then the 
Jost functions of(17a) are solutions of the Fredholm equa
tions (19) and can be obtained, for A > 0, in the following 
way: 

mix, A) = limM(x, A) (35a) 
&-.00 

mix, A ) = limM (x, A )e - Ab, (35b) 
&-.00 

nix, A ) = limN (x, A )e - Ab, (35c) 
&-.00 

nix, A) = limN(x, A). (35d) 
&-.oc 

The analytic information about G ± (and, consequent
ly, about N) contained in (11) and (12) are apparently lost in 
the limit t> - 00, from which we find the identity g ± = g + . 

Nevertheless, one may show that taking the derivative of (12) 
with respect to A, 

G ±,(x,y, A) = i(x - y)G(x,y, A) + GA(x,y, - A )elA(x-YI, 
(36) 

and then taking the limit 8 - 00 of this equation, one gets 
[see, (B3)-(B5)] the nontrivial equation (28). Analogously, by 
taking theA derivative ofEq. (6b) for N (x, - A ), enriched by 
the property (11), 

(N (x, A )e - lAx - Abl)A 

= f_oo 00 GA (x - y, - A )u(y)N(y,..i )e - iAy - Mdy 

+ f: 00 G(x - y,..i )eiAiX-Ylu(y)(N(y,A )e-iAY-Ab)dy, 

(37) 

and then taking the limit /) - 00, one gets the analytic con
nection formula (27). This highly nontrivial formula is de
rived at this stage as a consequence of the noncommutativity 
ofthe two operators lim&-.0o and a faA. It will be rederived 
later (perhaps in a more satisfactory way) from the scattering 
problem. 
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Using Eqs. (35) for A> 0, together with the symmetry 
condition (11) for the case A < 0, one can take the limit of the 
scattering equation (8). Specifically, 

{
I, ,1,>0, 

lima(A) = d 1 
&-.00 (/l ), ,1,<0, 

lim b (A ) = e - Ab/3 (A), A > 0, 
&-.00 

(38a) 

(38b) 

(39a) 

lim t)eASb (A ) = _1_' Joo u(y)m(y, - A )dy, A < 0, 
&-.00 U -00 

(39b) 

where d (A ) ~ 1 + J: 00 u(y)m(y, - A )eiAYdy, and/3 (A) is de

fined in (23). Then in the limit t>-oo, Eq. (8) goes to Eq. (22) 
for A > 0, and it goes to 

mix, - A ) = d (A )n(x, - A) (40) 

forA <0. 
Finally, (38) and (39), together with (14) and (40), imply 

that 

lim piA ) = e - Ab/3 (A), A > 0, 
&-.00 

(41a) 

lim t>e-<bp(A ) = irrf( - A), A < 0, (41b) 
&-.00 

withf(A ) defined in (27). 
The solution of the inverse problem for the BO equation 

will be obtained taking the limit 8-00 ofEq. (13). However, 
in order to do that, we must still characterize the asympto
tics of the bound states Aj = Aj (8),j = 1,2, ... ,n of the ILW 
equation. 

B. The bound states 

As shown in Ref. 18 for every finitet> the At's are simple 
zeros of alA ) and lie on that portion of the imaginary axes 
contained in the fundamental sheet of the A plane: A = ik, 

J J 

0< kj < rr/t>. 
In order to establish the asymptotics of A., we will study 

A J 

the equation aj ~a(Aj' t» = ° for large t> with the following 
ansatz: 

Aj = (irr/t>)(al/1 + aiNt> + a~jl/82 + 0 (t>-3)), (42) 

and the restriction O';;;;al/
'

.;;;; 1, which is a direct consequence 
of the property ° < k j < rr / t>. 

Substituting ansatz (42) into the equation aj = ° evalu
ated for large 8, one gets an equation in inverse powers of t>. 
In order to equate to zero the coefficients of the 0 (1) term, 
the following conditions must be satisfied (see Appendix C): 

Mj(x) = 8,ul/'(x) + ,uVI(x) + 0 (t>-l), 

f: 00 u(y),ul/l(y)dy = - 2Uj , 

where 

Aj ~ l/2a iI"; 

(43) 

(44) 

(45a) 

(45b) 

while, equating to zero the coefficient of the 0 (t>- 1) term, one 
gets 
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roc 00 U(y)JLI/I(y)dy = - 2iv +j' 

where 

(46a) 

(46b) 

As a consequence of result (43), the property kj < 1T I 0 implies 
that a\jl (and then Aj) is negative, otherwise arbitrary. 

Moreover 

;±j=;±(Aj )= ±Aj +v±jlo+0(0-2), 0~1.(47) 

Substituting the expansion (44) into Eq. (6a) evaluated 
for large 0 and equating to zero the coefficients of the first 
two terms, we get the integral equations satisfied by JLifl(X) 
and JLVI(X): 

(KJLifl)(X) = 0, (48a) 

(KJLI/I)(X) = I + f: ",gl(X,y, Aj)u(Y)JLifl(y)dy, 

where 

and 

(48b) 

(49a) 

gl(x,y, Aj):::Hv +) + !)gA(X,y, Aj) - i/4Aj (49b) 

is the coefficient of the 0 (0- 1
) term in the expansion ofG +(x, 

y, Aj) when 0~1 [see (B6)]: 

G+(x,y, Aj) =g(x,y, Aj) + (1Io)gl(x,y, Aj) + 0(0-2). 

(49c) 

Equation (48a) shows that the leading term of the ex
pansion of ~ is a solution of the homogeneous equation (24), 
corresponding to the eigenvalue Aj . JL\Jl(x) is the solution of 
the inhomogeneous equation (48b) and the necessary and 
sufficient condition for such a solution to exist in [see (D5)] 
aV1 = 11(4,,1, f), whereupon then v + . = !(i1T + I). So Eq. 
(48b) becomes -) 

(KJL\Jl)(x) = i1T foo (x - y)g(x, y, Aj )U(y)JLifl(y)dy. (50) 
2 -00 

In both Eqs. (48a) and (50), the solutions JLifl(x) and 
JL\Jl(x) are defined up to a multiplicative constant that can be 
determined using Eqs. (45a) and (46a). 

Formulas (42), (44), (45a), (47) allow us to evaluate the 

limit of cj =i= - i(b/ aj) =i= - i(b (Aj)l a,;JAj )). 

b
j 

= - 2 .~~ foc u(y)Mj(y)e - iAjY - AJi dy 
lu~ _ j - 00 

(51) 

so, as a consequence, 

(52) 

For definition (9), 
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a; = - J_ooooU(y)~(y)dY 
2io;2+ 

) 

I foo + -.-- u(y)M ; (y)dy. 
210; + - 00 

) 

M ;(y)=i=M +(y,; +(,,1, lllA.A
j 

satisfies the equation 

M;(x) - f~ 00 G+(x,y, Aj)u(y)M;(y)dy 

(53) 

= f: 00 G '+ )x, y)u(y)~(y)dy, (54) 

with G '+(x, y) = G + (x, y, ;+(,,1, ))IA = A' The asymptotics 
J t. J 

of G '+ (see Appendix B) 
) 

G'+)x,y) =gA(x,y,Aj ) + 0(0- 1
), 0>1 (55) 

and the condition (D5) of the existence of solutions of equa
tion (54) for large 0, suggest the following ansatz: 

M;(x) = 02,uo(X) + O,uI(X) + 0(1), 0>1. (56) 

Substituting (56) into (54), using (55) and (49c) we get, for the 
first two orders in 0, 

(K,uifl)(X) = 0, (57a) 

(K,u\Jl)(x) = f: 00 gA (x, y, Aj )u(y)JLifl(y)dy 

+ f: oogl(x,y,Aj)u(Y),uif1(y)dy. (57b) 

,uifl(X) is the solution of the homogeneous equation (24) with 
eigenvalue Aj , then ,uifl = JLJLifl(x), JL constant. Using this re
lationship, together with (49b), (28), and (D5), one getsJL = il 
1T; then, 

aj = _0_ foo u(y),ulP(y)dy + 0 (I) 
21TAj - 00 

i8 
= - - + 0(1), 8>1, 

1T 
and finally, 

cj = 1Tlo + 0 (0- 2
), 0> 1. 

c. The inverse scattering problem 

(58) 

(59) 

We are now ready to take the limito-+ 00 ofEq. (13) 
which is the inverse scattering scheme for the IL W equation. 

Let us analytically extend Eq. (13) tOA = -Aj : 

(60) 

Its limit when 0-+00 ,evaluated using (42), (47), (59), (41), and 
(35), is 
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(61) 

where 

Yj(t H= - Cj(t )i1r + 1I27TAj - il2/Lj , (62) 

and Cj(t) characterizes the second term of the expansion of 
Cj for Large 0: 

Cj(t) = (7T/o)(1 + Cj(t)/o + 0(0- 2)), 0~1. (63) 

Asymptotically in x, Eq. (61) reads - 7Tx,ubfl(x) = 1, then 

,ubfl(x) = - 1I7Tl"/>j(X), (64) 

where I"/>j (x) is the solution of (24) with the property 

xl"/>j(x)~1. 
x_", 

So in terms of I"/>j(x), Eq. (61) becomes Eq. (31) and Eq. 
(45a) becomes 

f"'", u(y)l"/>j(y)dy = 27TiAj . (65) 

Let us consider now AER+; in this case Eq. (13) goes directly 
to 

nIx A) __ 1_ ('" {3 (l)n(x, l) dl = 1 _ i ± I"/> m (x) (66) 
, 27Ti Jo I - (A - iO) m = 1 A -Am 

(see Appendix q, which implies that 

__ 1_ (00 {3(l)n(x, l) dl = 1 + i ± I"/>m(x). (67) 
27Ti Jo 1+ iE m = 1 Am 

The last choice for A is AER -; in this case, 

nIx, -A )eiAx __ 1_ (00 {3 (I )n(x,/) dl 
27Ti Jo 1+ iE 

_ 27Ti f If( - I )n(x, -I) eilx + 2/13dl 
J _ '" - le2/13 + AeH13 + iE 

= 1 + i ± tPm(x) + 0(0- 1), 8~1. 
m = 1 Am 

Making use of(67), splitting ['" dl into f~ '" dl + [dl and 

expanding the corresponding integrands, we get 

n(x,IL )e - iAx -lAf(1 )n(x, I)e - i/xdl = 0, A> 0 (68) 

(see Appendix q, which is nothing but the integral form of 
the analytic connection formula (27). 

Formulas (66) and (68) are equivalent to the integral 
equation (30) and together with Eq. (31) they determine, in 
principle, the nIx), nIx), and I"/>/s, and thus contain all the 
information one needs to solve the inverse scattering prob
lem associated with the BO equation. 

It is remarkable that these three equations are derived 
from the same Eq. (13) when 8~oo, in the three different 
situations A = - ~j' AER+, and AER. 

Finally, the limit of (15) goes directly to formulas (33), 
showing how to reconstruct u+(x), and then u(x) = u+(x) 
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+ (u+(x))*, the solution ofthe BO equation, from the scat
tering data. 

D. Time evolution 

In order to obtain the time evolution of the scattering 
data, we notice first of all thatAj(t) = l j (O),j = I,2, ... ,n, then 
Aj(t) = Aj(O) too. Moreover from (16), we get Cj(t) = Cj 
(0)(1 - 21TA/ /8 + 0 (0-1),0:> 1, while, from (63) at t = 0, 
we get Cj(O) = (7T/8)(I + C(0)/8 + 0(8- 2

)), 0:>1. 
Comparing these results with formula (63), we infer the 

time evolution of Cj(t) and, through (62), the time evolution 
of Yj(t): 

Yj(t) = Yj(O) 

+ 2/L/, Yj(O)* - Cj(O)/o + (1I27TAj )(I - i7T). (69) 

{3 (A,t )andf(A,t ) originate from two different limits (A > Oand 
A <0) ofp(A, t). Comparing the limit ofEq. (16), 

p(A,t) =p(A,O)e±iA"(1 + O(O-I)),IL~O, 0:>1, 

with formulas (4Ia) and (4Ib), we infer that 

{3 (A,t) = {3 (A,O)e iA ", f(A,t) = f(A,O)eiA " (70) 

APPENDIX A 

In this Appendix we will derive formulas (13) and (15) 
that characterize an alternative approach for solving the in
verse problem of the IL W equation, to that given in Ref. 18, 
which is in terms of a Gelfand-Levitan- Marchenko equa
tion. While the two approaches are equivalent for the IL W 
equation, it turns out that the one presented here is the most 
appropriate to describe the limit to the BO equation. Let us 
divide the scattering equation (8) by a(s +); the function 
M (s +)/ a(s +) is analytic in the upper half S + plane except for 
poles (the zeros S + j of a); then 

M(x,S+) =I+,u+(x,s+)+i± C"~ , (AI) 
a(S +) j = 1 S + - S + J 

where,u+(x, S +) is analytic in the upper S + half plane and~ 
and Cj are defined in (lOb) and (14), respectively. 

Expressing 8 (s + + 1I20)p(s +)N (x,s +) in terms of its 
( + ) and ( - ) parts, 

8(s+ + 1I20)p(s+)N(x,s+) = U+(x,s+) - U-(x,s_),(A2) 

U ± (x,s +) = _1 f'" p(s'+ )N (x,s '+ ) ds'+ , (A3) 
27Ti - 11213 s'+ - (s + ± iO) 

and substituting all of this information into (8), we get,u+(x, 
S +) = U +(x,S +), and Eq. (13). 

Equation (15) is obtained by considering Eq. (13) for 
large S +. In order to do that, we must evaluate the asympto
tics ofN(x, S +) for large S +. 

G_(x,y,s+) = ~f'" coth[ 7T(Y'-X-iO)] 
418 - '" 28 

( If e iPIy
' - YI( 1 - e - 2P13) ) 

X 21T C P _ (S + + 1120)( 1 _ e - 2P13) dp dy' 

- _1_ coth[(7T/20)(y _ x - iO)](1 + 0 (S :;: 1)), 
4ios + 

S+>1. (A4) 
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Then, using Eq. (6b), we get N(x, ;+)-1 - (1/;+)u+(x) as 
;+ _ 00, and Eq. (13) yields Eq. (15). 

APPENDIX B 

We will briefly discuss here the procedure used to 
evaluate certain asymptotic calculations. As a prototype ex
ample, consider the integral 

G± (x,y, A ) 

1 J eilx 
-Yip 

= 21T C ~ P - (t + + 1/215)( 1 _ e - 2p O) dp. 
(BI) 

Using Cauchy's theorem, we may evaluate the order of mag
nitude of the contributions about 0 and A, the two singulari
ties of the integrand. Asymptotically in 15 they are (il 
2)e iAIX 

- yl and - il4Ab, respectively. Then we split the inte-

gral J: 00 dp = f- 00 dp + J: dp and we expand the corre

sponding integrands; the first term gives a 0 (15- 1
) contribu

tion and the second one gives g ± (x, y, A ). So 

Exactly the same procedure yields formula (55) and 

used in (36). The evaluation of G ± (x, y, - A )eiA Ix - yl in (36) 
requires more attention: 

- 2,.115 + I - e - 20A 
G ± A (x, y, - A )eiA Ix - yl = ---'-----

21T(e-<0 _ e - AO)2 

(B4) 

Replacingt+(A) + 1/28withA (with an exponentially small 
error) and rescaling p with p8 we finally get 

G (x y - A )e iA Ix - yl 
± A ' , 

(B5) 

The evaluation of G + (x, y, 1)) up to terms of order 8 - 1 is 
performed as follows: 
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+ e d JOO ipl.x -y) ) 

- 00 p - (t + j + 1/28)( 1 - e - 2p O) :p 

APPENDIXC 
In this Appendix, we will discuss the asymptotic behav

iorofn(x,A ),m(x,A ),n(x,A )whenA _ O. The same ideas will 
also be used to obtain equations (43)-(45). 

Let us consider function nIx, A ), solution of 

(CI) 
x ---~ 00 

([h ] + indicates the ( + ) projection of h), or, equivalently, the 
solution of 

nIx, A) = eiAx + J: 00 g _(x,y,A, )u(y)n(y,A, )dy. (C2) 

Noticing thatg_(x,y, ,.1)- - 1/21T InA as ,.1_0, Eq. (C2) 
will be satisfied at the 0 (1) iff 

nIx, A ) - no(x)/ln A, ,.1-0, (C3) 

where no(x) satisfies the normalization condition 

J: 00 u(y)no(y)dy = 21T. (C4) 

Substituting (C3) into (Cl), we get 

nox=i[uno]+. (C5) 

Then Eq. (C5) and the normalization condition (C4) de-
fine the coefficient no(x) of the leading term in the 
asymptotic expansion of nIx, A ) when ,.1-0. In particu-
lar, it is easy to show that (C5) and (C4) imply that no(x) 
---+ -lnx. 
Ixl-~oo 

In exactly the same way, it is possible to show that 

m(x,A),n(x,A)-no(x)!1nA, asA-D. (C6) 

Moreover, using (C6) and (C4), we can easily get 

P(A )-21Ti/lnA, 1(,.1)- - 1/,.1 InA, ,.1-0. (C7) 

Formulas (C7), as well as (C3) and (C6), are implicitly 
used to prove the validity of(67) and to show that the 
integrals contained in formulas (66) and (68) are well de
fined. 
Formulas (C3)-(C6) supercede the formulas (24) in Ref. 
18 (the first of which is incorrect; however, only the or-
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der of magnitude of the limit A-o was used in Ref. 18. 
This indicates that J': "" u dx = 0 is not special in the 
limitA-o. 
Let us now prove by contradiction that a~) = 1. Then let 
us suppose that 0 < all1 < 1; it follows that 

Consequently using the same kind of arguments leading 
to (C3) and (C4), one can show that Eq. (6a) implies 

M.(x,8)- M<f(x) , with f"" u(y)Moj(y)dy = 21T. 
) In (Cj /8) - "" 

Then 

i1T 
aj -1 - A A -1 #0, 

(C} - ~)ln (Cj /8) 

which contradicts the hypothesis. 

Analogously, ifa~1 = 0, ;+(Aj ) = (i1T/282 )a\)) + 0(8- 3
) 

and G +(x, y, Aj) - - (1/21T)ln( 1/28). Consequently Eq. 
(6a) implies 

MOj(x) f"" 
M.J(x,8)- In (1/28)' with _ "" u(y)Mo} (y)dy = 21T. 

Then 

which again contradicts the hypothesis. So we are left 
with the only choice a~1 = 1. In this case, 

; + _ = A). + v + /8 + 0(8- 2
), 

} } 

so 

1 f"" aj = 1 + -. - u(y)Mj(y)dy(1 + 0(8- 1
)) 

218Aj - "" 

will be zero only if (44) and (4Sa) hold. 

APPENDIX 0 

Given the following equation, 

(Kh )(x) = 1 + cJ: "" u(y)1l~1(y)dy 
+ CzI(X - y)u(y)g(x,y,/tj)llil)(y)dY=i=F(x) (Dl) 
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[the operator K is defined in (49a)], Fredholm theory says 
that a solution exists iff 

I: ""tP *(x)F(x)dx = 0, (D2) 

where t/Jsatisfies the equation (K +t/J)(x) = 0, whereK + is the 
adjoint operator of K: 

(K + h )(x) = h (x) - u*(x) I: x g*(y - x,/tj)h (y)dy. (D3) 

As a consequence of the equation (K +1j!)*(x) = 0, we have 
that 

I: 00 t/J*(x)F(x)dx = [ 1 + cJ: 00 u(Y)llil)(y)dy JI: 00 t/J*(x)dx. 

(D4) 

Then the condition fOoo t/J*(x)dx#O implies 

1 + CII: 00 U(Y)llil)(y)dy = O. 
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On a Backlund transformation and scattering problem for the modified 
intermediate long wave equation 
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In this paper, we give a Backlund transformation, an associated linear scattering problem, and a 
method for finding the conservation laws for the so-called modified intermediate long wave 
equation. This equation reduces to the modified Korteweg-de Vries equation in the shallow water 
limit. 

PACS numbers: 03.40.Kf, 47.10. + g 

I. INTRODUCTION 

It is well known in the theory of solitons (see, for exam
ple, Ablowitz and Segurl) that multisoliton solutions of cer
tain nonlinear evolution equations can be obtained by more 
than one method. Some examples are the inverse scattering 
transform (IST),2-4 Backlund transformation (BT),S and the 
so-called bilinear theory. 6 The 1ST scheme gives a method of 
solving the initial-value problem for a broad class of non lin
ear evolution equations.4 Nevertheless, if we are given a par
ticular evolution equation, it can be difficult to set up an 
appropriate 1ST. On the other hand, if we can establish a BT 
associated with a given evolution equation, then by suitable 
transformations, the BT usually may be reduced to the 1ST. 
In this paper, we shall introduce a BT, an 1ST, and a method 
for finding the conservation laws for the so-called modified 
intermediate long wave (MIL W) equation. In the literature, 
the MIL W equation is related to the intermediate long wave 
(IL W) equation 7,8 in the analogous way that the MKdV is to 
the KdV. 

The IL W equation describes long internal gravity 
waves in a stratified fluid with finite depth. It is written in a 
simplified form as 

u, + 2uux + TUn = 0, 

where 

T(ux) = T(ux) + (1/8)u, 

and 

(1.1) 

(1.2) 

where H denotes the Hilbert transform operator 

H(u) = J.-foo ~(x') dx'. 
1T -oox-x 

(1.6) 

Equations (1.1) (finite 8) and (1.5) have recently been solved 
by IST.9,lo The scattering problem, and hence solutions by 
1ST, is open for the MILW equation [see (2.4) below]. 

II. THE DERIVATION OF THE MILW EQUATION 

Introducing liJ = JXu dx, Eq. (1.1) may be written as 

liJ, + (liJx )2 + T(liJxx ) = 0. (2.1) 

The BT of Eq. (1.1) is expressed as8 

(liJ' + liJ)x = A. + iT(liJ' - liJ)x - i8- l (liJ' - liJ) + peil
"" - w), 

(2.2a) 

(liJ' - liJ), = - (8- I + A. )(liJ' - liJ)x + i(liJ' + liJ)xx 

- i(liJ' - liJ)x T(liJ' - liJ)" 

+ i8- l (liJ' - liJ)(liJ' - liJ)x, (2.2b) 

where A. and p are arbitrary parameters. (See Appendix B for 
the BT in bilinear form for the IL W equation.) We note that 
if liJ satisfies Eq. (2.1), liJ', defined by Eq. (2.2), also satisfies 
Eq. (2.1). Substituting Eq. (2.2a) into (2.2b) and introducing 
V = liJ - u/, we have8 

V, + T(Vxx) + A. Vx + Vx [peW + i(T(Vxl- (1/8)Vl] = 0. 
(2.3) 

By setting V ---+ - iV, t ---+ (3/8)t, A. = - 1/8 andp = 1/8, 
Eq. (2.3) takes the following form: 

T(u) = f'" (- _1_ coth 1T(x - s))u(s)ds 
- 00 28 28 

(1.3) (t5!3)V, + T(Vxx) + Vx((1/8)e V + T(Vx)) = 0. (2.4) 

(+: 00 denotes the Cauchy principal value integral), and 8 is a 
parameter representing the distance between the boundary 
and the internal wave layer. In the shallow water limit, 
8 ---+ 0, Eq. (1.1) reduces to the Korteweg-deVries (KdV) 
equation 

u, + 2uux + (8/3)uxxx = 0, (1.4) 

and in the deep water limit, 8 ---+ 00, reduces to the Benja
min-Ono (BO) equation 

u, + 2uux + H(uxx ) = 0, (1.5) 

8) Permanent address: General Education, Miyazaki Medical College, 
Kiyotake, Miyazaki 889-16, Japan, 

We refer to Eq. (2.4) as the MILW equation, which in the 
limit 8 ---+ 0, using the expansion 

and 

T(Vx) = -(1/8)V+j8Vxx +-i3 83Vxxxx +OW) 
(2,5a) 

(2.5b) 

yields the modified Korteweg-deVries (MKdV) equation, 

(2.6) 

III. THE BT OF THE MILW EQUATION 

Introducing the following dependent variable transfor
mation: 
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v = log (f+g- /f-g+), (3.1) 

Eq. (2.4) can be expressed in bilinear form as 

(ji8D, +D;lf±·g ± =0, (3.2a) 

2 '8D f - + f - + + f + -1 x .g = - g g, (3.2b) 

where we have used the abbreviations 

f ±(x) =f(x ± i8), (3.3) 

and introduced bilinear differential operators defined by 
Refs. 6 and 11 as 

(a a )n( a a )m 
D ~ D': a . b = at - a;-; ax - ax' 

Xa(x, t)b(x', t')lx~x"'=" (3.4) 

(see Appendix A for some properties of these operators). 
An (exact) N-soliton solution ofEq. (3.2) has been obtained 
by Nakamura. 12 In the limit 8 _ 0, these soliton solutions 
tend to the soliton solutions of the MKdV Eq. (2.6). 

As discussed above, the MKdV equation plays the same 
role with respect to the MIL W equation as does the KdV 
equation with respect to the IL W equation9 in Fig. 1. 

By analogy to the KdV-MKdV case, 13-17 we have found the 
following BT of Eq. (2.4) in bilinear form: 

[~i8D, + i(1I8 - c)Dx + D; -1 k 2] f ±.f' ±= 0, (3.Sa) 

(j i8D, + i(1I8 - c)Dx + D; -1 k 2] g±.g' ±= 0, (3.Sb) 

(2iDx + clf- .f'+ =f.Lf+ 'f'-, (3.Sc) 

(2iDx + c)g - . g'+ = f.Lg + . g'-, (3.Sd) 

where 

c = k cot k8, (3.Se) 

and 

f.L = k csc k8. (3.Sf) 

Equation (3.S) relates a solution (f, g) of (3.2) with another 
I 

Q@ A Miura Transform 
---------~~ I MILW\ • 

IH IH 
I KdV I ___ A_M_iu_ra_T_r_an_s_fo_r_m ___ ~ I MKdV I 

OIl 

FIG. 1. The relations of the ILW, KdV, MILW, and MKdV equations. 

solution ( r, g') of (3.2) (for more details, see Ref. 16). 
It can be shown that the limit, 8 _ 0, of the bilinear 

form of the MILW equation [which is given in Eq. (3.2)] 
tends to the bilinear form of the MKdV Eq. (2.6), which is 

(D, + D!lf·f* = 0, (3.6a) 

D;f·f* = 0, (3.6b) 

where u = i(logf* /f)x, and the limit of the bilinear BT (3.S) 
reduces to the bilinear BT of the MKdV equation (see Ref. 
17): 

(D, + ik2Dx +D!)f·f' = 0, 

(D, +ik2Dx +D;)f*·f'*=O, 

D;f·f' = 1 k'1.f', 

D;f'* ·f* = 1 Pf* .f'* 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(where * implies a complex conjugate). Using the following 
relations (see Ref. 8): 

(logf ±)x = WI' ± I){ (iT + I)Vx + (1I8)(eV - 1) j, 
(3.8) 

A A 

(logg ±)x = !(iT ± I){(iT - I)Vx + (i/8)(eV - I)J, 
(3.9) 

the bilinear BT (3.S) transforms to the BT in physical varia
bles: 

A A 

~ i8(V - V'), + i(1I8 - c)(V - V')x + (V + V')xx - ~ T(V - V')x I T(V - V')x 

+ (1I8)(e V - eV') J - ~(V - V')x 1'1 T(V - V')x + (1I8)(eV - eV') J = 0, (3. lOa) 

~ 8[T(V - V') + ~I: 00 (e V - eV')dx L - (~ -c)[ T(V - V')x + ~ev - eV')] + iT (V + V')xx + ~(eV + eV,!x 

- ~ i[TIT(V - V')x + (1I8)(eV - eV')J] [T(V - V')x + (1I8)(eV - eV')] + ~ i(V - V')xT(V - V')x = 0, (3. lOb) 

- T(V - V')x - i(V + V')x = 2J.L exp ~ [(T(V - V') + ! IX (eV - eV')dx] sinh ~ (V - V'), (3.IOe) 

- iT [T(V - V')x + (1I8)(eV - eV'l] + T(V + V')x + (1I8)(eV + eV' - 2) 

= - 2c + 2J.L exp ~ [ T(V - V') + ! IX (eV - eV')dx] cosh ~ (V - V'). (3.lOd) 

We note that either set of equations (3. lOa), (3.lOc) or (3.lOb), (3.l0d) is adequate to represent the BT of the MILW equation. 

IV. THE CONSERVED QUANTITIES OF THE MILW EQUATION 

One may derive the conserved quantities from the BT (see, for example, Refs. 7 and 18). Introduce W = V-V' and 
rewrite Eq. (3.10) as 

A A 

! i8W, + i(1I8 - c)Wx + (2V - W)xx -! T(Wx)Ix -! WxT(Ix) = 0, 

jiM, - (118 - c)Ix - illx - 2T(Vx) - (2/8)e v Jx - ~ i1xT(Ix) + ~ iWxT(Wx) = 0, 
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- T(Wx ) + i(W - 2V)x = 2.u(exp! if) sinh! W, (4.Ic) 

- iT [Ix] + T(2V - W)x + (1I8)(eV + eV- W - 2) = - 2c + 2.u(exp ~ if) cosh! w, 

where 

I=T(W)+ ..!..fx eV(I-e-W)dx. (4.2) 
8 -00 

Imposing the boundary conditions V ( ± (0) = 0, and 
using 

f: 00 [uT(v) + vT(u)]dx = 0, 

we have, from Eq. (4. Ia), that 

and, from Eq. (4.Ib), that 

(4.3) 

(4.4) 

(4.5) 

which means that S': 00 W dx and S': 00 I dx are conserved 
quantities. 

Following Miura,19 for.u _ 00, if we expand 

(4.6) 

where 

e = 1I2.u .( 1, (4.7) 

and equating the same power of e in Eq. (4.Ic), we obtain 

WI = - 4iVx , (4.8a) 

W2 = 8i[ (1' - i)Vxx + Vx T(Vx) + (1I8)Vx(e V - 1)], (4.8b) 

1 '" IX 1 Vw d )2) - -(T(Wd+ -e 1 x 
8 - 00 8 

i ('" If x v ) - - W2 T( Wtl + - e WI dx . 
2 8 -00 

(4.8c) 

Unfortunately, the integrals S': 00 WI dx, S': 00 W2 dx, 
S': 00 W3 dx, etc., are trivial conserved quantities. But from 
the expansion of I, 

1= T(W) + ..!.. IX eV(I - e- W)dx = i: en In' 
8 -00 n=1 

(4.9) 

we obtain the following [using (4.6)]: 

11 = - 4{T(Vx) + ! f: 00 eVVx dX)' 

12 = 8iT [(1' - i)Vxx + Vx T(Vx) + (1I8)Vx(e V - 1)] 

+ (1I8)Vx(e V - 1)1 + 8V;] dx, (4.10) 
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from which are deduced the following conserved quantities: 

(1) (1I8)(eV - 1), (4.l1a) 

(2) T(VxT(Vx)) + (1I8)e v T(Vx) + (1I282)(e2V - 1). 
(4.IIb) 

These may be verified directly. 
In the limit as8 _0, Eqs. (4.IIa) and (4.l1b), using 

(2.5), give the first and the second conserved quantities of the 
MKdV equation (at the lowest nontrivial order of 8 ), which 
are u and u2

, respectively.20 

V. THE 1ST PROBLEM FOR THE MILW EQUATION 

In a manner analogous to Wadatj2° and Satsuma et al., 7 

we obtain the 1ST problem ofEq. (2.4) from the BT given in 
Eq. (4.1). By using the following dependent variable transfor
mation, 

and 

(log ¢l±)x = (log (f'/f))x = WI' ± 1)/ Wx + ilx J, 
(5.Ia) 

(log¢llx = (log (g//g))x = -WT± 1){ - Wx +ilxl 
(5.1b) 

(see Appendix C for useful relations which can be derived 
from the above equation), and by substituting (5.1) and Ap
pendix C relations into Eq. (4.1), adding and substracting the 
resulting equations yield 

- 2i¢1~ + [c - iVx + T(Vx) 

+ (1I8)(eV - l)]¢t =.u¢I-' 

- 2i¢2~ + [c + iVx + T(Vx) 

+ (1I8)(e V - 1)]¢2+ =.u¢2-' 

(5.2a) 

(5.2b) 

-ji8¢{; -i((1I8)-c)¢t'~ + [WT± l)/Vxx +iT(Vxx) 

+ (i/8)(eV)x l-! k 2]¢I± + ¢I=;x = 0, (5.2c) 

- j i8¢lf - i((1I8) - C)¢2=; 

+ [WI' ± 1)/ - Vxx + iT(Vxx) 

+ (i/8)(eV)x I - ! k 2] ¢l + ¢2=;x = O. (5.2d) 

We expect that ¢j± have the following analytical mean-
ing: ¢ ± represent the boundary values of functions [i.e., 
¢ ± (x) = lim 1m z ~ 0 ¢ ± (z)] analytic in the horizontal strips 
between 1m z = a and 1m z = + 20, and periodically ex
tended thereafter. 

By defining 

¢I = !(v i - iv2 ), (5.3a) 

¢2 = !(v i + iv2), (5.3b) 

and substituting into Eqs. (5.2), we get the following set of 
equations (by adding and substracting): 

VI~ + Wvt + Uv2+ -! i.uvI- = 0, (5.4a) 

+ TT + + -Wi + I' - a (5 4b) V2x - l./V 1 V2 - 2 1.uV2 = , . 

j i8vt'i' + i(1I8 - c)v l=; - vl=;x - A ± vl± - B ± v2± = 0, 
(5.4c) 
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! i8vfr + i(1/8 - C)V2:; - V2:;x + B ± vI± - A ± vl = 0, 
(5.4d) 

where 

u = UVx' (5.5) 

W =! i{T(Vx) + (1/8)(eV - 1) + cJ, (5.6) 

A ± = WI' ± IlIiT(Vx) + (iI8)(eV - I)lx -! k 2, (5.7) 

B ± =! i(iT ± l)Vxx' (5.8) 

c = k cot k8, (5.9) 

f.l = k csc k8. (5.10) 

It is readily shown by a cross differentiation that Eqs. (5.4a)
(5.4d) constitute an 1ST problem associated with Eq. (2.4). 
Assuming V = 0 (8),expandingv;± (i = I,2)in termsof8and 
substituting them into Eqs. (5.4), we obtain, at the lowest 
nontrivial order of 8, 

Vlxx + (u 2 
- ! k 2)VI + V2 Ux = 0, (5.Ila) 

V2xx + (u2 - ! k 2)V2 - VI Ux = 0, (5.IIb) 

VI' + 2V2x Ux - V2 Uxx - VI(U
2)x + Vlx {k 2 + 2u2 J = 0, 

(5. 11 c) 

V2, - 2vI Ux + VI uxx - V2(U
2)x + V2x {k 2 + 2u2J = 0, 

(5.IId) 

which is one of the known 1ST problems associated with the 
MKdV Eq. (2.6). (See Ref. 20 and also 21.) It is to be noted 
that Eq. (2.4) is a necessary compatibility condition for Eqs. 
(5.2a) and (5.2c). (See Appendix D for still another form of 
1ST problem for the MIL W equation.) Hence we now have a 
natural (and novel) extension of the inverse scattering trans
form for the modified KdV equation (5.11) (Refs. 20, 21) to 
the modified intermediate long wave equation (5.2). 

APPENDIX A: PROPERTIES OF THE D OPERATOR 

We have 

D 7 D'; a . b = (i. _ ~)n(~ _ ~)m 
at at' ax ax' 

Xa(t, x) b (t', x')I,= ,',x =x" 

The following properties are easily seen from the definition. 

(1) D,;a·/=(!ra, 

(2) D';a.b=(-l)mD';b·a, 

(3) D'; a . a = ° for odd m, 

(4) D';a·b=D,;-I(ax .b-a.bx), 

(5) D'; a . a = 2D'; - I ax . a for even m, 

(6) Dx d, a . a = 2Dx a, . a = 2D, ax . a, 

(7) D'; exp(kl x) . exp(k2 x) 

= (k l - k2)m exp(kl + k2).x. 

Let ifJ = log(alb) andp = log ab; we have 

(8) (Dx a· b )lab = ifJx, 

(9) (D;a.b)lab=pxx+(ifJxf, 

(10) (D! a· b )lab = ifJxxx + 3ifJx Pxx + (ifJx)3. 
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APPENDIX B: ON THE ILW EQUATION 

The IL W equation is given by 

u, + 2uux + T(uxx ) = 0. (BI) 

Introducing the following dependent variable transform 

u = i(logf- If+)x' (B2) 

Eq. (B 1) can be expressed in bilinear form as 

(iD, + (iI8)Dx +D;lf+ -1- =0 (B3) 

(see Appendix A for some properties of these operators). The 
BT ofEq. (B3) in the bilinear form is given by8 

(iD, + i(1/8+A)Dx +D~ -!k 2lf±·g ± =0,(B3a) 

(2iDx -Alf-'g + = vf+·g -, (B3b) 

where 

A = - k cot k8, 

v= kcsc k8. 

(B3c) 

(B3d) 

APPENDIX C: USEFUL RELATIONS DERIVED FROM 
EQUATION (5.1) 

(1) (log (tPt ItPI- llx = - H Wx + i1x J, 
(2) (log (tP2+ ItP2- llx = - H - Wx + iIx ], 

A 

(3) (log (tP2+ ItPI+ llx = !(iT + l)Wx' 
A 

(4) (log (tP2- ItPn)x = !(iT - I)Wx' 

(5) (log (tP/ tPI- ItPt tP2- llx = Wx' 

(6) (log (tP2+ tP2- ItPt tPI- ))x = iTwx. 

APPENDIX D: ANOTHER 1ST PROBLEM FOR THE MILW 
EQUATION 

In this Appendix, we will give an alternative 1ST prob
lem for the MILW equation (2.4). It is to be noted that we 
need only equations for one of the tP;, say tPI' to obtain this. 

Define 

A JX 1 Q ± =(T±i)V+ -leV -l)dx. 
- 00 8 

Rewrite Eqs. (5.Ia) and (5.Ib) as 

(log tPI±) = - !(T =+ i)(Q'- - Q -), 

(log tPf) = - !(T +i)(Q'+ - Q +), 

(DI) 

(D2a) 

(D2b) 

respectively. For convenience, we denote tPI± by S t'f and tPl 
by S i . Equations (5.2a) and (5.2c) can be rewritten as 

- 2is I~ + (Q x- + c)s 1- = - f.lS t, (D3a) 

j i8Lf + i(1/8 - c)s ~ + {!(T =+i)Qx~ +! k 2JL'" 
(D3b) 

respectively, and from the analytical property, note that 

(Q ±)* = Q =t=, 

(5 I=t=)* =5 f· (D4) 

In analogy to the MKdV case, if we take Eqs. (D3) together 
with their complex conjugates, this will yield the 1ST prob
lem of the MIL W equation. Indeed, the following set of 
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equations for 51 and 52' which are 

- 2i5 1-; + (Q x- + C)5 1- = - f..l5 t, 
2i5 ~ + (Q x+ + C)52+ = - f..l5 2- , 

jiDLf +i(l/D-C)51~ + !~(T+i)Qx-; +! k2 l51=t= 

(DSa) 

(DSb) 

- 5 l~x = 0, (DSc) 

- j iD527 - i(l/D - C)5 2~ + !~(T ± i)Q x~ +! k 215 2± 

- 5 2~x = 0, (DSd) 

yields an alternative 1ST problem for Eq. (2.4). By defining 

51- = - ~(1 + iT)A, 

52+ = ~(1 - iT)A, 

51+ = ~(I - iT)¢, 

52- = -~(I +iT)¢, 

(D6) 

Eqs. (DSa)-(DSd) give the following set of equations (by add
ing and subtracting): 

2iAx - W(iTA ) + iVx A = - if..lT¢, 

- 2TAx - WA + iVxTA =f..l¢, 

(D7a) 

(D7b) 

j iDA, + i(l/D - c)Ax - U + A - G + (iTA ) - iTAxx = 0, 
(D7c) 

- j DTA, - (l/D - c)TAx - U+(iTA) - G + A -Axx = 0, 
(D7d) 

- j iD¢, - i(l/D - c)¢x + U-¢ - G -(iT¢) - iT¢xx = 0, 
(D7e) 

- j DT¢, - (l/D - c)T¢x - U-(iT¢) + G -¢ + ¢xx = 0, 
(D7t) 

where 

W = c - i[ iT(Vx) + (i/D)(eV - 1)], (D8a) 

U ± =! iT(Vxx) ± HiTVxx + (i/D)(e V - 1)], (D8b) 

G ± = ~ iT [iT(Vxx) + (i/D)(eV)x] ± ~ Vxx - ! k 2. 

(D8c) 
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Propagators from integral representations of Green's functions for the 
N-dimensional free-particle, harmonic oscillator and Coulomb problems 
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The radial Green's functions for the N-dimensional free-particle, isotropic harmonic oscillator 
and Coulomb problems all contain a product of two Bessel or Whittaker functions. After integral 
representations for these respective products are introduced, each Green's function exhibits the 
structure of a Fourier transform. One obtains thereby the Feynman propagators K (r l,r2,t ) for the 
free particle and harmonic oscillator. In the Coulomb case, the Fourier transform involves the 
quantum number variable and leads instead to the recently defined Sturmian propagator. The 
well-known connection between Coulomb and oscillator eigenstates of various dimensionality is 
manifested in a new way by the structure of the propagators derived here. 

PACS numbers: 03.65. - w 

1. GREEN'S FUNCTIONS AND PROPAGATORS 

Consider a particle moving in an N-dimensional Eucli
dian space in a "central" potential VIr), where r represents 
the N-dimensional radius [l:iX;] 1/2. The L th "partial-wave" 
Green's function satisfies the radial equation I 

[
E+_1_!...1"'-I!..._ L(L +N- 2) _ VIr)] 

21"'-1 ar ar 2r 

X G r)(r,r' ,E) = 8(r - r')/(rr't 12 - 112 (1.1) 

(L = 0,1,2,.·.). 

Atomic units will be used throughout, with Ii = m = e = 1. 
We will consider, in tum, the free particle, isotropic harmon
ic oscillator and Coulomb system, corresponding to 
VIr) = 0, !aJ2r, and - Z /r, respectively. Equation (Ll), 
rearranged to standard Sturm-Liouville form, becomes 

[ !...( ~ 1'" - I) !... + 1'" - I(E + L (L + N - 2) _ VIr))] 
ar 2 ar 2r 

X G r)(r,r' ,E) = 8(r - r'). (1.2) 

The usual procedure for constructing Green's functions then 
gives2 

G(r,r',E) = u(r < )v(r> )l!1"'- I W [u,v]. (1.3) 

Here, u(r) and vIr) are solutions of the homogeneous equation 
(1.2), when r#r', appropriate to the boundary conditions at 
r = 0 and r = 00, respectively, while W[u,v] is the Wrons
kian 

W [u,v] ==u(r)v'(r) - v(r)u'(r). (1.4) 

The particular solution G + (r,r' ,E) behaves like an out
going spherical wave as r> -+ 00. It is associated with the 
contour along the E axis such that 1m E> O. This Green's 
function is related by a Fourier transform to the Feynman 
propagator K (r,r',t), as follows3

: 

G + (r,r',E ) = - i fO K (r,r',t )eiEt dt. (1.5) 

This can be shown, most readily, from the respective spectral 
representations 

and 

R (r)R *(r') 
G +(r,r',E) = I n. n 

n E+IE-En 

K(r,r',E) = IRn(r)R ~(r')e-iEnt. 
n 

2. N-DIMENSIONAL FREE PARTICLE 

(1.6) 

(1.7) 

Applying the procedure outlined above to the free parti
cle, we write Eq. (1.2) with VIr) = OandE = k 2/2. Thesolu
tion of the homogeneous equation analytic at r = 0 is readily 
shown to be 

u(r) = rl-NI2JL +N12 _ I (kr). (2.1) 

For the outgoing wave Green's function G + , the appropriate 
form of the outer solution is 

vIr) = rl - N 12 H ~)+ N 12 _ I (kr). (2.2) 

The Wronskian of(2.1) and (2.2) is given by4 

W [u,v] = r-NW [JL+ N12 - dkr),H~)+N12_1 (kr)] 

= (2il1r)rl - N. (2.3) 

Thus, by (1.3) 

G r) + (r l ,r2,k) 

= - i1r(rlr2)I-NI2JL+NI2_I(kr < )H~)+NI2- dkr». 
(2.4) 

For odd dimension (N = 3,5, ... ), one can introduce the corre
sponding spherical Bessel functions, to give 

Gr)+(rl,r2,k) 

= - 2ik (rl r2)3/2-NI1L + N12_3/2(kr <) 

Xh ~)+ N12 _ 3/2 (kr> ). (2.5) 

We now make use of an integral representation for a 
product of two Bessel functionsS 

Jv(z)H~)(Z) 

=~[+i""exp[ ~t- Z2 +r ]Iv( ZZ) dt. (2.6) 
11T 0 2 2t t t 
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With the substitutions t-+ik 2t, c = 0, v = L + N 12 - 1, 
z = krl, Z = kr2, we obtain 

JL+NI2 - .(kr < )H~)+NI2_I(kr» 

(-Zl+
NI2l OO 

ik'll2 ilri+~)121 = e e 
rr 0 

Therefore 

G r) + (r l ,r2,k) 

= (_ i)L+NI2+ l(rlr2)I-NI2 

xl
oo 

ik'll2 ilri + ~)/2IJ (rlr2 ) dt 
e e L+NI2-I . 
ott 

(2.7) 

(2.8) 

We note that the energy parameter E = k 212 is now isolated 
in the first exponential factor of the integrand. Thus (2.8) can 
be identified with the Fourier transform (1.5), which imme
diately gives the free-partial propagator 

ilri + ~)I2IJ (I ) Xe L+NI2-1 rlr2 t. (2.9) 

From the derivative formula6 

Jy+ I (z) = - zy(alaz) [z- YJy(z)], the following recursive re
lation for N with L = ° can be demonstrated 

KbN+2) =!i (aKb
N

)) , 
1] a1] s 

1]=rl r2, s=(ri +~)l2. (2.10) 

It is readily verified that (2.9) is a solution of the partial 
differential equation 

i aK + _1_!.. ~ - I aK _ L (L + N - 2) K = 0, 
at 2~ - I ar ar 2r 

(2.11) 

with the initial condition 

Kr)(rl,r2,0) = 8(rl - r2)1(rlr2t 12 - 112. (2.12) 

If the Bessel function in (2.9) is expressed in terms of a 
confluent hypergeometric function,? viz., 

(z/2tr iz (1 ) Jy(z) = M v+-;2v+ 1;2iz , 
F(v+ 1) 2 

(2.13) 

then the propagator (2.9) exhibits the structureS 

K = F eiS, (2.14) 

with S representing the one-dimesional free-particle action 

S(rl,r2,t) = (rl - r2)2/2t. (2.15) 

We cite, in particular, the two- and three-dimensional 
cases. For N = 2, with the customary notation L = m and 
r=p: 

K(;,l(PI,P2,t) = ( - i)m+ It -lei(Pt+P~)I2IJm(PlP2It) 

(m = 0, ± 1, ± 2, .•• ). (2.16) 

Summation over m gives 

906 J. Math. Phys .• Vol. 25. No.4. April 1984 

K (2)( P P t) - _1_ ~ K (2)( P P t )eim(4), - ;,) 
I' 2' - 2 £.t m I' 2' . 

rrm=-oo 
(2.17) 

Making use of the generating function 

(2.18) 
m= - 00 

with u = - iei
(4) , - 4>,), z = PlP2lt, we obtain 

K (2)( PI' P2,t) = (2rrit )-li'Pt + pi)l21e - i(p,p,II)COS(;, - ;,) 

= (2rrit ) -Iei( p, - p,)'121. (2.19) 

For N = 3 with L = I: 

K\3)(rl,r2,t) = (_ 1)1+312(2/rrt 3)1/2 

X i(ri + ~)121. ( It) e JI r l r2 • 

The sum over partial waves gives 

(3) ) ~ 21 + 1 ( () (3)( ) K (r l ,r2,t = £.t ---PI cos )K I r l ,r2,t. 
1=0 4rr 

With use of the addition theorem9 

00 

eizcos8 = L (21 + l)i11(z)PI(cos ()), 
1=0 

(2.20) 

(2.21) 

(2.22) 

we obtain the familiar three-dimensional free-particle pro
pagator lO 

K (3)(r
l
,r

2
,t) = (2rrit )-3/2i(ri + ~)l2te - ir,r,cos 811 

= (2rrit ) -3/2ei lr, - r,)'121. (2.23) 

3. N-DIMENSIONAL HARMONIC OSCILLATOR 

For the N-dimensional isotropic harmonic oscillator, 
Eq. (1.1) takes the form 

[E+J..(_I_!..~_I!.._ L(L +N - 2) -air)] 
2 ~-I ar ar r 

x G r)(r,r',E ) = 8(r - r')/(rr')N 12 - 112. (3.1) 

All results in this section reduce to the corresponding free
particle formulas in the limit w-+O. The following solutions 
of the homogeneous equation can be demonstrated II 

(3.2) 

and 

vIr) = r- N12 W!f/i: 12 - 1)/2(wr), (3.3) 

where M and Ware Whittaker functions as defined by Buch
holz. However, for compactness of notation, we write 
M ~/2(Z) in place of vii K,1'12 (z) and W~I2(z) in place of 
WK,1'/2 (z).12 Using the Wronskian13 

W [ M 1'/2(Z) WI'/2(Z)] = - 1 , (3.4) 
K , K F[!It+1)/2-KJ 

we obtain 
_ 2wrl - N 

W [u vJ = --------
, F(LI2 +N 14-EI2w) 

(3.5) 

and thereby, by (1.3), 

Gr)(rl,r2,E) 

= -w-l(rlr2)-NI2F(LI2 +N 14 -EI2w) 

X M (L+NI2-I)I2(wr )W(L+NI2-I)/2(W?:) (3,6) 
EI20l < E/2Ol > • 

S. M. Blinder 906 



                                                                                                                                    

Note that this Green's function is nonpropagating, as is in
deed expected for a purely discrete spectrum. The eigenval
ues for this system follow simply from the poles of the gam
ma function, viz., 

E~~i = (2n + L + N /2)w (n = 0,1,2,. .. ). (3.7) 

We next make use of an integral representation for a 
product of two Whittaker functions given by Buchholz l4

: 

r ( J-l ; 1 _ K) W~12(alt )M~/2(a2t) 

= t ~a la21"" exp - ~(a I + a2)t cosh v 

XIJL (t ~ala2 sinh v)coth2K(v/2)dv 

restricted, however, by the condition that 

(
J-l+l ) Re -2--K >0. 

(3.8) 

(3.9) 

In order to make this representation applicable, we tempo
rarily turn w into a pure imaginary 

w = - ia. (3.10) 

With the substitutions in (3.8): J-l = L + N /2 - 1, t = - ia, 
K = iE /2a, a l = r>, a2 = r< and the variable transforma
tion sinh v = csch at, cosh v = coth at, coth(v/2) = eU

', 

dv = - a csch at dt, we obtain 

G INI(r r E)I . = _(_i)L+NI2-Ia(rr)I-NI2 
L l' 2' Ct) = - fa 1 2 

x 1"" dt eiE' csch at 

X el1l21io1rf + ?'Icoth u, 

Again, this can be identified with the Fourier transform 
(1.5). After reverting back to real w(a = iw), we obtain the 
harmonic-oscillator propagators 

KIJ:I(r l,r2,t) = ( - ilL + N12w(rlr2)1 - N 12csc wt 

X 1I/21iwirf + ?'Icot w'J ( t) e L+NI2-1 wrlr2cscw . 
(3.12) 

Again, using (2.13), we find that (3.12) shows the struc
ture (2.14) with the one-dimensional harmonic-oscillator ac
tion l5 

S (r l,r2,t) = ~w(ri + ~ )cot wt - wrlr2 csc wt. (3.13) 

The spectral representation of the propagator (3.12) fol
lows from the Hille-Hardy formula I6

•
17

: 

elX+ ylh III +hl JJL [2~h 1/2/(1 + h )] 

1 + h (xyh r/2 

"" A' 
= L . ( - h )"L fl(x)L fl(v). 

-<=0 riA +J-l + 1) 
(3.14) 

Expressing the Laguerre functions L fl in terms ofWhitta
ker functions l8 and rearranging, we obtain 
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h - JL/2(1 + h )-I~eIX + ylll + h )III - h 1/2 

XJJL [2~h 1/2/(1 + h)] 

= i (- h)-< riA +J-l + 1) 
-<=0 A! 

XM~/1 ilL + 11/2(X)M~/1 ilL + 1112 (v). (3.15) 

With the substitutions: J-l = L + N /2 - 1, x = wri, 
y = w~, h = - e - 2im', A = n, we obtain 

KIJ:I(rl,r2,t) = iR~~i(rl)R~~i(r2)e-iE~,It (3.16) 
n=O 

with the eigenvalues E ~~i given by (3.7) and the radial eigen
functions by 

R ~~i(r) 

= [2r(n+L+N/2) ]112 -NI2MIL+NI2-1112( r) 
I r n+L12+NI4 W n. 

(n = 0,1,2,. .. ). (3.17) 

Again we note the special cases N = 2 and 3. For 
N=2,19 

K ~I( PI,p2,t) = ( - i)m + IW csc wt 

X 11I21i«>( pj + p~lcot w'J ( t ) e m WPIP2 CSC W 

(M = 0, ± 1, ± 2, ... ). 

The summation analogous to (2.17) results in 

K (2)( PI' P2,t) = ( - i/21T)W CSC wt 

ForN= 3: 

X exp [ !iw( pi + p~ )cot wt 

- iwp I·P2 csc wt ] . 

K \31(rl,r2,t) = ( - ill + 3/2(2/1T)1/2(W csc wt )3/2 

(3.18) 

(3.19) 

X 11I21iwlrf + ?,)cot w,. ( t) (3.20) e h wrlr2 csc w . 

The sum over partial waves as in (2.21) gives20 

K (3)(r l ,r2,t) = (w csc wt 121Tif/2 

X exp [!iw(ri + ~ )cot wt - iwr I·r 2 csc wt ] . 
(3.21) 

4. N-DIMENSIONAL COULOMB PROBLEM 

We consider finally the N-dimensional hydrogenic ra
dial equation 

J.. [k2 +_I_!..~_I!.._ L(L +N - 2) + 2Z] 
2 ~-I Jr Jr r r 

XGIJ:I(r,r',k) = l5(r - r')l(rr't12-1I2. (4.1) 

The appropriate solutions to the homgeneous equation are, 
in this case21 

u(r) = rIl2-NI2Mf,,+NI2-1( - 2ikr), 

vir) = rIl2 - N12 Wf,,+N/2-1( - 2ikr), 

where 

v:=Z/k. 

(4.2) 

(4.3) 

Using (3.4) and (1.3) once again, we obtain the Coulomb 
Green's functions 
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Grl(r l ,r2,k) = (ik)-lr(L + N /2 - 1/2 - iv) 

X(rlr2)1I2-NI2Mt+NI2-1( - 2ikr <) 

xwt+ N/2 - 1(-2ikr», (4.4) 

a result previously given by Hostler. 22 The poles of the gam
mafunctionatv = - ilL + N /2 - 1/2 + n'), n' = 0,1,2,00', 
determine the N-dimensional hydrogenic spectrum: 

E(NI = Z2/2v = - Z2 (45) 
n.L 2(n + N /2 _ 3/2)2 ' . 

n = L + I,L + 2, .... 

The integral representation (3.8) is again applicable, 
now with,u/2 = L + N /2 - 1, K = iv, t = - 2ik, a l = r>, 
a2 = r < ' and the variable transformation sinh v = csch q. 
We obtain 

Grl(r l ,r2,k) = - 2( - i)2L+N-2(rl r2)I-N12 

X i'" dq e2ivq csch qeik (r, + r,lcoth q 

XJ2L + N _ 2 (2k AA csch q). (4.6) 

Unfortunately, this is not a Fourier transform wrt time and 
energy variables. In fact, no closed form for the Coulomb 
propagator is known, as yet. Equation (4.6) does, however, 
represent a Fourier transform wrt the quantum number vari
able v. In a similar instance, we have introduced the Stur
mian propagator,23 defined by the transform 

(4.7) 

For the Green's function (4.6), we identify the corresponding 
Sturmian propagator 

Srl(rl,r2,q) = ( - i)2L + N - Ik (r lr2)1 - N 12 csch q 

X eik (r, + r,lcsch qJ2L + N _ 2 (2k AA csch q). 
(4.8) 

By substituting Z = kv [cf. Eq. (4.3)] in (4.1) and using 
the Fourier transform (4.7), we obtain a partial differential 
equation for S: 

J.- [k 2 + _1_ !... ~ - 1 !... 
2 ~-I Jr Jr 

_ L (L + N - 2) + ik ~ ]s = 0, 
r r Jq 

subject to the boundary condition 

(4.9) 

Sr l(r l ,1'2'0) = 8(rl - r2)/(rlr2t12-I. (4.10) 

The propagator (4.8), with k and v real, pertains to the Cou
lomb continuum. Of more significance is the discrete spec
trum Sturmian propagator, obtained by the substitutions: 
k_ik, q_iq, viz., 

Sr l(r l ,r2,q) = ( - ifL +N- Ik (r l r2)I-N12 csc q 

Xeik(r, + r,Icot qJ2L + N _ 2 (2k AA csc q). 
(4.11) 

The spectral representation of (4.11) follows again from 
(3.15), with,u = 2L + N - 2, x = 2kr l ,y = 2kr2, 
h = - e - 2iq, A = n - L - 1. The result is 
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'" 
Sr l(r l ,r2,q) = L R ~~i{rdR ~~i(r2) 

n=L+1 
X e - 2iq(n + N 12 - 3/21, 

with 

[ 
(n + L + N - 3)! ] 112 

R ~~i(r) = 
(n -L -I)! 

X r ll2 - N 12M;;: ~:i ~;/2 (2kr), 

n = L + 1, L + 2, .. ·. 

(4.12) 

(4.13) 

If k = Z /n then (4.13) gives the N-dimensional Coulomb ra
dial eigenfunctions. For k arbitrary, as is the case here, the 
R ~~i (r) represent Sturmian functions,24 hence our designa
tion for the propagator Sri. 

Relationships between Coulomb eigenstates and those 
of harmonic oscillators of various dimension have been 
known for a long time. 25 This connection manifests itself in 
the similarity of the propagator Sri (r l ,r2,q) to the harmon
ic-oscillator propagator K ~I (PI' P2,t). Specifically, under 
the substitutions 

r = p2/2, k = OJ, q = OJt 

and 

2L + N - 2 = A + v/2 - 1 

the two propagators are related by 

(4.14) 

(4.15) 

(r lr2)N12 - ISr l(r l ,r2,q) = (P1P2t12 - IK~I(pl' P2,t). 
(4.16) 

A formula equivalent to (4.15) was found by Giovannini and 
Tonietti. 26 Two realizations of (4.15) for the three-dimen
sional Coulomb problem (N = 3, L = I) have been given. 
Schwinger27 set v = 2, so that 21 + 1 = A = Iml, thus con
necting hydrogenic states to those of a two-dimensional os
cillator. Bergmann and Frishman28 set A = 0, so that 
41 + 4 = v, thus establishing a connection with states of a v
dimensional oscillator. Further, comparison of(4.13) with 
(3.17) shows that the hydrogenic principal quantum number 
n corresponds to the oscillator quantum number 
n' = n -L - 1. 

For the three-dimensional case, the sum over partial 
waves according to 

S(r l ,r2,q) = i: 2/+ 1 PI(cosO)S\31(rl,r2,q) (4.17) 
1=0 41T 

can be evaluated using Neumann's formula29 

!Uo(z cos 0/2) 

= i: ( - )1 (21 + 1 )PI (cos 0 ).121 + 1 (z). (4.18) 
1=0 

The result is the Coulomb Sturmian propagator23 

S (r l ,r2 ,q) = - (417r Ik 2CSC
2 q 

X eikscot QJo(k1J csc q), (4.19) 

S =rl + r2, 1J=2AA cos 0/2. 

Substituting (4.19) back into (4.7), we recover an integral re
presentation for the Coulomb Green's function first derived 
by Hostler. 3o 
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We carry out an investigation of the Schrodinger equation with the ax2 + px4 interaction for 
0< Re( x) < 00, and P = IP I exp(i(17" + A)), - 17" <A < 17". In the sectors O.;;;arg( x) < 17"/3 - A /6, 
O';;;A <17", and - A /6 <arg( x) <17"/3 - A /6, - 17" <A <0, a subdominant solution is constructed 
essentially in terms of the Laplace transform of a function! (s), O,;;;s < 00, which is expressible as a 
converging power series in s. The solution, y( x), thus obtained, is compared and contrasted with 
the one valid in the usual case where Re( x).;;;O is included and it is argued that y( x) may not be 
accessible to perturbative approaches. 

PACS numbers: 03.65. - w 

I. INTRODUCTION 

In recent years the quantum mechanics of the anhar
monic oscillator has been the subject of a large number of 
publications. Interest in such a model stems primarily from 
two factors. First, this system provides a simple model for 
field theories with polynomial interactions. 1,2 Second, and 
likewise important, the fact that, until now, the Schrodinger 
equation of the general anharmonic oscillator has not been 
solved exactly has stimulated the development of many ana
lytic and numerical methods which, besides being used for 
the calculation of the energy eigenvalues, are of a much 
wider applicability and usefulness. 1-9 

In the course of the investigations on the anharmonic 
interactions, exact analytic solutions and eigenvalues have 
been found for a class of such potentials. 10-13 Such solutions 
are of importance since they can serve as a testing ground for 
various approximate approaches. Indeed, some of these so
lutions may not be accessible to Rayleigh-Schrodinger per
turbation theory. 14 Furthermore, exact results may provide 
us with a better insight into the underlying physics, as such 
results are free of any assumptions that would be needed in 
the case of an approximate treatment of the problem in ques
tion. 

A striking feature, however, of the general anharmonic 
oscillator defined by 

N 

VN(x) = I p;x2;, - 00 <x< 00, N= 1,2,3, ... (1) 
i= 1 

is the following. All the methods so far yield exact results 
only when N = odd, and completely fail to do so if N = even. 
More specifically, the solutionY2n + I corresponding to 
N = 2n + 1, n = 0,1, ... , is a function of the parametersp;, 
thedependenceonp 2n + I being of the form liP 2n + I . Hence 
if we attempt, by letting P 2n + 1- 0, P 2n #0, to generate, 
fromhn + I , the solutionhn relevant to N = 2n, we obtain 
infinities which do not cancel. This can be most easily seen in 
the case of the doubly anharmonic oscillator (N = 3) 10.11 

where P3-D does not lead to an exact solution for 

.) Author of Appendix. 

PI X
2 + pzX4. In this respect, an interesting observation can 

be made. In fact, a basic set S of the Schrodinger equation 
with the P IX2 + P2X4 potential consists of a subdominant, Y \ , 
and a dominant'Yd, solution3.15-16 and, as we have argued in 
a recent work, 16 due to the appearance of lIP2 iny, andYd' 
their structure and analytic properties do not seem to be 
obtainable by means of standard perturbation methods 
based on the P IX2 harmonic oscillator. Since, of course, the 
physical solution pertaining to the P IX2 + P2X4 interaction is 
a linear combination of y, and Y d, it appears that there is a 
nonconventional perturbative transition from /3 IX

2 to 
PIX2 + P2X4, and indeed it is well known that the Raleigh
Schrodinger perturbation theory diverges for the 
/3IX2 + P2X4 oscillator. In this context we also note the im
portant remark by Simon3 that, namely, /3zX4 is a singular 
perturbation in the sense that a radical change in the physics 
is taking place when the perturbation is switched on. Now in 
the case ofEq. (1) and for N = 2n + 1, the exact solutions are 
generalizations 10-13 of the solution for /3IX2

• If we add to 
V 2n + I ( x) the term /32n + 2 x 212n + 2), all the techniques that 
work for V 2n + I ( x) break down as previously noted when 
they are applied to V2n + 2 ( x) = V2n + I ( x) + /32n + 2 X212

" f 21 

and thus we arrive at a situation which may be taken as 
equivalent to or a generalization of the situation prevalent in 
the transition P IX

2_/3IX2 + /32x4, which corresponds to 
passing from N = 1 toN = 2 in Eq. (1). To put it otherwise, a 
basic system of the Schrodinger equation corresponding to 
N = 2n may not be derivable from a basic system relevant to 
N = 2n - 1 by means of a straightforward perturbative ap
proach. We feel that this signifies, yet again, a radical change 
in the underlying physics. This point of view is corroborated 
by the discovery of some rather unexpected and exciting fea
tures ofthe/3lx2 + /32x4 potential. 1.3.17-19 Therefore it might 
be worthwhile to investigate V N ( x) further. A way to realize 
such an investigation could be by trying to generalize the 
analytic results known for theN = 2 case to higher even N 's, 
much the same as it has been done for N = odd, as we point
ed out above (cf. Refs. 10--13). 

In this contribution, therefore, we attempt to find some 
further analytic properties of the interaction 

V( x) = ax2 + /3x4, 0 < Re( x) < 00, (2) 
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where a is an arbitrary complex number and /3 is complex 
such that 

/3 = 1/31 exp(i(17' + A)), -17'<A <17', (3) 

in the hope of further elucidating the nonconventional per
turbative nature of /3x4. Equation (2) represents the simplest 
N-case in Eq. (1), that is. N = 2. The restriction of Re( x) to 
the positive half-axis implies that we are considering 
ax2 + /3x4 in the context of a cut-off theory. In fact. if 
a = real and A = O. that is. /3 < O. the constraint x> 0 means 
that we introduce a small cut-off distance E> 0 and set 
V(x)=Ofor - 00 <x";Eand V(x)=ax2+/3x4forx>E. 
Since E is an arbitrary positive number. the solution valid for 
x> E holds for all x> O. hence Eq. (2) which refers to the case 
of a complex x. The reason that E must be positive stems from 
the following. Our aim is to obtain analytic results for 
ax2 + /3x4 and. consequently. we must make some appropri
ate ansatz for the solution of the Schrodinger equation in 
question. In so doing we are forced by the very nature of our 
ansatz to exclude Re( x)..;O or. equivalently. x,,;O for real x. 
and. hence. the introduction of E as described above is an 
attempt to attribute a physical meaning to the condition 
x..;O. A possible justification for the constraint Re( x) may be 
the fact that. in this way. we obtain a subdominant solution 
of probably nonperturbative character. Thus in Sec. II. we 
carry out the solution of the Schrodinger equation pertain
ing to Eq. (2) and obtain the aforementioned subdominant 
solution. In Sec. III we discuss our result and compare it 
with that relevant to the usual ax2 + PX4. 
- 00 < Re( x) < 00, oscillator. In the Appendix we present a 

numerical investigation related to Sec. I. 

II. SOLUTION OF THE SCHRODINGER EQUATION 

We consider 

y"( x) + (E - ax2 - Px4 lY( x) = O. Re( x) > O. (4) 

and represent y( x) as 

y( x) = exp(ax + bX3 )L'" exp( - sx)f(s)ds. Re( x) > O. 

(5) 

Then we observe that Eq. (5) solves Eq. (4) if the functionf(s) 
fulfills 

1(00) - 1(0) = O. lIs) = 6b (exp( - sx)s[xf(s) + f'(s)]). 

6bsf"(s) + 6bf'(s) + [ - S2 + 2as - (a2 + E)] f(s) = 0 

and the parameters a. b are given by 

9b 2 = P. 6ab = a. 

From the indicial equation of Eq. (7) it follows that 
00 

f(s) = L cns", co:;i:O, 
n=O 

(6) 

(7) 

(8) 

(9) 

which converges for SE[O. 00 ) according to the general theory 
of differential equations20 and 

6b(n+ 1)2Cn + 1 -(a2 +E)cn +2acn _ 1 -Cn _ 2 =0. 

C_ 1 =c_ 2 =0. n=0.1.2 ..... (10) 
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Deferring the justification ofEq. (5) to Sec. III of this paper. 
we present our results in the form of a theorem. 

Theorem 1: The Schrodinger equation (4) can be solved 
by Eqs. (5)-( 10) which constitute a subdominant solution val
id in the sectors O<arg( x) < 1,/3 - A /6. O<A < 17'. and 
-A /6 <arg( x) <17'/3 -A /6, -17'<A <0. 

Proof The main part of the proof involves the verifica
tion of the relation 

lim [/(s) exp( - sx)] = O. Re( x) > O. (11) 

IfEq. (II) holds. then the integral in Eq. (5) exists. 21 To 
ascertain the behavior off(s) for s -+ 00. we first observe that 
Eq. (10) gives 

cn+ I/cn = l/[(6b )1!3n2/3], n> 1. (12) 

Since. from Eq. (3). we get. with L = (4IPI)-1/6 > 0 and Eq. 
(8). 

(6b )1/3 = L -I exp[i((17' + A )/6 + 217'k 16)]. k = 0,1 .... ,5, 
(13) 

Eq. (12) yields 

Cn + I iL exp( - U /6) 
--= 1 ,n>l, 

Cn n23 (14) 

where in Eq. (13) we have taken k = 4. Equation (14) shows 
that/(s) for s> 1 behaves as22 

F(s)= ~ I exp ----oo.n ( - Un) z7 
n~o 6 (n!)2/3 

_.i. I ( - 1)" cos(AnI6) zn 
ZI n = I [(2n - 1)!f/3 

- J.. I (- 1 t sin(llnI6) zn 
ZI n = I [(2n - 1)!]2/3 

The meaning of the abbreviations l:1 ..... l:4 is obvious from 
Eq. (15). On comparing now l:1 with 

00 zn 
exp( - z) = I ( - l)n " (16) 

n=O n. 

and by application of a method from the theory of analytic 
continuation.23 we obtain 

(17) 

s = ,~( _ l)k cos(llkI6) 
n n'k~O [(2k )!]2/3(n _ k)t' 

(18) 

It will be shown in Lemma 2.1 that 

ISn I < n. n>N. N = finite. (19) 
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Thus from Eqs. (17)-( 19) we deduce 

1};;I<I+Ni](IS~I_ 1,)zn 
n ~ ] n. (n - 1). 

+ f Zn < 1 + Ni ]( ISn I _ 1 )zn 
n ~] (n - I)! n ~ ] n! (n - I)! 

+f(n+l)zn=Ni ](ISnl_ 1 )zn 
n ~ ] n! n ~ ] n! (n - I)! 

+ exp(z)[ (1 + z)], (20) 

and so from Eq. (17), 

1};11<1 +z+(Nil(ISnl_ 1 \~)exp(-z), s>l. 
n ~ 1 n! (n - I)! r 

(21) 

In precisely the same manner, we may show (Lemma 2.1) 

1};31<I+z+(Nil(~- 1 \~)exp(-z), s>l. 
n~1 n! (n-l)!r 

(22) 

Moreover, };2 and };4 clearly have the same asymptotic be
havior for s> 1 with}; I' and, respectively, };3.24 Hence from 
Eqs. (21) and (22), it follows that IF(s)1 and, consequently, 
also I/(s)1 for s> 1 behaves weaker than 

2(1 + z)(1 + liz]), N = finite. (23) 

We conclude now that Eq. (23) ensures the validity ofEq. 
(11) and thus the existence of the integral in Eq. (5). Evidently 
Eq. (6) is also satisfied. For the parameters a and b, we can 
choose, by virtue ofEqs. (3) and (8), 

a 
a= , 

21/311/2(i cos A /2 - sin (A /2)) 

b = ~(i cos (A /2) - sin (A /2)). 
3 

(24) 

The value for the parameter b given in Eq. (24) is consistent 
with the one following from Eq. (13) for k = 4. The boundary 
condition that must be fulfilled reads 

lim y( x) = ° 
Ixl~"" 

h {o..;arg( x) < 1T'/3 - A /6, O";A < 1T', 
w en -A /6 < arg( x) <1T'/3 -A /6, -1T'<A <0. (25) 

From Eqs. (5) and (24), it is seen that Eq. (25) is indeed satis
fied and so, owing to the fact that Eq. (12), which is actually 
the starting point for the proof of the theorem, is valid for 
every IE I < 00, the last part of Theorem 1 follows. It should 
be noted that, by virtue ofEq. (10), en can easily be written as 
a determinant and that, as the structure of Eq. (10) shows, 
there do not existE-values for which the series for/(s) in Eq. 
(9) rigorously terminates. 

Lemma 2.1: The sum Sn defined in Eq. (18) satisfies 
inequality (19) . 

Proof It is sufficient to consider here O";A < 1T'/2 since 
A = 1T'/2 has been investigated elsewhere. 25 We take the 
function 

( ) 
cos(Az/6) 

g z - ------'---'---~ 
- r(n + 1 - z)[r(2z + lW /3 ' 

z = x + iy, (26) 

where r (Z ) denotes the Gamma function, and by utilizing 
the technique for the conversion of a sum into a complex 
integral,26 we get 

Sn = ~ rI: r(n + l)g(z) csc(1T'z)dz. 
2i J (27) 

The contour integral in Eq. (27) is taken counterclockwise 
around a closed rectangular contour encircling the points 
0, 1, ... ,n. Therefore it breaks up into four integrals, the first of 
which is 

I = r(n + l)fL [exp( - iA /24 - Ay/6) + exp(iA /24 + Ay/6)]exp(i1T'/4) d 
1 2i -L r(n+l+A -iy)[r(-~+1+2iy)]2/3[exp(-1T'y)-iexp(1T)I)] y 

(28) 

with z = - A + iy. The relations27 

permit us to write 

II I r(n + 1) fL [exp(1T)I + Ay/6) + exp(1T)I-Ay/6)] [exp(21T)1) + exp( - 21T)1)] 1/3 d . 
I"; (21T')1/3 Jo Ir(n + 1 + 1 + iy)lll - i exp(21T)1)I y 

Bearing in mind the investigation ofthe integrals along the three other sides of the contour, we now choose 

L=n+!, n>l, (L>I), 

(29) 

(30) 

(31) 

and investigate Eq. (30) for the case ofEq. (31). In this respect, we can apply the general formula for the asymptotic behavior of 
r (Z) as given by Morse and Feshbach28: 

Ir( X + 1 - iY)1 = (21T')1/2[( X 2 + y2)(2X+ 11/4]exp( - YtP + X), tP = tan-1(y IX), IZ I> 1, (32) 

and thus for n> 1 and O..;y..;L = n + A, 

912 

r(n + 1) exp(tPy) 
Ir(n + 1 + 1 + iy)1 = n1/4 [ 1 + y2/(n + 1)2](4n + 31/8' 

tP = tan -l_y_. 
n + A 
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By virtue ofEq. (31) and (33) max ¢ = 1T/4, and since, always, 

[(v2/(n + if) + l]I4n + 3}18;> 1 

for O<y<L = n + i ' Eq. (30) goes into 

1111 < 1 jL (exp[(1T + 1T/4 + A 16)y] + exp[(1T + 1T/4 - A 16)y ])[exp(217}') + exp( - 217}')] 1/3 dy 
n I/4(21T)1/3Jo [1 + exp(41TY)] 1/2 

1 loo ... < -dy. 
n I/4(21T)1/3 0 ... 

As the last integral in Eq. (34) obviously exists, we denote it with I, and so Eq. (34) yields 

1111 <n- 1/41(21T)-1/3, L = n + i, n~l, (L~I). 

The second integral 12, along the contour, satisfies with z = x - iL 

1121 <r (n + 1 )In + 114 exp(1TL + LA 16) dx, 
- 114 Ir(n - x + 1 + iL )11F(2 x + 1 + 2iL W13 lexp [21T(iX + L)] - 11 

(34) 

(35) 

(36) 

where we have used Ir(Z)1 = Ir(Z)1 and the obvious relationexp(1TL + LA 16);>exp(1TL - LA 16). Introducing now Eq. (31) 
into Eq. (36), we can utilize Eq. (32) for the Gamma function because in all three cases IZ I ~ 1 holds. The result of some 
elementary calculations is 

G (I)Jn+ 114 1121<--1/-3 exp -=- (exp!xI3-ln(n)[(x+ 1)/3] +L(<fo+4!p'13+AI6-1T)j)dx, 
(21T) 4 - 114 

(37) 

¢=tan-I~, ¢'=tan-I~, G= 1 , 1 > 1 . 
n - x x 1 - exp( - 21TL) exp(21TL) - 1 lexp[21T(ix + L)] - 11 

(38) 

The quantities 

[(n ~ xr + 1 rn -2x+ 1)/4, [(~r + 1 rx+ 1)/6, 214x+ 1)/3 (39) 

T ABLE I. S" as a function of n: A = 1T/4. 

n S" n S" n S" n S" 

0 1.000 000 33 - 0.D25 845 66 - 0.013807 99 - 0.009 903 
1 0.375423 34 - 0.025 857 67 - 0.013649 100 - 0.009 821 
2 - 0.016 961 35 - 0.025 687 68 - 0.013496 101 - 0.009 741 
3 - 0.246162 36 - 0.025368 69 - 0.013 344 102 - 0.009 662 
4 - 0.363513 37 - 0.024 932 70 - 0.013196 103 - 0.009 584 
5 - 0.406 697 38 - 0.024 409 71 - 0.013 050 104 - 0.009509 
6 - 0.402 953 39 - 0.023824 72 - 0.0\2 906 lOS - 0.009434 
7 - 0.371 599 40 - 0.023 201 73 - 0.012 765 106 - 0.009 361 
8 - 0.326 010 41 - 0.022559 74 - 0.012 626 107 - 0.009 289 
9 - 0.275 157 42 - 0.021914 75 - 0.012 489 108 - 0.009 218 

10 - 0.224 798 43 - 0.021279 76 - 0.012355 109 - 0.009148 
11 - 0.178383 44 - 0.020663 77 - 0.012 223 110 - 0.009 080 
12 - 0.137 745 45 - 0.020074 78 - 0.012 093 111 - 0.009 013 
13 -0.103617 46 -0.019516 79 - 0.011965 112 - 0.008 947 
14 - 0.076 008 47 - 0.018 992 80 - 0.011 840 113 - 0.008882 
15 - 0.054 482 48 - 0.018 503 81 - 0.011718 114 - 0.008818 
16 - 0.038358 49 - 0.018 050 82 - 0.011598 115 - 0.008 755 
17 - 0.026 841 50 - 0.017 632 83 - 0.011480 116 - 0.008 693 , ~ - 0.019 117 51 - 0.017 246 84 - 0.011365 117 - 0.008 632 
19 - 0.014412 52 - 0.016 892 85 - 0.011252 118 - 0.008573 
20 - 0.012 025 53 - 0.016 565 86 - 0.0\1 141 119 - 0.008514 
21 - 0.011 346 54 - 0.016 264 87 - 0.011033 120 - 0.008 455 
22 - 0.011 860 55 - 0.0\5 986 88 - 0.010 927 121 - 0.008 398 
23 - 0.013148 56 - 0.DI5 728 89 - 0.010 824 122 - 0.008 342 
24 - 0.014 878 57 - 0.DI5 488 90 - 0.010 723 123 - 0.008 286 
25 - 0.016 795 58 - 0.015 263 91 - 0.010 624 130 - 0.007 970 
26 -0.018713 59 -0.015051 92 - 0.010 527 140 - 0.007 499 
27 - 0.020 500 60 - 0.014851 93 - 0.010 432 150 - 0.007 087 
28 - 0.022 073 61 - 0.014660 94 - 0.010 339 160 - 0.006 724 
29 - 0.023 382 62 - 0.014478 95 - 0.010 248 170 - 0.006 400 
30 - 0.024 406 63 - 0.014 302 96 - 0.010 159 180 - 0.006111 
31 - 0.025147 64 - 0.014132 97 - 0.010072 190 - 0.005849 
32 - 0.025 619 65 - 0.013 967 98 - 0.009 987 200 - 0.005 612 
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have been discarded in the denominator of the integral ofEq. (38) since they are> 1. Further, the maximum value of ¢ + 4<P I I 
3 + A 16 - 11' is ~ - 11'/12 + A 16. On carrying out the integration in Eq. (37), we obtain 

1121 < 3G exp[(U - 11')/48] [exp( - 1/12) __ 1_(.!..-) 14" + 11/12] 
(211')1/3 exp[n(11'/12 - A 16)] n1/4 nIl3 n ' (40) 

L=n+!, n~1 (L~I). 

For the third integral on the contour we can easily deduce, with z = n +! + iy, 

II31<2r(n + 1) (. exp(AyI6) dy. 
Jo Ir(~ + ly)llr(2n +! + 1 + 2iy)1 2/3 1 exp( -1T)') + i exp(1T)')I 

(41) 

Using Eqs. (31) and (32), Eq. (41) is transformed into 

II I < (.!..-)"/3 (211')1/6 (L exp!4y[tan~lyl(n + ~)]I3 + Ayl61 d 
3 n nl/6214n + 51/3 Jo IF(~ + iy)llexp( - 11'y) + i exp(11'Y)I y, 

(42) 

where the term [y2/(n + £)2 + 1] 12/1 ~ 11/3> 1 appearing in the integrand's denominator has been neglected. Noting that 11'1 
4 = max(tan ~ Iyl(n + m. the integral I I in Eq. (42) fulfills 

I I lco exp[Y(11'13 + A 16)] d I" < y= <00, 
o Ir(;i + iY)llexp( - 1TY) + i exp(1TY) I 

(43) 

since I" exists by virtue of the behavior of Ir (~ + iy) I for y_ 00 according to Eq. (32). Hence 

( 
e )"/3 (21T)1/6 

1/31 < - 1 I", L = n +!, n>1. (L>I). n n 1 6214n + 51/3 
(44) 

The last integral 14 along the contour for which z = x + iL with x varying between n + ! and -! is readily seen to fulfill Eq. 
(36) and, thus, also Eq. (40). On recalling now Eqs. (27), (35), (40), and (44), we deduce that IS" I, from a certain sufficiently large 

T ABLE II. S" as a function of n: A = rr!2. 

n S" n S" n S" n S" 

0 1.000 000 33 - 0.032 012 66 - 0.013 614 99 - 0.009 694 
1 0.391483 34 - 0.031781 67 - 0.013 502 100 - 0.009 616 
2 - 0.008 831 35 - 0.031 180 68 - 0.013 382 101 - 0.009540 
3 - 0.253 777 36 - 0.030 295 69 - 0.013 256 102 - 0.009 465 
4 - 0.385 976 37 - 0.029 201 70 - 0.013125 103 ~ 0.009 392 
5 - 0.439150 38 ~ 0.027 969 71 - 0.012 988 104 - 0.009 320 
6 ~ 0.439 445 39 - 0.026 661 72 - 0.012 847 105 - 0.009 249 
7 - 0.406 677 40 - 0.025328 73 - 0.012 704 106 ~ 0.009179 
8 - 0.355 478 41 - 0.024 013 74 - 0.012559 107 - 0.009 III 
9 - 0.296 311 42 - 0.022748 75 - 0.012 412 108 - 0.009 043 

10 - 0.236 356 43 - 0.021560 76 - 0.012 266 109 - 0.008 976 
11 -0.180255 44 - 0.020 464 77 - 0.012120 110 - 0.008 911 
12 - 0.130 739 45 - 0.019 471 78 - 0.011 976 III - 0.008846 
13 - 0.089139 46 -0.018586 79 - 0.011833 112 ~ 0.008 782 
14 - 0.055 798 47 - 0.017 810 80 - 0.011694 113 - 0.008 719 
15 - 0.030 393 48 - 0.017138 81 - 0.011557 114 - 0.008657 
16 -0.012181 49 - 0.016 566 82 - 0.011424 115 - 0.008 596 
17 - 0.000 193 50 - 0.016 084 83 - 0.011294 116 - 0.008 535 
18 0.006637 51 - 0.015 684 84 - 0.011 168 117 - 0.008 476 
19 0.009370 52 - 0.015 355 85 - 0.011046 118 - 0.008 417 
20 0.009003 53 - 0.015 087 86 - 0.010 928 119 - 0.008359 
21 0.006428 54 ~ 0.014 870 87 - 0.010 814 120 - 0.008 302 
22 0.002411 55 - 0.014 695 88 - 0.010 703 121 - 0.008 246 
23 - 0.002 413 56 - 0.014 552 89 - 0.010 597 122 - 0.008190 
24 - 0.007 538 57 - 0.014 433 90 - 0.010494 123 - 0.008136 
25 - 0.012 578 58 - 0.014 332 91 - 0.010 394 130 ~ 0.007 824 
26 - 0.017 254 59 - 0.014 243 92 - 0.010 297 140 - 0.007361 
27 - 0.021379 60 - 0.014160 93 - 0.010 203 ISO - 0.006 958 
28 - 0.024 845 61 - 0.014078 94 - 0.010113 160 ~ 0.006602 
29 - 0.027 602 62 - 0.013 996 95 - 0.010024 170 - 0.006 286 
30 - 0.029 651 63 - 0.013 909 96 - 0.009 939 180 - 0.006 001 
31 - 0.031026 64 -0.013818 97 - 0.009 855 190 ~ 0.005 745 
32 - 0.031788 65 - 0.013 720 98 ~ 0.009 773 200 - 0.005513 
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butfinite n, say n l, onwards remains bounded. Therefore we 
can find a finite N>nl such that ISn I <n, n>N, and the 
proof of Eq. (19) is complete. In the case of ~3' we have to 
investigate the sum S' n that derives from Sn in Eq. (18) by 
replacingcos(Ak 16) with sin(Ak 16). This is done by substitut
ing sin(AzI6) for cos(AzI6) in Eq. (26), and it is readily seen, 
since such a substitution amounts to inessential replace
ments of + signs by - signs, that S' n satisfies Eq. (19) too, 
and therefore also Eq. (22). It is clear that the proof of Eq. 
(19) is based mainly on Eq. (32) which retains its validity even 
for smalllZ 1.29 Consequently, Eq. (19) is probably satisfied 
for small n too. This is numerically confirmed (cf. Appen
dix). 

III. DISCUSSION AND CONCLUSIONS 
An analysis ofEq. (4)3.11 reveals that exp(ax + bx3

) is 
the correct asymptotic behavior ofy( x), a and b being appro
priately chosen. Hence we have 

y( x) = exp(ax + bx3 )h ( x) (45) 

and 
h "( x) + (2a + 6bx2 )h '( x) + (a2 + E + 6bx)h (x) = 0, 

(46) 
a and b fulfilling Eq. (8) yet again. 

A natural thing to do is to solve Eq. (46) in the context of 
the theory of differential equations. 20 Therefore 

oc 

h (x) = L qn xn, qo#O, (47) 
n=O 

TABLE III. S" as a function of n: A = 317'/4. 

n S" n S" 

0 1.000 000 33 - 0.048 433 
1 0.417 944 34 - 0.047160 
2 0.005927 35 - 0.045 053 
3 - 0.264 676 36 - 0.042 328 
4 - 0.422 471 37 - 0.039186 
5 - 0.494111 38 - 0.035808 
6 - 0.503182 39 - 0.032 355 
7 - 0.469 687 40 - 0.028 957 
8 - 0.409 946 41 - 0.025 722 
9 - 0.336 755 42 - 0.022 732 

10 - 0.259 722 43 - 0.020044 
11 - 0.185 679 44 - 0.017695 
12 -0.119137 45 - 0.015 703 
13 - 0.062 728 46 - 0.014069 
14 - 0.017 626 47 - 0.012 783 
15 0.016085 48 - 0.011822 
16 0.039087 49 - 0.011 158 
17 0.052564 50 - 0.010 756 
18 0.057979 51 - 0.010 578 
19 0.056916 52 - 0.010 587 
20 0.050942 53 - 0.010 744 
21 0.041 530 54 - 0.011012 
22 0.029992 55 - 0.011358 
23 0.017 451 56 -0.011751 
24 0.004824 57 - 0.012165 
25 - 0.007175 58 - 0.012576 
26 - 0.018 024 59 - 0.012 965 
27 - 0.027 375 60 - 0.013 318 
28 - 0.035 032 61 - 0.013 624 
29 - 0.040 921 62 - 0.013 875 
30 - 0.045 074 63 - 0.014 067 
31 - 0.047 596 64 - 0.014197 
32 - 0.048 650 65 - 0.014 267 
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the q's satisfying the four-term recursion relation 

n(n+ l)qn+l +2anqn +(a2 +E)qn_l 

+ 6b (n - l)q n _ 2 = 0, 

q _ 1 = q-2 = 0, n = 0,1,2, .... (48) 

Clearly, up to this point, no restriction on x needs to be 
imposed apart from the one necessary to ensure y( x) - ° as 
Ix I - 00, as is done, for instance, in Ref. 1 for complex x,(J 
with the choice b = - (J 1/2/3. However, in the context of 
Eqs. (45)-(48), one must verify that h (x) for Ixl - 00 re
mains sufficiently well behaved. In other words, one has to 
examine the asymptotic behavior of h (x) as Ixl- 00. Such 
an investigation has been carried out in Ref. 16 and it leads to 
some analytic properties of the solutionsys andYd (Sec. I). 
Clearly linear combinations 

Y = ClYs + C2 Yd' Y2 = C3 Ys + C4 Yd' C l C4 - C2C3 #0 

(49) 
generate linearly independent solutions Yl' Y2 which them
selves form a basic set. Now in the present work, we are 
interested in analytically examining ax2 + (Jx4 further. So, 
instead of attempting to analytically construct physical solu
tions expressible as in Eq. (49), in which case we would also 
obtain exact formulas for the corresponding eigenvalues, we 
have tried the ansatz (5), whence the restriction Re (x) > 0 
follows, in order to see whether any solution different from 
those in Eq. (49) follows. As now Eqs. (5)-( 10), and (25) imply 

n S" n S" 

66 - 0.014 278 99 - 0.009 312 
67 - 0.014 235 100 - 0.009 261 
68 - 0.014143 101 - 0.009 209 
69 - 0.014 007 102 - 0.009157 
70 - 0.013835 103 - 0.009103 
71 - 0.013 632 104 - 0.009 048 
72 - 0.013 406 105 - 0.008 992 
73 - 0.013 162 106 - 0.008 935 
74 - 0.012 907 107 - 0.008876 
75 - 0.012 646 108 - 0.008817 
76 - 0.012384 109 - 0.008756 
77 - 0.012125 110 - 0.008694 
78 - 0.011872 111 - 0.008 631 
79 - 0.011629 112 - 0.008568 
80 - 0.011398 113 - 0.008505 
81 - 0.011 180 114 - 0.008 441 
82 - 0.010 977 115 - 0.008377 
83 - 0.010 790 116 - 0.008 314 
84 - 0.010 618 117 - 0.008251 
85 - 0.010 461 118 - 0.008189 
86 - 0.010 319 119 - 0.008127 
87 - 0.010 190 120 - 0.008 066 
88 - 0.010075 121 - 0.008 007 
89 - 0.009 972 122 - 0.007 948 
90 - 0.009879 123 - 0.007 890 
91 - 0.009 795 130 - 0.007 570 
92 - 0.009719 140 - 0.007124 
93 - 0.009 650 150 - 0.006 745 
94 - 0.009 586 160 - 0.006 405 
95 - 0.009 527 170 - 0.006 097 
96 - 0.009 470 180 - 0.005 821 
97 - 0.009 417 190 - 0.005573 
98 - 0.009364 200 - 0.005 349 
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the subdominant solution, y( x), thus deduced, is essentially 
different from the ones in Eq. (49) because it can not be ex
pressed asy( x) = Cys> C = const., asy( x) is not defined at 
Re( x) = O. Here, we note that the existence of a subdomin
ant solution to Eq. (4) can be ascertained either by utilizing 
the method of Ref. 15, or Sternberg's theory22 which is readi
ly applicable to differential equations of arbitrary order also 
possessing non polynomial coefficients. 

Owing to the nonuniform convergence of the series 
~c"s" and, thus, of the series ~exp( - sx)c"s" for SE[O, 00], 
integration term-by-term in Eq. (5) is not permitted. Indeed, 
such an integration would yield 

00 n! 
h (x) = I ---1:", (50) 

,,=0 x" + 1 

which is easily seen to diverge for any Ix I < 00 due to the fact 
that Cn _l/(n)!2/3 for n> 1. One can argue now that Eq. (46) 
may be solvable in some other representation, say in the form 
of a continued fraction, which eventually might be trans
formed into a converging series proceeding in powers of l/x. 
In such a case, the relation 

l
'" 00 d 

h (x) = exp( - sx)f(s)ds = I -"-
o n = 0 xn + 1 

(51) 

would hold. Equation (51) implies that there exists some 
transformation which can be applied to the integral in Eq. 
(51), thus rendering the integration possible, so that the se
ries in l/x can be rederived. Now it can be shown25 that h (x), 

TABLE IV. S" as a function of n: ,i = 1T. 

n S" n S" 

0 I. 000 000 33 - 0.089 738 
1 0.454460 34 - 0.085193 
2 0.029078 35 - 0.078 615 
3 - 0.276129 36 - 0.070 550 
4 - 0.471356 37 - 0.061523 
5 - 0.572 608 38 - 0.052 018 
6 - 0.598 471 39 - 0.042 465 
7 - 0.567 843 40 - 0.033 230 
8 - 0.498 421 41 - 0.024 612 
9 - 0.405778 42 - 0.016 841 

10 - 0.302 885 43 - 0.010082 
11 - 0.199 967 44 - 0.004 436 
12 - 0.104 575 45 0.000 051 
13 - 0.021822 46 0.003384 
14 0.045297 47 0.005608 
15 0.095544 48 0.006802 
16 0.129064 49 0.007071 
17 0.147034 50 0.006537 
18 0.151336 51 0.005333 
19 0.144280 52 0.003596 
20 0.128366 53 0.001463 
21 0.106 101 54 - 0.000 936 
22 0.079850 55 - 0.003 480 
23 0.051744 56 - 0.006057 
24 0.023607 57 - 0.008 574 
25 - 0.030076 58 - 0.010 951 
26 - 0.027162 59 - 0.013 121 
27 - 0.047848 60 - 0.015 037 
28 - 0.064 639 61 - 0.016 664 
29 - 0.077 315 62 - 0.017 983 
30 - 0.085891 63 - 0.QI8 984 
31 - 0.090 571 64 - 0.019 673 
32 - 0.091702 65 - 0.020 060 
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as given by the integral in Eq. (51), fulfills 

Ih(x)I<MIRe(x), Re(x»l, O<M<oo. (52) 

Equation (52) shows that h (x) ...... 0 as Re( x) ...... 00 more ra
pidly than 1IRe( x) as implied by the alternative representa
tion of h (x) by the series in Eq. (51). Consequently that kind 
of representation can not exist, and this in turn shows that 
the solution of this paper is not obtainable by introducing 
t = l/x in Eq. (46) and attempting to solve the resulting 
equation by a series expansion in t. 

In a recent work25 we have considered the A = 0 case, 
that is, /3 < 0 and x > 0 in Eqs. (2)-(4), and discussed its rela
tion to the usual ax2 + /3x4 interaction where - 00 < x < 00. 

In the present contribution, we have constructed a subdo
minant solution to Eq. (4) valid in the cut /3-plane, the cut 
being made along the positive real axis from zero to 00. Fur
thermore, due to the discussion following Eq. (52), the above 
solution may not be accessible to a perturbation expansion 
proceeding in powers of l/x and convergent for Re( x) > O. 
On the other hand, the appearance of 11/3 in Eq. (24) suggests 
that y( x) defined by Eqs. (5)-( 10) may not be derivable by a 
perturbation procedure which is based on the ax2 interac
tion and which, of course, in the limit /3......0, yields a solution 
of the latter. It is perhaps interesting to observe that, al
though there is no obvious reason to expect it, the nonpertur
bative character of the subdominant solution persists also in 
the context of the cut-off theory considered in the present 
work. 

n S" n S" 

66 - 0.020169 99 - 0.009 084 
67 - 0.020024 100 - 0.009186 
68 - 0.019 657 101 - 0.009 263 
69 - 0.019101 102 - 0.009 316 
70 - 0.QJ8 393 103 - 0.009344 
71 - 0.QJ7 566 104 - 0.009347 
72 - 0.016 657 105 - 0.009 327 
73 - 0.015696 106 - 0.009 285 
74 - 0.014 716 107 - 0.009 223 
75 - 0.013 741 108 - 0.009143 
76 - 0.012 797 109 - 0.009 048 
77 - 0.011902 110 - 0.008940 
78 - 0.011073 111 - 0.008 822 
79 - 0.010 322 112 - 0.008 696 
80 - 0.009 657 113 - 0.008 564 
81 - 0.009 085 114 - 0.008 430 
82 - 0.008 606 115 - 0.008 295 
83 - 0.008 221 116 - 0.008161 
84 - 0.007 926 117 - 0.008 030 
85 - 0.007 716 118 - 0.007 903 
86 - 0.007585 119 - 0.007 782 
87 - 0.007525 120 - 0.007 668 
88 - 0.007527 121 - 0.007 561 
89 - 0.007580 122 - 0.007 462 
90 - 0.007 677 123 - 0.007371 
91 - 0.007807 130 - 0.006 993 
92 - 0.007 962 140 - 0.006 755 
93 - 0.008132 150 - 0.006 527 
94 - 0.008309 160 - 0.006168 
95 - 0.008 486 170 - 0.005818 
96 - 0.008 657 180 - 0.005551 
97 - 0.008817 190 - 0.005336 
98 - 0.008 960 200 - 0.005131 
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FIG. 1. Sn as a function of n. 
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Finally, we point out that it might be of some interest to 
further investigate the role of cut-off distances in problems 
involving a wider class of potentials, bearing also in mind 
possible applications to vibrational spectra, with the aim to 
see whether or not many features of the solutions of this 
paper apply to more general potentials. 
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APPENDIX 

We have investigated the sum Sn defined in Eq. (18) 
numerically. The results pertaining to four different A-val
ues are presented in Tables I-IV and Fig. 1. It is perhaps 
worth pointing out that, although not of relevance to this 
paper, very similar results are obtained for Sn in the case 
1T<A < 21TandclearlyforA '= A + 12K '1T,K' = 0,1,2, ... ;for 
A = 21T, Sn diverges as n- 00. From Fig. 1 it is seen that ISn I 
remains always smaller than 1,0<...1.< 1T, and tends slowly to 
zero for n-oo. The slow rate at which ISn 1-0 as n-oo is 
predicted by the theoretical treatment in the Lemma; in fact, 
the dominant behavior of ISn I for n> 1 is determined by 1111 
in Eq. (35) since 1121,1131,1141, as shown by Eqs. (40) and (44), 
approach zero much more rapidly and, therefore, ISn 1-0 as 
n- 00 apparently like n - 1/4. 

Further we note that, most probably, Eq. (19) cannot be 
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verified by application of theorems from the general theory 
of series because the terms in Sn are themselves n-dependent 
and, thus, those theorems become inapplicable. The n-de
pendence of the terms of Sn is the reason why we had to 
consider an n-dependent contour of integration in the 
lemma. 
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The existing symmetry approach to exactly solvable time-evolution equations in one spatial 
dimension is extended to the case that the equation depends explicitly on the time and space 
coordinates. In this context (commuting) symmetries, constants of motion (in involution), strong 
and hereditary symmetries (squared-eigenfunction operators), and Hamiltonian structures are 
discussed. The cylindrical Korteweg-de Vries equation is used as an illustrative example. 

PACS numbers: 03.65. - w 

1. INTRODUCTION 

One of the important aspects associated with a given 
evolution equation (i.e., the flux of a vector field on a mani
fold) is the investigation of its "algebraic properties." This 
includes the evaluation of the symmetry group of this equa
tion, i.e., one looks for a Lie group acting on the manifold in 
such a way that solutions of the dynamical system are 
mapped to solutions. Instead of giving this group action ex
plictly, one rather tries to calculate the corresponding Lie 
algebra or, more specifically, the infinitesimal generators of 
one-dimensional subgroups. These generators can be char
acterized easily in terms of the usual commutator on the Lie 
algebra of vector fields. 

Further information about the given equation can be 
obtained by looking for conserved quantities, i.e., for realva
lued functions on the manifold which are constant along the 
trajectories of the given dynamical system. If the manifold is 
symplectic and if the system admits a Hamiltonian formula
tion, then the well-known classical Noether theorem estab
lishes a correspondence between symmetries and conserva
tion laws. Such a system is called completely integrable if 
there are "enough" conserved quantities in involution, 
which means that the corresponding symmetries commute. 

Let u be a smooth function on the real line vanishing 
rapidly at infinity, and let K (u) be a smooth vector field on 
the space S of these functions. For completely integrable 
equations of the type u, = K(u), it has turned out that cer
tain integro-differential operators are of prime importance 
for analyzing the algebraic properties. These operators have 
been given various names in the literature: squared eigen
function operators, I recursion operators, 2 strong symme
tries,3 hereditary symmetries,3 Kilhler operators,4 or regular 
operators.5 Several investigators, in particular Magri,4 
Gel'fand and Dorfman,5 and Fokas and Fuchssteiner6 have 
extensively studied the structure of these operators and their 
connection to the Hamiltonian formulation. Other relevant 
works include Refs. 7-15. It turns out that sets of infinitely 
many commuting symmetries and constants of motion in 
involution are easily characterized within this framework. 

The aim of this paper is to extend the above studies to 
equations of the form 

U r =K(u,x,t). (1) 

Notation 

We will consider evolution equations of type (1), where 
u is an element of the space S of functions on the real line, 
vanishing rapidly for Ix 1-00. Let K be some differentiable 
map on this space, depending explicitly on the space and 
time variables x and t. 

We define the directional derivative of a function <p on S 
by 

cp'(u)[vl: = :E cp(u + Ev)I.=o· (2) 

Given two explicitly space-time-dependent functions 
y(u,x,t) and a(u,x,t) on S, decaying sufficiently fast for 
Ix 1-00, we define a scalar product: 

(y,O'): = f: '" y(u(x,t ),x,t )a(u(x,t ),x,t) dx. (3) 

If p(u,x,t ) is a differentiable real-valued function, then 
its gradient w.r.t. u is defined by 

a 
(gradp,J) = JEP(u + E/,X,t )1.=0' (4) 

where/is any element of S. We callp the potential of grad p. 
A function y(u,x,t) is a gradient, iffy'* = y', where * means 
transposition W.r. t. the scalar product (.,). Its potential 
then is given by 

p(u) = L (Y(AU),U) dA. (5) 

2. SYMMETRIES, CONSERVED QUANTITIES, STRONG 
SYMMETRIES AND GENERALIZED NOETHER 
THEOREM 

The notions of symmetries, conserved covariants, 
strong symmetries (or recursion operators2

), and Noether 
operators for equations of the form u, = K (u) have been well 
established, see, for example, Ref. 6. 

Rather than recalling their mathematical definitions, 
let us illustrate these notions using the Korteweg-de Vries 
(KdV) equation as an example: 

(6) 

where the SUbscripts denote differentiation w.r.t. the corre
sponding variable. Equation (6) remains invariant under the 
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following four-parameter Lie-point group of transforma
tions: 

x' = eli(x + a - yt), t' = e31i(t +/3), u' = e21i(u + y). (7) 

The above transformations (space and time translations, Ga
lilean and scaling transformations) are uniquely character
ized by the following infinitesimal generators of symme
tries l6

: 

.I2=2u+xux -3t(uxxx +uux )' (8) 

We now establish a Hamiltonian formulation for the KdV. 
Let us recall that an anti symmetric operator J (u) is called 
symplectic, if the 2-form w(u) defined by 

w(u)(·,.) = (J(u).,.) (9) 

is closed. This means that the bracket 

(a,b,cj: = (J'(u)[a]b,c) (to) 

satisfies the Jacobi identity for arbitrary functions a, b, and c 
in S. 

An antisymmetric operator 8 (u) is called implectic (in
verse-symplectic), ifit has the same properties as the inverse 
of a symplectic operator, i.e., if the bracket 

Ua,b,cj}: = (b,8'(u)[8(u)a]c) (11 ) 

satisfies the Jacobi identity for all functions a, b, and c in S. 
Such operators J and 8 obviously correspond to the 

symplectic forms of classical mechanics which give rise to 
the definition of Hamiltonian systems. Analogously, a vec
tor field K (u) on S is called Hamiltonian, if one can write 
either 

J(u)K(u) = gradp(u) (12) 

or 

K(u) = 8(u) gradP(u) (13) 

with J symplectic, 8 implectic, and p and p some functions 
on S. The well-known Noether theorem of classical mechan
ics goes through for (12) and (13): Ifq(u) is a conservation law 
for K, then 8 (u) grad q(u) is the generator of a symmetry for 
K. Conversely, if u(u) generates a symmetry of K, then r(u) 
= J (u)K (u) is a conserved covariant. The notion of a con

served covariant is a mathematical generalization of the gra
dient ofaconserved quantity. Namely, ifthe functionalp(u) 
is conserved w.r.t. a given evolution equation, then 
y = grad p is a conserved covariant. Conversely, if y is a 
conserved covariant and if y is a gradient fUnction, then its 
potentialp(u) is a conserved quantity. We note that there 
exist conserved covariants which are not gradients and 
hence do not give rise to conserved quantities of the usual 
type. 

An operator 8 (u) which maps conserved covariants of 
K to symmetries of K will be called a Noether operator for K. 
Conversely, an operator J (u) mapping symmetries to con
served covariants will be called an inverse Noether operator. 

For the KdV we find 

ut = - Uxxx - uUx =D grad J~ 00 [+ (u x )2 _ ~3] dx, 

(14) 
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where D = alax is the differential operator W.r.t. the space 
variable. Clearly D is implectic and its inverse D - I is sym
plectic so that they are Noether and inverse Noether opera
tors, respectively, for the KdV. Throughout this paper we 
understand that 

(D -If)(x) = f 00 f(s) dS (15) 

if the functionfvanishes fast enough as x goes to - 00 and 

(D -1)(x) = f f(s) dS (16) 

iff does not obey this boundary condition. 
ApplyingD -I to the symmetries (8), we find the follow

ing conserved covariants: 

YI = U, Y2 = Uxx + u2/2, r l = x - tu, 

( 17) 

r2 = D -IU + xu - 3t(uxx + u2/2). 

It is clear that YI> Y2' and r l are gradient functions with the 
potentials 

PI = -dx, P2 = - - _(ux )2 dx, f
oo U2 foo [u 3 

1 ] 

-002 -00 6 2 
(18) 

f oo ( tU
2

) PI = _ 00 xu - 2 dx. 

However, r ~ #- IF ~)* and hence the scaling symmetry does 
not give rise to a constant of the motion. 

Since the KdV is an "exactly solvable" evolution equa
tion, it possesses infinitely many symmetries. A strong sym
metry is an operator ¢ (u) which maps a symmetry to a sym
metry and hence, in principle, generates infinitely many 
symmetries from a given one. 

For the KdV the Lenard operator2 

(/> (u) = D 2 + j u + ~uxD -I (19) 

is such a strong symmetry. 
Note that the equations 

u, = ((/> (uWu x , n = 1,2,3,.··, (20) 

define the Lax hierarchy associated to the KdV. 
Starting with .I2, we find a second hierarchy ((/> (UW.I2 

of symmetries for the KdV which are non local and do not 
give rise to conservation laws. 

All the above notions can be easily defined for equations 
of the form (1): 

Definition 1: (i) A functiona(u,x,t) is asymmetry of (1 ) iff 

~~ + O"[K] - K '[0'] = O. (21) 

(ii) A function y(u,x,t) is a conserved covariant of (1) iff 

Z +y'[K] +K*[y] =0. (22) 

(iii) An operator valued function 8 (u,x,t) is called a 
Noether operator of (1) iff 

~~ +8'[K]-8K'*-K'8=0. (23) 
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(iv) An operator valued function (/> (u,x,t) is called a 
strong symmetry of (1) iff 

a¢ + ¢ '[K] + (/>K' - K'(/> = O. (24) 
at 

Equations (21)-(24) must hold identically in the varia
bles u, x, and t; a fat denotes the derivative W.r. t. the explicit 
time dependence. 

Remark 1: (i) From the above definitions it follows by 
elementary calculus that (/> maps symmetries to symmetries, 
(/> * maps conserved covariants to conserved covariants, and 
8 maps conserved covariants to symmetries. 

(ii) One may define an operator valued functionJ(u,x,t) 
as an inverse Noether operator of (1) if 

aJ J'[K] +JK'+K'*J=O. (25) 
at 

Then J maps symmetries to conserved covariants. 
(iii) If 8 and J are Noether and inverse Noether opera

tors for (1), then (/> = 8 J is a strong symmetry of (1). Fur
thermore, the hierarchy (¢ n8 J is a hierarchy of Noether 
operators for (1). 

It is well known that if an equation is in a Hamiltonian 
form, then there exists a relationship between its symmetries 
and the constants of the motion. IfEq. (1) admits a Hamil
tonian formulation, then a generalization of Noether's 
theorem is given by the following theorem: 

Theorem 1: Assume that Eq. (1) can be written in the 
form 

u, = 8fi, (26) 

where (i) 8 (u,x,t) isan implectic operator '7 and (ii) the opera
tor 8 (u,x,t) and the function fi(U,x,t) satisfy 

a8 -8(fi'-fi'*)8=0. (27) 
at 

There 8 is a Noether operator for Eq. (1). 

Proof From K = 8fi we derive K' = 8 '[.] fi + 8fi'. 
Using the Jacobi identity for implectic operators, we find 

(b,(8, + 8'[K] - 8K'* -K'8)c) 

= (b,(8, - 8(fi' -fi'*)8)c) (28) 

for arbitrary band c in S. Hence (27) implies (23) and vice 
versa. 

Remark 2: One may easily obtain a similar result for 
inverse Noether operators. Namely, if JK = ji, where J is a 
symplectic operator and where J and the function ji satisfy 

(29) 

then (1) admits J as an inverse Noether operator. 
Example: Consider the cylindrical KdV (c-KdV) equa

tion'8: 

u, + Uxxx + uUx + u/2t = O. (30) 

The inverse scattering.transform (1ST) method for (30) is 
given in Ref. 19, and the conservation laws are given in Ref. 
20. Here we use this equation as an illustrative example and 
prove that it possesses a set of infinitely many commuting 
symmetries and a set of infinitely many constants of motion 
in involution. 
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Bountis21 has shown that (30) admits a four-parameter 
group of Lie-point transformations which are characterized 
by the following generators of symmetries: 

Ko = - 3ux' Go = 2/t(ux - 1I2t), 

KI = 2u + xUx + 3tu" (31) 

G1 = - 2f2ut - /txux - 2/tu +x/2/t. 

The strong symmetry of(30) is given by the operator (see Sec. 
4) 

(/>(u,x,t) = t(D2 + ~u + juxD -I) - jx -!D -I. (32) 

The operator 

8, = (lIt)D (33) 

is implectic, and (30) can be written as 

u,=8,fi (34) 

with 

(35) 

Verifying that (27) is satisfied with 8 1 andfi defined by (33) 
and (35), respectively, we see that 8 1 is a Noether operator 
for the c-KdV. Hence 8 2 = ¢81 is a second Noether opera
tor and 8 1- 1 is an inverse Noether operator. One checks that 
8 2 is again implectic. 

We find a first hierarchy of symmetries using Ko as 
starting point 

(36) 

to which corresponds a hierarchy of conserved covariants 

Yn = 8,-'Kn· (37) 

However, neither the Kn 's commute nor are the above con
served covariants gradients. It will turn out that one needs to 
use the second hierarchy of symmetries 

Gn = (/> nGo (38) 

to obtain commuting symmetries as well as constants ofmo
tion in involution. However, in order to prove these results, 
we need the notion of factorizable hereditary symmetries. 6 

3. FACTORIZABLE HEREDITARY OPERATORS AND 
INVOLUTIONARY PROPERTY 

We recall that an operator valued function (/> (u,x,t) is 
called hereditary3 iff it satisfies 

¢ '[¢a]b - ¢¢ '[alb = ¢ '[¢b]a - ¢¢ '[b]a (39) 

for arbitrary elements a and b in S. This is equivalenez to 

¢ 2[1 j,gl] + [I¢ j,¢gl] = ¢ ([I¢ j,gll + [I j,¢glJ) (40) 

for arbitrary functionsf(u) and g(u) on S, where [I , I] de
notes the commutator 

[I j,gl] = f'fg] - g'[f]. (41) 

The properties of hereditary operators and their close rela
tionship to symplectic/implectic operators have been 
throughly investigated in Refs. 3, 5, and 22. Their main use 
results from the following two fundamental properties: 

(i) Hereditary operators generate hierarchies of com
muting symmetries. 

(ii) Hereditary operators which are factorizable in terms 
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of symplectic/implectic operators generate conserved co
variants which are gradients and in involution. 
These two properties can also be used in connection with 
evolution equations of type (1). 

Theorem 2: Let ,p (u,x,t ) be a hereditary operator and 
Go(u,x,t) a function such that 

,p /[Go] + ,pGb - Gb,p = O. (42) 

Then: (i) All the flows Gn =,p nGo commute, i.e., 

[IGn,Gml] =0 V'n,mENu[OJ. (43) 

(ii) If,p admits a symplectic/implectic factorization, i.e., 
if,p can be written as <P = e J, where e and J form a compa
tible (see Ref. 6) pair of implectic and symplectic operators, 
then all Yn's defined by 

Yn:=JGn, nENuIOJ, (44) 

are gradients, if Yo is a gradient. Furthermore, all Yn 's are in 
involution w.r.t. the Poisson bracket 

(Yn,Ym J: = (Yn,8ym)' (45) 

Proof (i) An equivalent formulation for (42) is 

,p [I Go'/I] = [I Go,,p fl1, (46) 

flu) being an arbitrary function on S. We say that,p com
mutes with Go, if (46) is satisfied. From (40) we see that if a 
hereditary,p commutes with Go, then it also commutes with 
,pGo, ,p 2GO' etc. So we immediately have 

[IGn,Gml] = [1,pnGo,,pmGo]I =,pn+m[lGo,Gol] =0 
(47) 

for each n,m. 
(ii) We first consider an arbitrary function G (u) onS. Let 

Y = JG be a gradient. From r' = r'* and using the Jacobi 
identity for symplectic operators, we find 

«(J/[G] +JG/ + G'*J)a,b) = 0 (48) 

for all elements a and b in S. Hence JG is a gradient iff 

reG] +JG/ + G/*J = O. (49) 

If,p commutes with G, i.e., (42) holds, we calculate 

(J,p )'[G] + J,pG / + G /*J,p 

= (r[G] + JG / + G /*J),p = O. (50) 

So J,pG is another gradient, provided J,p is symplectic. What 
compatibility condition have J and,p to satisfy such that 
J, J,p, J,p 2 .... are symplectic operators? Let us assume that,p 
factorizes in the form ,p = e J with e implectic and J sym
plectic and invertible. We say that e and J are compatible, 6 if 
J - 1 + e is implectic, which is the same as saying that 
J -I _ Ae is implectic for allAER AssumingthatJ -I - A8 
is invertible for all A in a neighborhood of zero, we conclude 
that (J - 1 - Ae ) - 1 = J (1 - Ae J) - 1 is symplectic. As the 
symplectic operators form a vector space, we differentiate 
this operator w.r.t. A and find that 

(51) 

is symplectic for any nEN. So if we generate a hierarchy 
G n =,p nG 0 by means of a hereditary operator ,p = e J, 
which factorizes into a compatible pair of implectic and sym-
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plectic operators, then (50) tells us by induction thatJ,p nGo is 
closed for any n, if JGo is closed. 

The involutionary property of the set [Yn = JGn J fol
lows easily. Note that we have 

and 

Yn = J,p nGo = (,p *)nyo' 

so we find for n > m 

(Yn,8ym) = «(,p *)" - mym ,8ym) 

(52) 

(53) 

= (Ym,8Yn) = - (Yn,eYm) = O. (54) 

Example: Let us return to the c-KdV and consider the 
hierarchy of symmetries generated by Go: 

Gn(u): =,p n(u)Go(u), Go(u) = 2/t(ux - 1I2t). (55) 

Using J = e I~ 1 = tD - I, we obtain the following hierarchy 
of conserved covariants: 

Yo = 2~u - /tx 

YI = 2ji5(uxx + u2/2) - ~xu + /tx2/4 (56) 

Yn: = tD -IGn 

Note that Y -I: = 6/t is another conserved covariant 
belonging to this second hierarchy. It is easily verified that (j> 

and Go satisfy (42) and that Yo is a gradient function. One 
checks that (j> is hereditary (see also Sec. 4) and factorizable 
(,p = 8 2e I~ I) into a compatible pair of implectic and sym
plectic operators and hence we conclude: 

(i) All Gn 's commute. 
(ii) All Yn's are gradients and in involution w.r.t. the 

Poisson bracket 

(57) 

Remark 3: As 8 2 = e l,p *, we see that we can as well use 
the Poisson bracket 

I Yn,Ym J2: = (Yn,8 IYm) = I Yn,Ym - 1 J I' (58) 

4. THE CONNECTION TO INVERSE SCATTERING 

From the above discussion it is evident that the opera
tor (j> (u,x,t) plays a fundamental role for the investigation of 
the algebraic structure of an equation. On the other hand, 
the existence of an isospectral eigenvalue problem is essential 
for solving an equation via the 1ST. The connection between 
these two aspects are given in Refs. 23 and 24, where it is 
shown that knowledge of the eigenvalue problem yields al
gorithmically a strong symmetry for the whole hierarchy of 
equations solvable by this eigenvalue problem. Further
more, this strong symmetry is also hereditary. The extension 
of these results to equations of type (1) is straightforward. 

Proposition: Assume there is given an isospectral eigen
value problem for the evolution equation (1), i.e., we have an 
operator L (u,x,t ) depending on u and the space--and time-
coordinates, such that the spectrum of L remains invariant, 
when u evolves in time according to (1). Then the eigenvalues 
A, which depend on u, are conserved quantities for (1). By G A

we denote the gradient of the eigenvalues w.r.t. u, and we try 
to evaluate this gradient in terms of the eigenfunction Ij/ 
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given by 

£1[1 = Alfl. (59) 

If one can transform (59) into an eigenvalue equation satis
fied by G)., say 

.::1G). =!(A )G)., (60) 

where.::1 (u,x,t) is an operator acting on G). and! is a func
tion, then the operator.::1 * is a strong and hereditary symme
try for Eq. (1). 

Example: The isospectral eigenvalue problem associat
ed with the c-KdV equation is given by20 

(tD 2 - x/12 + ~tu)1fI = Alfl. (61) 

Taking the directional derivative of(61) and forming the sca
lar product with 1fI, it follows that 

G).: = grad A = t1fl2. (62) 

If IfI satisfies Eq. (61), one easily finds the equation satisfied 
by t1fl2, namely 

(tD 2 + jtu - ~tD -lux -!x + ~p -1)(tIfl2) = 4A (tIfl2). 
(63) 

Hence one directly obtains the hereditary symmetry of the c
KdV given by (32). 
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time-dependent Hamiltonian: An approach towards quantization 
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The quantization of a dynamical system with time-dependent constraints or time-dependent 
Hamiltonians presents particular difficulties not only from a technical, but also from a theoretical 
point of view. We give here an approach to the evolution of such a quantum system in terms of star 
products on symplectic or canonical manifolds. These star products are particular deformations 
of the usual product off unctions, deformations that start with the Poisson bracket. The 
introduction of the star products corresponds to a generalization of the W eyl-Wigner 
quantization on a flat phase space. This approach leads to the introduction of "two times" 
denoted t and 1', playing different roles; the time t plays the role of a geometrical time 
corresponding to the control, while the other, 1', which parametrizes the evolution, plays the role 
of a dynamical time. The classical as well as the quantum results point out the role played by the 
variable (t + 1'). This reflects the coherence of the formalism. 

PACS numbers: 03.65.Ca, 02.40. + m, 03.20. + i 

INTRODUCTION 

(1) In the attempt to understand more clearly the rela
tionship between classical and quantum mechanics, certain 
authors, 1,2 inspired by the Weyl-Wigner quantization, have 
viewed quantization as a deformation of the following two 
algebraic structures for functions (corresponding to classical 
observables) on phase space: 

-the associative algebra defined by the ordinary pro
duct of functions. 
-the Lie algebra defined by the Poisson bracket. 

In these attempts, the mechanical systems considered were 
autonomous, and, consequently, their Hamiltonians were 
time-independent. This enabled them to make a direct use of 
the full richness of the symplectic geometry. Indeed, if Fis 
the 2-form defining the symplectic structure and H is the 
Hamiltonian, the equations of motion of the system consid
ered read: i(X H)F = - dH. 

Here we aim to extend those attempts to nonautono
mous systems with time-dependent constraints and Hamil
tonians which are explicitly time-dependent. Evidently, 
such systems are not closed insofar as there are external in
fluences which alter the characteristics of the system. But 
here also we restrict ourselves to systems with a finite num
ber of degrees of freedom. In this case, the previous analysis 
is not directly applicable as our manifold, on which we define 
the motions and the Hamiltonian, has odd dimensions and 
hence cannot be a symplectic manifold. The notion of ca
nonical manifold corresponds to this situation. 

This problem of quantization has received relatively lit
tle systematic attention,3,4 although its study is necessary for 
an important number of physical problems, related for ex
ample to lasers or to the interactions with electromagnetic 
fields in general. Also certain natural problems lead to the 
study of time-dependent harmonic oscillators, both classical 
and quantum others result from time-dependent boundary 
conditions.5 

a1permanent address: Department of Mathematics, Kuwait University, 
Kuwait. 

In this work, we present a coherent approach to the 
evolution of quantum systems. Our approach is grounded on 
deformed products 1,6 (often called star products, Secs. 7 and 
8) since with them the correspondence between classical and 
quantum mechanics appears to be more precise and clear, 
and the interpretation of this approach in terms of the con
ventional quantum mechanics is relatively direct. 7 

We note that if the phase space of the system admits a 
nonvanishing second Betti number, there exist for the sys
tem several quantizations corresponding to convenient 
equivalence classes of star products. 2 Similar circumstances 
occur for a canonical manifold.8 

(2) Our approach is based on a doubling of the time 
variable. Thus one introduces "two times" denoted t and 1', 

playing different roles; the time t plays the role of geometri
cal time corresponding to the control of the system, while the 
other 1', which parametrizes the evolution plays the role of a 
dynamical time. The distinction between these two times is 
made in a natural way (see Sec. 6). Usual approximations can 
be considered as limiting cases of our approach correspond
ing respectively to big or small variations of t and 1'. The 
classical as well as the quantum results point out the role 
played by the variable (t + 1'). This shows, a posteriori, that 
the results can be interpreted in terms of one time, as desired. 

After setting up the appropriate geometric framework, 
we first study classical mechanics, and later, in terms of its 
deformation, we consider quantum mechanics, the deforma
tion parameter being v = fz!2i. The formalism developed in 
this work is susceptible to playa role in the analysis of var
ious open systems as, for example, in statistical mechanics. 

I. THE GEOMETRIC FRAMEWORK 

(3) The state space as canonical manifold: (a) The state 
space of a dynamical system with time-dependent con
straints and n degrees of freedom is given by a (2n + I)-di
mensional differentiable manifold Wadmitting an interest
ing geometric structure. The manifold Wis supposed always 
connected and paracompact. The classical time can be de-
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scribed by means of a C "" -map t: W -+R such that dt # O. We 
have thus a distinguished function tEN = N (W)I 
=C""(W;R). 

One of the authors has proved8 that Wadmits then a 
structure (A,t) of canonical manifold that is a structure of 
regular Poisson manifold8 of codimension I, such that its 
symplectic foliation is given by the global coordinate t. We 
see that A is a 2-tensor of rank 2n satisfying in the sense of the 
Schouten brackets9

•
10 

[A,A]=O (3.1) 

and 
[A,t 1 = o. (3.2) 

The canonical manifold (W ,A,t) admits the foliation 
t = const such that A defines each leaf.It as a symplectic 
hypersurface. The group of the canonical transformations of 
the dynamical system is nothing but the group of the auto
morphisms of the canonical structure. 8 

This canonical structure should be completed by a vec
tor field E such that 

i(E) dt = 1, 2"(E)A = 0, (3.3) 

where i(.) is the inner product and 2"(.) the Lie derivative. 
(W,A,t,E) is the geometric representation of the state space of 
the considered dynamical system. 

(b) Consider a 2n-dimensional symplectic manifold 
(M,F). Introduce the manifold W = M X R and denote by t 
the projection W-+R, by E the vector field a lat. The struc
ture 2-tensor of (M,F) defines on Wa 2-tensor A of rank 2n 
such that (W ,A,t) is a canonical manifold (called a product 
canonical manifold). We say that a dynamical system has 
time-independent constraints if its state space can be defined 
by a product canonical manifold (W,A,t,E). 

(c) In the general case, there are on Watlases of charts 
{xo} = {XO = t;Xh} (a,b, ... = Q,I, ... ,2n; h = 1, ... , 2n) such 
that E admits only as nonvanishing component EO = 1. In 
such a chart of domain U, we have according to (3.2): 

A Oh = O. 

More precisely, it follows from the study of the canonical 
manifolds8 that there are atlases of charts {xo} = {x°,xh} 
= {xo,xa,xa} (a = 1, ... , n; a = a + n) such that E and A 

admit only as nonvanishing components: 

EO = 1, A aa = - A aa = 1. (3.4) 

Such a chart is sayed to be a canonical chart for (W ,A,t,E). 
We obtain the usual notations of classical mechanics if we 
set 

(3.5) 

(d) Consider the 2(n + I)-manifold W = W XR and let 
1T: W-+Wbe the corresponding projection. Denote by 
Xo = Po the canonical coordinate of R and by Z the vector 
field a I axo = ao of W. The elements A and E of W define on 
Wa 2-tensor and a vector denoted by the same notations. 
Introduce on W the 2-tensor: 

(3.6) 

Take for Wacanonicalch~ {xa = Pa' XO = qO,x' = qa} of 
domain U. We obtain for Wa chart 
{~} = {Xi = Pi> X' = qi} = {XO,Xa,XO ,xa} (A,B, ... = 0; 
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0,1, ... 2n; i = O,a) of domain U = U XR such that A admits 
the non vanishing components: 

A 06 = _ A 60 = 1, A aa = _ A aa = 1. (3.7) 

The tensor A has the rank 2(n + 1) and satisfies 

[A,A] = O. 

Therefore, ( W,A ) is a 2(n + 1 )-dimensional symplectic mani
fold such that 1T.A = A. For the corresponding 2-form F, 
the introduced chart is a canonical chart and we have locally: 

FlU = dxo f\dxD + L dxa f\dxa = dpo1\ dqo + dPa f\dqa. 
a 

(3.8) 

Thus Pi is canonically conjugate to qi with respect to F; in 
particular Po is by definition, canonically conjugate to qO = t. 

(4) Integral curvesandflows: LetMbe a m-dimensional 
manifold and Z a vector field on M. An integral curve (or an 
orbit) of the vector field Z through xEM is a smooth curve 
satisfying 

dy(s) = Z (y(s)), y(O) = x, y(s) = Y 
ds 

(4.1) 

for all S8, where I is an open real interval centered at the 
origin. If {yo} (a = 1, ... , m) is a chart of M of domain U, we 
have on U 

!!...- (yO(y(s))) = ZO(y(s)). 
ds 

It is weIl known that the integral curves of Z define a flow!s 
so that, for s sufficiently smaIl, we have 

y =!s(x) =f(x;s) 

with, if s, s' are sufficiently small, 

f(f(x;s);s') = f(x;s + s'). 

(4.2) 

(4.3) 

Therefore, the formula (4.2) is often written under the form 

y = exp(sZ ).x. (4.4) 

Let Uo be a function, element of N (M). If we set 

it foIlows from the properties of the Lie derivative that Us 

satisfies at each point x: 

(4.5) 

and takes the initial value uoEN (M) at s = O. Therefore, the 
evolution in s of each function us, defined on M Xl, and 
solution of (4.5), is strictly connected with the flow of the 
integral curves of Z. 

II. CLASSICAL DYNAMICS 

(5) Orbits of the dynamical system: Let (W ,A,t,E) be the 
state space of the considered dynamical system and (W,A ) 
the symplectic manifold associated with the state space in 
the sense of subsection (3)(d). Here we consider essentially 
functions that are elements of N(W). Such a function 
uEN (W) admits in Wan inverse image 1T. u that we will also 
denote (abusing the notation) by u, as it is independent of Po. 

(a) Dynamics is determined on the state space by a func
tion HEN ( W), the classical (time-dependent) Hamiltonian of 
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the system. This Hamiltonian detennines on Wa vector 
field: 

YH = E + [A,H]. (5.1) 

We have proved by means of an invariant approach the fol
lowings: 

Proposition: The motions of the dynamical system are 
described, with respect to the state space (W ,A,t,E) and in 
function of the time t, by the integral curoes of Y H' 

Denote by! ' J the Poisson bracket of the state 
space and introduce a canonical chart {qO = t,qa,Pa} of do
main U of this space. For a motion cIt ), the proposition can be 
translated by 

dO 
...!L (c(t)) = 1 (5.2) 
dt 

and 

d a aH 
...!L (c(t)) = --?-tc(t)) = {H,~}(c(t)), 
dt aPa 

dpa (c(t)) = _ aH(c(t)) = {H,Pa}(c(t)) (5.3) 
dt aqa 

or 

dqa aH(t) dPa aH(t) - = ---, - ---, 
dt aPa dt aqa 

which are usual Hamilton's equations of motion. 
We note that we impose that, along the considered inte

gral curves of YH , the evolution parameter is precisely t. 
(b) Introduce the Poisson bracket { rofthe sym-

plectic manifold (W,A ). We remark that, according to the 
definition of A, we have 

(5.4) 

The Hamiltonian vector field of (W,A ) corresponding to 
(Po + H)EN(W): 

YH = [A,Po+H] (5.5) 

is such that 1T. YH = YH and admits the component 

y o = _ aH. 
at 

Therefore, the projection by 1T of the integral curves of Y H 

are the integral curves of Y H and Hamilton's equations can 
be completed by 

dpo = _ aH(t). (5.6) 
dt aqo 

(c) It can be easily verified that if uEN (W), its total deri
vative with respect to t, along the orbits of YH , is given by 

du au { } -=-+ H(t),u(t) . 
dt at 

(5.7) 

Inversely, (5.7) detennines the orbits, and thus it is equiva
lent to Hamilton's equations. 

If uEN (W), its total derivative with respect to t, along 
the orbits of Y H' is given by 

du f_ H -}--= lJ'o+ ,u . 
dt 

(5.8) 
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Ifu = u, (5.8) reduces to (5.7). Also, if we take u = Po + H, 
the relation (5.8) gives 

Po + H = const. 

Thus one can roughly say that, along the orbits, Po is equal to 
the negative of the energy up to an additive constant. 

(6) The change of time variable: (a) Suppose that we 
parametrize the integral curves of Y H by means of an arbi
trary parameter r. We obtain y(r) satisfying 

dy(t)/dr=YH(y(r)) [y(O)=x, y(t)=y], (6.1) 

and, in canonical coordinates, we see that 

~=l. 
dr 

(6.2) 

(6.1) is thus equivalent to Hamilton's equations. We have 
seen [subsection (4)] that the evolution in r of a one-param
eter family U r of elements of N (W), satisfying at the points x 
ofW 

dU r 
= .2"(YH )u r (6.3) 

dr . 

and taking the value uoEN ( W) at r = 0, is strictly connnected 
with the flow fr of the integral curves of Y H' For a sufficient
ly small r, we have 

with 

f(f(x;r)r') = f(x;r + r'). 

It follows from (6.2) that 

t(y) = t(x) + r. (6.4) 

Introduce a canonical chart {x6 = t,xa,xa} of the state 
space of domain U. On this domain we set x = {xa ,xa}. The 
flow fr can be described on U, with evident notations, in the 
following way, 

y = I(x,t (x);r) 

with (6.4), and we have, for suitable r,r', 

1(/(x,t (x);r), t (x) + r;r') = I(x,t (x);r + r'). 

(b) We adopt systematically in the following part a dif
ferent point of view to that of orbits, but similar to that intro
duced 1 in the case of a time-independent Hamiltonian on a 
phase space (M,F). In this vein, we consider only now the 
one-parameter family U r of elements ofN ( W) taking the value 
uoEN ( W) for r = ° and subject to satisfy the differential equa
tion (6.3), that is, 

dUr aUr { } --=--+ H'U r 
dr at 

(6.5) 

or 

dU r {p }---= o+H,ur • 
dr 

(6.6) 

The introduced functions, elements of N(W), depend upon 
xeW, where the global coordinate t appears. For Uo = t, we 
obtain as solution of (6.5) the function t + r, in agreement 
with (6.4). 

We see how, in this approach, one is led to the introduc
tion of two time variables having different roles (a role of 
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geometric coordinate and a role of evolution parameter) not
ed respectively t and 7. In this context, Eq. (6.5) can be con
sidered as the main intrinsic equation of classical dynamics. 

III. QUANTUM MECHANICS 

(7) Star products on a symplectic manifold: Let M be a 
differentiable manifold and N = N (M) the space of smooth 
functions on M. We denote by E (N;v) the space of formal 
power series in VEe with coefficients in N; let 

= 
u" = I vrUr (urEN). 

r=O 

(a) Consider a symplectic manifold (M,A ). A star-pro
duct on (M,A ) is a bilinear map N X N-+E (N;v) given by 

= 
u*v v = uv + I v'Cr(u,v) (u,vEN), (7.1) 

r= 1 

where the Cr are bilinear differential operators vanishing on 
the constants and satisfying the following conditions: 

(I)C1(u,v) = lu,uj = P(u,v) (the Poisson bracket onM); 
(2) the canonical extension of U*"U as a bilinear map 

from E (N;v) X E (N;v) into E (N;v) is associative; 
(3) Cr is symmetric if r is even and antisymmetric ifr is 

odd. We have according to the assumptions 

(7.2) 

The notion of star produce·2
•
6 has been introduced 

from the consideration of the deformations of an associative 
structure (here the usual product of functions) and from the 
connection of these deformations with quantization. 

Neroslavsky and Vlassov ll have proved that, on each 
symplectic manifold (M,A ) such that the third Betti number 
b3(M) of the manifold vanishes, there are star products. Le
comte and de Wilde12 have shown that each symplectic 
manifold that is a cotangent bundle admits star products. 

A star product defines by skew-symmetrization an al
ternatebilinearmapN XN-+E(N-,A ) (wheretl- = v) given by 

[u,u]. =(2V)-I(U*"U-u*"u) 

= 
= P(u,u) + I tl- rc2r + 1 (u,u). (7.3) 

r=l 

The canonical extension of [u,v]. as an alternate bilinear 
mapfromE(N-,A )XE(N-,A )intoE(N-,A ) defines on E (N-,A )a 
structure of Lie algebra. We say that the star product (7.1) 
generates by skew-symmetrization a deformation (7.2) of the 
Poisson Lie algebra. 

(b) Consider the cotangent bundle ofRn
, let 

Rn X Rn = R2n
, with its canonical symplectic structure de

fined by the 2-tensor A. Introduce the bidifferential opera
tors prof maximum order r for each argument, defined in 
the canonical chart {xh} of R2n by 

pr(u,v) = A h,k' .. ·A h,k'Jh, ... h,UJk, ... k,U. (7.4) 

We set pO(u,v) = uv, and we have P 1 = P. 
Given a formal functionf(z) with constant coefficients 

such thatf(O) = 1, substituteprtozrin theexpansionoff(vz); 
we obtain a bilinear map (u,v)EN XN-+u*"v = f(vP )(u,v) 
EE (N;v). We wish to choosefso that we define thus a star 
product. The answer is given by the following l

: 
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Proposition: For the fiat symplectic manifold (R 2n,A ) 
there is a unique formal function of the Poisson bracket that 
generates a star product: it is the exponential function. 

We have 

= v r 

U*"V = I -P'(u,v) = exp(vP)(u,v), 
r~ 0 r1 

(7.5) 

which generates the deformation of the Poisson Lie algebra 
(tl-=v) 

= tl- r 
[u,v]. = I p2r+ I(U,V) = v-1sinh(vP)(u,v). 

r~O (2r + I)! 
(7.6) 

It is remarkable that, for v = ftl2i, we deduce from (7.6) a 
bracket (2/ft)sin(ftP 12) given in 1949 by Moyal 13 in the con
text of the W eyl-Wigner quantization. The star product (7.5) 
is called the Moyal star product. 

(c) Recall that two star products, denoted by *" and *~, 
are said to be equivalent if there exists a linear map from N 
into E (N;v) given by 

00 

T" = IdN + I vrTr, 
r= 1 

where the Tr are differential operators, such that 

T,,(u*~v) = (T"u)*v(T"v) (\:ju,vEN). 

(7.7) 

(7.8) 

Introduce now the following notation: we denote by Q r 

a bidifferential operator of maximum order r in each argu
ment satisfying the assumptions 1 and 3 of a and such that its 
principal symbol coincides with the principal symbol of P r 

(which is independent of the chart). We take QO(u,v) = uv, 
Q 1 = P. Introduce the following: 

Definition: A Vey star product on (M,A ) is a star pro
duct of the form 

= v r 

U*"U = I -Qr(u,u). (7.9) 
r~O r! 

It is possible to prove6
: 

Proposition: On an arbitrary symplectic manifold, each 
star product is equivalent to a Vey star product. 

(8) Tangential star products on a regular Poisson mani
fold: (a) Let (W,A ) be a regular Poisson manifold of dimen
sion m and codimension q. A star product is defined on (W,A ) 
by 

00 

u*"u = I v'Cr(u,V) [u,vEN(W)], (8.1) 
r=O 

where Co(u,v) = uv and where the bidifferential operators Cr 
satisfy the same assumptions as in subsection (7)(a) for r> 1. 

Introduce on Wan atlas of charts {xa} = {xs,Xh} 
(s = 1, ... , q; h = q + 1, ... m) adapted toA and so to the folia
tion. We say that (8.1) is a tangential star product 14 if, for 
each domain U of an adapted chart, the local expressions of 
the Cr (r> 1) contain only the tangential derivatives Jh, ... h{ of 
the arguments. A tangential star product of (W,A ) induces a 
star product on each symplectic leaf of (W ,A ). 

All the considerations of subsection (7) are valid for the 
tangential star products on a regular Poisson manifold. Such 
a tangential star product is said to be a Vey tangential star 
product if it induces on the leafs Vey star products. It is 
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possible to prove14 that each tangentialstarproduct oft W,A ) 
is equivalent to a Vey tangential star product of (W,A ). 

One of us has proved under a general cohomology con
dition 14 the existence of tangential star products on (W,A ) by 
means of an adaptation of the argument of Neroslavsky and 
Vlassov. On the other hand, consider a manifold M admit
ting a foliation.7 of codimension q. The cotangent bundle 
T * .7 of the foliation admits a natural structure A of regular 
Poisson manifold of codimension q, the leafs of (T * ,.7 ,A ) 
being the cotangent bundles of the leafs of.7. The argument 
of Lecomte and de Wilde shows that (W = T *.7 ,A ) admits 
always tangential star products. 

(9) The/ormal equation o/quantum dynamics: Come 
back to our dynamical system and let (W ,A ,t ) be the canoni
cal manifold defined by the state space. In the following part, 
we introduce systematically on ( W,A ,t ) a given tangential star 
product, denoted by *v' invariant under E, that will induce 
the quantization. 

(a) Introduce the space N C = NC(W) = C "'(W,e) and 
denote by E (NC;v) the space of formal power series in VEe 
with coefficients in N C

• Consider a one-parameter family U T 

of elements of E(NC;v): 
00 

UT = L VUlr)T (Ulr)T ENC) (9.1) 
r=O 

satisfying the differential equation deduced from (6.5) by de
formation: 

(9.2) 

where the distinguished value of v suggested by the Moyal 
product v = fz/2i appears. 

According to (9.1), the differential equation (9.2) is equi
valent to the system: 

dU lslr 2i auls _ II 2i ~ 
--=~ a +~ L C2r'+I(H,Ulrlr ) 

dr Tt t Tl r + 21' = s - 1 

(r,r'>O; s = 0,1, ... ). (9.3) 

It is easy to deduce from (9.3) by induction on s the following: 
Proposition: There is a unique solution Uv of(9.2) taking 

a given value uoEE (NC;v) at r = O. 
In particular, for Uo = t, we obtain the solution 

t + (ilfz)2vr. 
(b) Suppose that our dynamical system admits time-in

dependent constraints [see subsection (3)(b)], the Hamilton
ian being time-independent. We have a symplectic manifold 
(M,F) of dimension 2n and the state space is given by the 
corresponding product canonical manifold so that 
W = M X Hand W = M X H2. The space H2 defined by the 
canonical coordinates I X O = Po, X O = qO = t 1 admits a ca
nonical symplectic structure, and we denote by *~I the corre
sponding Moyal star product. Suppose that (M,F) admits a 
Vey star product *~). We can deduce/rom *~) and *~) a Vey 
star product on the symplectic manifold (W,A ) in the follow
ing way: we set 

00 

ulll*~lvlll = L vrC~l)(ull),vll») [u(l),u(l lEN (H2)] 
r=O 

and 
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U(2)*~)VI2) = i vC ~2)( U l21 ,v(2») [u(2) ,v121EN (M)] . 
s=o 

If 

Cr = L C~I)C~2) (s,s'>O) (9.4) 
s+s'=r 

the Cr are bidifferential operators on N(W); we set 

u*v = i vCr(u,v) [ii,vEN(W)]. (9.5) 
r=O 

We can prove that (9.5) is associative. In fact, if 
ulll,vll),wIlIEN (H2), U2,V2,wI2IEN (M), it follows from (9.4), 
(9.5) that we have, with evident notations, 

(ulll.uI21)*v.(Vlll.vI21) = (UIII*~lvll»).(uI21*~lvI2»), 

and we deduce from the associativity of *~) and *~) that 

(( ull).UI2»)* v(vl I)·VI21))* v(wl I)·WI21) 

(9.6) 

A degenerated function udEN (W) is, by definition, a finite 
sum of product of functions that are images of elements of 
N (H2) and N 1M). It follows from (9.6) by linearity that we 
have for degenerated functions 

(Ud*vVd)*vWd = iiv*v(vd*vwd). (9.7) 

Choose a point x of Wand a domain U of a chart which 
contains x. We restrict all the elements to the manifold 
(U,A IU). The r-jet atx ofafunction iiEN (U) is a degenerated 
function. It follows from (9.7) that the associativity relation 
is satisfied at x for each r and for arbitrary functions 
ii,v,wEN (W). Therefore, (9.5) is associative and defines a star 
product. It is easy to see that * v is a Vey star product on the 
symplectic manifold (W,A ). Ifu,vEN = N(W), we set, by de
finition, 

We define thus on (W ,A ,t ) the tangential star product * v 

invariant under E. We adopt this star product on the state 
space. 

(c) For a dynamical system with time-independent con
straints, Eq. (9.2) can be written, with the notations of b, 
under the form 

dU T i 
--=-2v[po +H,ur ]. 
dr fz 

= ~{Po + H)*vur - ur*v(Po + H)}. (9.8) 
fz 

Introduce the iv-powers ulo)p of a function 
uEN(W)(uIO)p = iiIO)P-l*vU) and set 

Exp. (iis) = i s" ii(O)p (SEC). (9.9) 
p=op! 

If ii = u, the right member of (9.9) is independent of Po, and 
we denote the left member by Expo (us). It is easy to verify 
that the solution of(9.2) or (9.8), which takes the value Uo at 
r = 0, can be written under the following formal way: 

UT = Exp.((ilfz)(po + H)r)*vuo*v 

X Exp. ( - (ilfz)(po + H)r). (9.10) 

In particular, we verify by means of a derivation with respect 
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to Po that the right member is effectively independent of Po' 
(lO) The spectrum of an observable: Consider now the 

point of view of the mathematical analysis and give to v the 
value fz/2i. We denote by * the star product for this value. 

(a) We assume first that our dynamical system admits 
time-independent constraints and we use the notations on 
subsection (9Hb),(c). 

Suppose that uEN = N ( W) is such that we can define 
Exp* ((i/fz)us), for fixed t and s in a complex neighborhood of 
the origin as a distribution on M; t being always fixed, we 
obtain a spectral decomposition by means of a Fourier trans
form of Exp* ((i/fz)us) with respect to s in the sense of the 
distributions on M, exactly as in the purely time-indepen
dent case. 

Suppose for simplicity that we consider the case where, 
t being fixed, Exp* ((i/fz)us) has a unique Fourier-Dirichlet 
expansion on M with respect to s (purely discontinuous spec
trum): 

Exp* ((ilfz)us) = I eli/fil).sp). 
). 

(P). ENe; p). (t )~O for each t), (10.1) 

where the A depend upon t. This expansion is similar to the 
spectral expansion of an operator. The A define for each t the 
spectrum of u. We obtain by differentiation of (10.1) with 
respect to s: 

(fzli)d Exp. ((ilfz)us)/ds = I eli/fil).SAp). 

and, according to the definition of Exp. : 

(fzli)d Exp. ((i/fz)us)/ds = I e(i/fil).s(u*p).) 

It follows by uniqueness: 

u*P). =P).*U=Ap)., 

and we have ~p). = 1. 
(b) Come back to a dynamical system with time-depen

dent constraints. We have on the canonical manifold (W ,A,t ) 
the star product denoted by *. 

Suppose that 

(10.2) 

where the functions P). are such that P). (t )~O for each t and 
where the eigenvalues A depend only upon t and are such 
that, for two different eigenvalues, (A ' - A Ht) #0 for each t. 
We say that the A define for each t the spectrum of u; the P). 
define thus the (nonnormalized) states corresponding to the 
A. We deduce from (1.2): u = ~Ap).. 

For two eigenvalues A,A " we deduce from (10.2) 

p).*u*p).. = Ap).*p)., =A'p).*p).,. 

It follows that if A '#A, we have p). *P).' = O. Moreover, 

p). = (I p). , ) *P). = p). *P). . 

We see that p). is an eigenprojector corresponding to A. 
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Show that the spectrum and the p). , S are characterized in 
a unique way by the relations (10.2). In fact, consider another 
set (A ',pA') satisfying the same assumptions as the set (A,p).), 
such that 

We have: 

PA,*U*P). =A 'PA,*P). =APA,*P).· 

Foreachtsuch thatA '(t )#A (t), wehave(pA' *P). Ht) = 0, and 
so 

We see that the two spectrums coincide necessarily. More
over, the relations 

(IPA,)*P). =P)., PA *(Ip)..) =PA 

imply P A . *P). = P). = P A' and the eigenprojectors are equal. 
There follows immediately from the characterization of 

the spectrum by (10.2): 
Lemma: Substitute for the function uEN the function 

(u + k )EN, where k depends only upon t. The spectrum of 
(u + k ) can be deduced from the spectrum of u by the change 
A-A + k and the corresponding states remain unchanged. 

(c) A tangential star product on a regular Poisson mani
fold is said to be non degenerated if, for a function uEN e, the 
relation u*u = 0 (where u is the complex conjugate of u) 
implies u = O. It is well known that the Moyal product on R" 
and many other star products on a symplectic manifold or a 
Poisson manifold are nondegenerated. 

Suppose that our star product * on the canonical mani
fold (W ,A,t) is nondegenerated. If u,vENe, it follows from 
(7.2) that we have 

We deduce then from (10.2), where u is real-valued, by com
plex conjugation 

(10.3) 

!fA: #A, it follows from (10.2) and (10.3) that we have 
p). *P). = 0, which implies P). = 0, and we obtain a contra
diction. Therefore, A: = A and the spectrum of uEN is real. 
We deduce from the characterization of the set (A,p). ) by 
(10.2) thatp). *P). = P). = p). and we seethatthep).'s are real
valued. We have: 

Proposition: For a nongenerated star product, the spec
trum of all real-valued function is real and the corresponding 
eigenprojectors P). 's are real-valued. 

Let (~"F,) be the symplectic leaf of( W,A,t ) correspond
ing to the time t. Denote by 1], the symplectic volume ele
ment F71n! on ~,. For each A define N).(t) by the formula 

N). (t) = (21rli) -" r P). (t )1],. Jz, 
If N). (t ) is finite, a normalized state of the dynamical system 
is defined by 'IT). = P). IN). and we know that, in the usual 
cases, N). (t) is the multiplicity of the eigenvalue at the time t, 
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in the sense of the conventional quantum mechanics. I 
(d) In this context, the main equation 0/ quantum dy

namics [corresponding to (9.2)] can be written under the/orm 

dUr aUr aUr i ) --=--+ [H,ur ]. =--+-(H*ur - ur*H . 
dr at dt Ii 

(10.4) 

(J 1) The evolution o/the spectrum: Let ur be a solution 
of (10.4) taking the value Uo at r = O. If Ar is an eigenvalue 
corresponding to the eigenprojector Pr' we have 

(11.1) 

It follows from (11.1) by differentiation with respect to r 

dUr dPr dAr dPr 
--*Pr + Ur*-=--Pr +Ar -. (11.2) 
dr dr dr dr 

We deduce from (11.2) by the left product of 

dUr dpr dAr dpr 
P *--*P +A P *--=--P +A P *--. 

T dr r r r dr dr r T r dr 

We obtain 

dAr dUr 
dr Pr = Pr· dr ·PT· 

It follows similarly from (11.1) by differentiation with re
spect to t 

aAr aUr 
TtPT =PT*Tt*PT' 

We obtain by difference 

(
dAr aAr ) (dur aUT) ----- P =P * ----- .p 
dr at '1' r dr at T' 

(11.3) 

But we deduce from Eq. (10.4) that 

(
dur aUT) i 

P * ----- .p =-(p .H*u *P 
'1' dr at '1' Ii r '1' '1' 

let, according to (11.1), 

(
dur aur ) 

PT* ~-Tt *Pr =0. 

Therefore, dArl dr = aArl at, and there is a function A of tER 
such that 

Ar(t) =A (t + r). (11.4) 

We have: 
Theorem: The spectrum of U r is deduced from the spec

trum of Uo by A (t )_A (t + r). 
(J 2) The evolution 0/ the eigenprojectors: We search for 

the evolution of the eigenprojector Pr of Ur corresponding to 
A(t +r). 

(a) We deduce from (11.2) and (11.4) the following rela-
tions: 

dUr dPr dp 
--*Pr + Ur *-- = A 'It + rlor + A (t + r) _'1'_ 

dr dr dr 
and 

aUr apr ap 
--.p +U *-=A'(t+rlo +A(t+r)_r 

at r r at r at' 
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According to Eq. (10.4) of quantum dynamics, we obtain by 
difference 

(
dPT apr) 

U • -- - - + [H U ] *P 
r dt at ' r. T 

= A (t + r)( dpr _ apr). 
dr at 

(12.1) 

But we have 

ur*[H,pr]. + [H,ur].*Pr =A(t+r)[H,pr].· 

We are led to set: 

(12.2) 

The relation (12.1) and the similar right relation deduced 
from (11.1) reduce to: 

(12.3) 

where we have suppressed the argument (t + r) of A; <P;. is 
thus an eigenfunction of Ur corresponding to the considered 
eigenvalue. For a different eigenvalue l we have for the 
corresponding eigenprojector PJ., according to the argument 
of subsection (lO)(b): 

PJ. *<P;. = O. 

Since U r = l:AP;., we have 

dUr _ aUr = LA (dP;' _ ap;. ); 
dr at dt at 

let, according to (12.2), 

dUr aUr " 
---= [H,u r ]. + £,.,A<p;.. 
dr at 

It follows from (10.4) that 

and thus, according to (12.4), 

P;. * L A<p,i = AP;. *<P;. = O. 

We obtain 

Ur *<P;. = AP;. *<P;. = O. 

Therefore, we have, according to (12.3) 

A (t + r).<p;. = O. 

(b) Substitute to the function uoEN the function 

(12.4) 

(12.5) 

(uo + k )EN, wherek depends only upon t. Ifu r isthesolution 
of (10.4) taking the value Uo at r = 0, we are led to substitute 
to Ur the function (u r + k r), where kr(t) = k (t + r). It fol
lows from the lemma of subsection (lO)(b) and from the 
theorem of subsection (11) that the spectrum of (u r + k r ) is 
deduced from the spectrum of Uo by the change A (t ) 
-A (t + r) + k (t + r). The eigenstates corresponding to U r 

and (u r + k r ) being the same, <P;. given by (12.2) remains the 
same. We can choosek so that (A (t + r) + kit + r))~Ofora 
given (t + r). It follows then from (12.5) that <P;. vanishes 
necessarily. We have: 

Theorem: Each eigenstatepT of U r satisfies the dynami
cal equation 

A. Hamoui and A. Lichnerowicz 929 



                                                                                                                                    

dPr apr 
dr =Tt+ [H,pr]*' (12.6) 

that is, (10.4). 
(13) Invariants: Let fEN be a function satisfying the 

equation 

af 
- = [H,J]* = o. 
at 

(13.1) 

The functionfr = f is then a solution of (10.4) for each r. 
Such a function is said to be an invariant of considered quan
tum system. 

Let A (t) be an eigenvalue of the invariant! It follows 
from the theorem of subsection (11) that we have for each r 

A (t + r) = A (t). 

Therefore, all eigenvalue of/is necessarily constant. The 
corresponding eigenstate P satisfies, according to the 
theorem of subsection (12), the invariance equation 

ap + [H,p] = o. 
at * 

(13.2) 

We have: 
Corollary: The spectrum of each invariant of a quantum 

system is time-independent and each corresponding eigen
state satisfies Eq. (13.2). 

Lewis3 has disclosed interesting quantum invariants 
from the time-dependent harmonic oscillators. These invar
iants give a good information for the behavior of such oscilla
tors. 

Equation (13.2), that is, 

a . 
....1!...=~(H*p-p*H) (13.3) 
at fz 

appears as the extension, in this framework, of the quantum 
Von Neumann equation, for states described by invariantp's 
(see Ref. 7). The generalization of this equation is then Eq. 
(12.6). 

(14) Interpretationfor the dynamical systems with time
independent constraints: It is clear that if Ur 'Vr are solutions 
of (10.4), so is ur*vr . 

(a) We suppose now that our dynamical system admits 
time-independent constraints and a time-dependent Hamil
tonian. We use the notations of subsection (9)(b),(c). We note 
by f] the volume element of (M,F) defined by 

f] = (21rli) - n(Fn In!) (normalized Liouville measure). 

We assume that our star product on (W ,A,t ) is such that if, 
for each t, the intersection of the supports of u,vEN restricted 
to the corresponding leaf is always compact, we have 

L [u,v]* f] = o. (14.1) 

More generally, we assume that (14.1) holds for suitable 
asymptotic conditions on v on each leaf. It is the case for a 
star product on (W ,A ,t ) deduced from a Moyal product or 
from similar star products on (M,F). We have: 

Lemma: If (14.1) holds and if Ur,Vr,'" are solutions of 
Eq. (10.4), the quantities defined by 
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(u)"r = fM urf]< 00, (u,v)"r = fM (ur*vr)f] < 00'" (14.2) 

depend only upon (t + r). 
In fact, we have for example 

and 

a(u)"r = r aUr A 

at JM at 1/. 

It follows from (14.1) that 

d (u)"r a(u',r) 

dr 
=---, 

at 

and the lemma is proved. 
(b) The measured value ii of the observable uEN at time t 

for a state p described by an element of N is in this dynamical 
framework l 

ii(t) = L (u*p)f], (14.3) 

this formula being the extension of the classical Wigner for
mula (see Ref. 7) corresponding to the Moyal product. We 
note that, according to (14.1), we have 

r (u*p)f] = r (p*u)f] JIJ JM 

so that ii(t ) is real. 
If Ur and Pr are solutions of (10.4) [see (12.6)], the inte

gral 

ii(t,r) = L (ur*Pr)f] 

depends only upon (t + r), according to the lemma. In parti
cular, it is the case for an invariant statep satisfying (13.3): 
the measured value 

ii(t,r) = f)U r .p)f] 

depends only upon (t + r). 
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Eigenvalues of anharmonic oscillators from a variational functional method 
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Analytic expressions for the eigenvalues of anharmonic oscillators are obtained from a simple 
variational method. Numerical results show striking accuracy in the whole range of the 
characteristic anharmonic oscillator parameters. The procedure also allows one to classify the set 
of states in three classes and yields a way of defining clearly the anharmonic and harmonic 
regimes. 

PACS numbers: 03.65.Db, 03.65.Sq 

I. INTRODUCTION 

Recently, Rosen has shown 1 that eigenvalues associat
ed with a set of oscillators can be obtained in an approximate 
way by minimization of a given functional. The extreme val
ue of this functional satisfies both the virial theorem (VT) 
and the Hellmann-Feynman theorem (HFT). Rosen's re
sults for the one-dimensional case are wholly coincident 
with those deduced by Orland2 by means of a different meth
od. Moreover, Fernandez and Castr03 have demonstrated 
that Rosen's method is applicable to more complex prob
lems than those originally studied in Ref. 1. 

The purpose of the present paper is to show that the 
variational functional method (VFM) is markedly useful for 
treating one-dimensional anharmonic oscillators. The paper 
is organized as follows. In Sec. II the variational functional 
(VF) is constructed by employing the pertinent Heisenberg 
inequality. The procedure permits us to know the amend
ments that may be introduced within Rosen's original meth
od. In Secs. III and IV analytical expressions are derived for 
eigenvalues corresponding to the fourth- and sixth-order an
harmonic oscillator, respectively. In spite of their extreme 
simplicity, the resulting formulas are strikingly accurate 
through the whole range of characteristic parameters. In 
Sec. V it is shown that one of the parameters introduced in 
the VF allows us to define in a very precise manner the har
monic and anharmonic regimes. Finally, in Sec. VI results 
are discussed and several possible applications of the VFM 
are analyzed. 

II. THE METHOD 

The study of 2k-anharmonic oscillators 

H = HO + Ax2k, H O = !(p2 + x2); 

p = - i ~, k = 2, 3, ... 
dx 

(1 ) 

has received considerable attention lately, owing to their oc
currence in several different contexts in quantum theory. 2 

Here our purpose is to discuss this problem via the VFM, 
and the first step is to build an appropriate VF. A possible 
way is to apply the Heisenberg inequality 

(2) 

alTo whom correspondence should be addressed. 

where A is a constant depending on the quantum number n 
and the parameter A. Taking into account that 
(p) = (x) = 0, Eq. (2) permits us to write the energy for
mula 

E = (H) = €(q)==Aq-2 + !q2 + F(q), 

where 

q2 (x2) and F(q) = A (X2k ). 

(3) 

(4) 

We are using abbreviated notation, and it is important to 
remember that F(q) depends onA and n. If the VF (3) fulfills 
theVT 

(p2) = (x2) + 2kA (X2k ), (5) 

then the equality 

2 2A -2 J€ q - q =q-
Jq 

JF 
-q- = -2kF 

Jq 
(6) 

must be satisfied. Equation (6) is obeyed at once if q and Fare 
chosen as follows: 

J€ 
- (q = q*) = 0, E* = E(q*), 
Jq 

F(q) = ABq2k, 

(7) 

(8) 

with B depending on A and n. Moreover, if one assumes the 
forms (7) and (8), then the HFT 

JE = (X2k ) (9) 
JA 

allows us to relate the constants A and B through the relation 

JA 
JA 

(10) 

The latter equation follows from (9) and the fact that E * 
satisfies3 

J! * = ( ~: t (q = q*) %* + ( ;~ ) q (q = q*) 

= (!!...) (q = q*). (11) 
JA q 

The most immediate way to satisfy Eq. (10) is to choose A 
and B to be independent of A, and such a first approximation 
yields acceptable results.4 However, our aim is to go a step 
further, and it is first necessary to delineate the required 
modifications to the Rosen 1 and Orland2 methods. 

The semiclassical approximation 

(X2k )c::::::(x2)\ 
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invoked by both authors leads us immediately to B = 1, 
which means that a unique constant A remains in the VF. 
Orland2 adjusted properly the value of this constant with the 
aim that E * should reproduce the exact eigenvalue in the 
limit oflarge A values. Afterward, two ofus3 showed that if A 
is obtained from the limit .1-0, then E * presents a near 
correct dependence with n. This fact suggests that it is very 
convenient to adjust A from the correct result for .1-0 and B 
from the limit .1-00 .4 As stated previously, our present pur
pose is to consider the variation of A and B with A. However, 
this engenders the primary impasse of satisfying Eq. (10). 
The problem is simplified to a considerable extent when only 
B depends on A. In order to achieve this simplification, it is 
necessary to redefine (x2) and (X2k ) in terms of A, B, and q 
in a manner consistent with the virial theorem (5) and the 
HFT (9). If we assume that A does not depend on A, the 
functional built from Eqs. (3), (7), and (S), when being differ
entiated with regard to A, allows us to obtain from the HFT 
[Eqs. (9) and (11)] 

(12) 

Equation (12) makes up a new definition for (X2k ), instead of 
Eqs. (4) and (S). In a similar way, we can deduce an expres
sion for (X2) within the context of this actual formulation 
where only B depends on A. Considering that the VT (5) is 
satisfied by the VF 

(H) = (X2) + (k + 10 (X2k) = E * 
2k 2k 13 ) = q* + (k + 10Bq* , ( a 

we can combine Eqs. (12) and (13a), and the result is 

2 2 2k aB 
(X2) = q* - (k + 10 q* -. (13b) 

aA 

This new equation must replace Eq. (4). 
Since in this scheme A does not depend on A, its value 

may be calculated from the limit .1-0: 

E*(A = 0) = E(A = 0), 

so that 

A = !(n + !)2. (14) 

The dependence of B wi th A and n is discussed in the sections 
below. 

III. 4-ANHARMONIC OSCILLATORS 

According to our previous discussion, the eigenvalues 
E * are given by (13a), q* being the solution of the equation 

2 4 2k + 2 

(n +!) = q* + 2kABq* . (15) 

The quantities E *, B, and q* are expressible as a A power 
series for sufficiently small values of A: 

E*= i EjA
j
, B= i BjA

j
, q*= i q1A j

• 

;=0 ;=0 ;=0 
(16) 

The correction terms B j are deduced immediately when one 
substitutes (16) in (15). After some algebraic manipulations, 
we get 

(17a) 
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(l7b) 

In order to obtain good results from the VF procedures in 
the small regime, it is necessary that the coefficients E; coin
cide with the energy perturbative corrections. Then Eq. (17) 
determines the Bo and B I values, since Eo, E I , and E2 may be 
calculated from perturbation theory. 

A very interesting fact of this analysis is the coincidence 
of Bo and B I with the first two terms of the expansion of 
(X2k ) / (X2) k in the A power series. This fact reveals, in a 
transparent manner, that (i) the term A (aB faA ) introduces 
high-order corrections, (ii) the new definition of (X2k) and 
(X2)k [Eqs. (12) and (13b)] differs to a very small extent from 
the first one [Eqs. (4) and (S)] in the small A regime, i.e., B 
approaches (X2k ) / (X2) k up to the first-order in A. When 
k = 2, Eqs. (17) gives 

Bo = ~ (1 + (2n + 1)-2), (ISa) 

BI = A(2n + l)-3((2n + 1)4 - 31(2n + 1)2 + IS). (ISb) 

Considering only the first term in B, the VF takes the form 

€(q) = (n + !)2/2q2 + q2/2 + A (X2k )oqZk / (X2)~, (19) 

where ( ) 0 represents the average value calculated with an 
eigenstate ofH o. The change ofvariablea2 = (x2)oJq2trans
forms Eq. (19) in 

(20) 

This last expression coincides with the H expectation value 
calculated with the H 0 eigenfunctions scaled with the pa
rameter a. As a consequence, we can consider the scaling 
variational method5 as a particular case of the VFM when 
B = Bo. It is convenient to substitute (16) by series expan
sions inA - 2/(k + I) in order to study the large A value regime: 

'" E* =.1 I/(k+ I) I ejA - 2j/lk + II, (21a) 
i=O 

00 

B= I bjA -2j/lk+ll. (21b) 
i=O 

The replacement of (21) in (15) gives the following results for 
the first two coefficients: 

bo = (eoJ(k + l))k + 1(2k (n + !)-2)\ 

bl = (2keo(k + 1)-I(n + ~)-2)\ 

X (e l - (k + l)(n + !)2/(4keo)). 

(22a) 

(22b) 

Our next problem is circumscribed to determine the e; coef
ficients. This is the most troublesome aspect of the method 
because the eigenfunctions of the 2k-oscillators (i.e., 
H = ! pl + Ax2k ) are not known. 

We can use the WKB method for large enough n values: 

(23a) 

{ ( 1) ( 1 )-Z}Zk/(k+1 1 
cl =2Ik - 2 )1(k+l) (k+l)1Tr k r ""2k ' 

(23b) 

(23c) 
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It is necessary to introduce some modifications in the ei coef
ficients to obtain good results for the low-lying eigenvalues. 
For example,6.7 

eo = cd (n + ~) + dn/(n + !)J2kl(k + I) (24) 

allows one to obtain acceptable results, provided d n is 
known. For the 4-anharmonic oscillator, we obtain 

bo = (l6ci/27)(1 + 4dn /(2n + If)4, 

b l = (2bo)2/3W/3C2 - l/(2b bI3
)). 

(25a) 

(25b) 

In the case of small quantum numbers, coefficients c I and Cz 
can be deduced by means of a A - 2/(k + I) series expansion6 •7 

but in the large n regime we can directly apply Eqs. (23b), 
(23d), and d n = O. It is convenient to analyze the behavior of 
B = B (n, A) as a function in the variables n and A before con
tinuing with its asymptotic development. The exact B value 
for each A and n may be obtained from (15) whenever E * is 
replaced by the corresponding eigenvalue. The curves shown 
in Figs. 1-3 were plotted using the results presented in Ref. 
8. 

The different eigenstates associated with the 2k-oscilla
tors can be classified as three different types according to the 
shape of the curves B n (A ) vs log A. 

Type I: Bn (A) is a monotonic decreasing function 
(BI <0, bl >0). 

Type II: Bn (A) presents a minimum (BI <0, b l <0). 
These states may be considered as a transition class between 
types I and III, and they are grouped in two sUbtypes corre
sponding to Bo> bo (type IIA) and Bo < bo (type lIB). 

Type III: Bn (A) is a monotonic increasing function 
(BI >0, b l <0). 

The plots B n (A ) vs log A present an inflection point in all 
cases. Their significance will be discussed at length in Sec. V. 
Our results show that the states change from type I toward 
type III as n increases. For the 4-anharmonic oscillator, 
n = 0, n = I correspond to type I (Fig. I), n = 2 to type lIB 
(Fig. 2), and n > 2 to type III (Fig. 3). 

In what follows, we will try to find a simple form for the 
B n (A ) which makes allowance for the characteristics just dis
cussed. 

Bo(A) 

300~~--~~ 

2.96 

2.92 

2. 

2.824--L-~--!----L--!-------L-=~~=t::::;:::-
-5 -4 -3 -2 -1 0 41g(2~) 

FIG. I. Function Bn (Ao ) for the ground state (n = 0) of the quartic anhar
monic oscillator. The proposed analytical expression for Bn (Ao) (full line) is 
compared with the exact results (circles). 
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1. 

c.....;,. 5--;'4-~-3:---!'2:---:-1:---:0~--!---'2!:----!:--4~lg (2A) 

FIG. 2. Function Bn (Ao) for the n = 2 state of the 4-anharmonic oscillator. 
Full circles correspond to exact results. 

The following equation is a very satisfactory expres-
sion: 

Bn(A) = bo + (Bo - boH Cn(z)z + I J -213, Z = A (n + ~). 
(26) 

This last formula does not give aA - Zl3 power expansion, but 
it properly yields the first two terms and it is adequate for our 
actual purposes. Expanding Eq. (26) in a z series expansion 
and comparing the result with that formerly obtained, we 
deduce an expression for Cn (0): 

Cn (0) = ~(bo - Bo)-1(2n + 1)-4 

X((2n + 1)4 - 31(2n + I)Z + 18). (27) 

A similar treatment of the Z-2/3 expansion gives 

Cn(oo) = (2bo)-1 
X ((Bo - bo)(4l/3C2 - l/(2bo

I/3 ))-1)3/2. (28) 

Cn (z) can be approximated as 

Cn(z) = Cn(O) + (Cn(oo) - Cn(O))J(z), 

O<{(z).;;I, aJ >0 az 
between both limits. 

(29) 

The calculations show that C n (0) is greater than zero for 
every state except n = 2. This difference is consistent with 
the fact that the state n = 2 belongs to type II. Actually, the 
shape ofJ(z) is not very important because even though C (z) 
is chosen as a constant, the VF correctly reproduces the be-

1.54 

1.53 

152 

1.51 

-5 -4 -3 -2 -1 o 4Ig(2)-) 

FIG. 3. Function Bn (Ao ) for the n = 8 state of the 4-anharmonic oscillator. 
Full circles correspond to exact results. 
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havior of the eigenvalues. The only care that must be taken 
into account is that the introduction of/(z) does not change 
the form of the B power series expansions in both regimes. A 
very convenient form for I (z) is 

I(z) = (z/(l + z))2/3. (30) 

Nevertheless, for the n = 2 state of the 4-anharmonic oscilla
tor (type lIB state), the best results are obtained when 

I(z) = az/(l + az), a~35. (31) 

This function adjusts the minimum of Bn (A) better than Eq. 
(30). As a general rule, those states belonging to types I and 
III of any 2k-anharmonic oscillator can be approximated by 
way of the general function 

Bn (A) = bo + (Bo - boHzCn (z) + 1) - 2/(k + II, 

z = A (n + ~)k - I , 

and substituting in Eq. (29) 

I(z) = (z/(z + 1))2/(k + II. 

(32) 

(33) 

In the next section we will show that, in general, the B 
curves for type II states may be obtained as linear combina
tions of B curves for the adjacent states belonging to types I 
and III. This property illustrates the previous statement: 
States of type II make up a transition between states of type I 
and III. It is not necessary to apply the present procedure for 
then = 2 state because function (31) already yields very good 
results (see Fig. 2). 

Figures 1, 2, and 3 display the curves Bo(A ), B2(A ), and 
Bs(A ), respectively, which were obtained from Eq. (26). It can 
be seen that these curves fit the exact results (broken lines) 
very well. The foregoing discussion has made certain that in 
order to use the method for an anharmonic oscillator, it is 
necessary to previously find those states belonging to type II. 
In its turn, this may easily be done by studying the coeffi
cients (IS) and (22). For the last case, it is sufficient to employ 
the WKB results. 

We have employed eo(WKB) and edWKB) for those 
states with n;;;. 10, and the values eo, el , and d n from Refs. 6 
and 7 when n < 10 in our calculations performed for the 4-
anharmonic oscillator. In Table I we present the eigenval
ues, obtained to great accuracy by Banerjee et al., 8 together 
with our results and those given in Ref. 9. These last results 
were computed by means of an analytical expression which, 
the same as ours, employs adjustable parameters. Our results 
are better than those presented in Ref. 9 for almost the whole 
interval of A and n values. The largest error in our eigenval
ues is localized in the intermediate zone between the har
monic and anharmonic regime. In this zone, our formula 
makes certain just two decimal places, but it is far superior to 
that given in Ref. 9, where the numerical results are mani
festly poorer than ours. 

IV. 6-ANHARMONIC OSCILLATORS 

In this section, we consider the case k = 3 with the pur
pose of verifying the suitability of the VFM to treat any 2k
anharmonic oscillator. Since the procedure is closely related 
to that offered previously, here we restrict ourselves to a very 
succinct presentation. First, it may be seen at once that in 
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TABLE I. Eigenvalues of the 4-anharmonic oscillator. 

>z 10- 4 10" 

0 1.000 074 987a 1.39235 22.861 609 
1.000 074 900h 1.39203 22.861 608 
1.000 074 988c 1.3978 23.09 

3.000 374 90 4.64881 81.903317 
3.000 374 90 4.6486 81.903317 
3.000 374 91 4.670 82.57 

2 5.000 974 62 8.6550 160.68591 
5.000 97461 8.6544 160.68590 
5.000 974 6 8.663 160.81 

5 11.004 571 36 23.2974 457.66457 
11.004 571 35 23.297 1 457.664 59 
11.004 571 40 23.2998 457.677 

10 21.01655025 53.4491 1082.88852 
21.01655026 53.4484 1082.88859 
21.016550 53.450 1082.891 

100 202.494080 1035.544 18 21997.240 27 
202.494076 1035.539 21 997.163 1 
202.494 10 1035.544 21 997.240 49 

1000 2134.2425 21932.78371 471075.92838 
2134.247 21932.781 471075.916 
2134.252 21932.78386 471075.92846 

a Exact results from Ref. 8. 
h Present calculation: 2E •. 
C Results from Ref. 9. 

this case, the minimum condition (15) admits an exact solu
tion 

q4 = ((1 + 1UAB )1/2 - W(6AB). (34) 

Then we obtain the explicit energy formula 

E* 
((1 + 1UAB )1/2 - ~)1/2(1 + 2((1 + 1UAB )1/2 - W3) 

(6AB )1/2 
(35) 

which simplifies the calculation procedure to a great extent. 
The analysis of coefficients (17) and (22) for k = 3 makes 
certain that the states admit a classification according to the 
three types formerly introduced: n < 2, type I; n = 2, type 
IIA; n = 3, type lIB; and n > 3, type III. 

From the power series expansion for E, 

E=.(n + ~) + A (¥(n + ~) + ~(n + ~)3) 
- ~ A 2(4jp(n + ~) + WIn + ~)3 + ~(n + ~)5), (36) 

we deduce Bo and B I • 

Bo = ~(1 + 5(2n + 1)-2), (37a) 

BI = (n + ~)-3m(n + !)5 - ~(n + !)3 - W(n + m. 
(37b) 

Besides, the expansion of E in the A - 112 power series permits 
us to obtain bo and b l from Eq. (22): 

bo = i{~cI)4(1 + 4dn (2n + 1)-2)6, 

i(~CI)4 = 2.775 713· . " 

bl = (6bo)3/4(C2 - ~(6bo)-1/4). 

(3Sa) 

(3Sb) 

The value of the C2 coefficient for every state may be obtained 
from Ref. 7. For n > 5 we use Eq. (22) and the WKB results 
(23). In a similar fashion as in the preceding example, let us 
write 
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write 

Bn (A) = bo + (Bo - boHzCn (z) + I)-liZ, 

z =,1, (n + !)z, n:;;f2, 3. (39) 

This expression is valid for all the states belonging to types I 
and III. Type II states will be discussed later. 

A straightforward calculation gives 

Cn (0) = 2m - 2nn + !)-Z - Wl(n + !)-4) 

X(bo-Bo)-I, (40a) 

Cn (00) = j b 0- I ((Bo - boH2cz(6bo)1/4 _ 1)-1)2. (40b) 
Furthermore, according to Egs. (29) and (33), we know that 

Cn(z)=Cn(O)+J(z)(Cn(oo)-Cn(O)), n:;;f2,3, (41a) 

where 

J(z) = (zl(l + Z))1I2. (41b) 

For type II states, we write B as follows: 

Bn(A) =gnIBI(oo) +gn2B'(I, A) 

+ gn3B4( 00) + gn4B '(4, A), n = 2, 3, (42a) 

where 

B'(4,A)=(B4(0)-B4(00))(C~(Z4)z4+ 1)-1/2, (42b) 

Zj = A (i + ~)2, (42c) 

C ~ (z) = C4(0) + (gC4 ( 00) - C4(0))J(z), (42d) 

B ; (1, A ) = (BI(O) - B (00 ))(CI(ZI)z1 + 1)-112, (42e) 

CI(ZI) = CI(O) + (CI( 00) - CI(O))J(ztl· (42f) 

The coefficients g nj and g are adjusted in such a way that 
Bn (A) correctly reproduces the first two terms in the B ex
pansion as a Z and z- 1/2 power series. After some algebraic 
manipulations we obtain 

g = 0.548 943 017 5, gZI = 1, 

gn = 1.519 682 804, g23 = - 0.125 092 432, 

g24 = 5.028 711 824. (43) 

The function B2(A ) obtained in this manner presents a mini
mum excessively deep, but this fact does not influence, to a 
large extent, the results (Fig. 4). This property shows clearly 
that the fitting of B is not decisive in the obtainment of accep
table results. In fact, in previous works it was possible to 
reproduce perfectly the behavior of the eigenvalues by intro
ducingjust one l

-
3 or tw04 adjustable parameters within the 

VF (i.e., A and B were considered independent onA ). In very 
general terms, we can state that the main dependence of the 
VF on A and n is assured by the VT and the HFT. The 
consideration of a variable B only introduces high-order cor
rections. The eigenvalues of the 6-anharmonic oscillator, 
calculated via the VFM, are displayed in Table II together 
with the exact results8 and those reported by Mathews et a/. 9 

The conclusion, derivable from these results, is similar to 
those presented previously in Sec. III, with reference to Ta
ble I. However, we deem it appropriate to point out that our 
results are less accurate than those obtained previously. This 
is due to the fact that the larger k is, the less is the range of 
validity of the polynomials (16) and (21). This property nota
bly influences the treatment of those states belonging to type 
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2.95 

2. 

-5 -4 -3 -2 -1 0 5 Ig (n) 

FIG. 4. Type IIA state for the 6-anharmonic oscillator. Approximate ana
lytic expression for B2(A ) (full line) is compared with exact results (dots). 

II, especially when these polynomials are not valid around 
the minimum. 

v. DEFINITION OF HARMONIC AND ANHARMONIC 
REGIMES FROM THE B FUNCTION 

Undoubtedly, an appropriate definition of the harmon
ic and anharmonic regimes for the 2k-anharmonic oscillator 
models possesses by itself great theoretical interest. Owing to 
this fact, the problem has received considerable attention 
from various authors.6-8.10-Iz Hioeetal. 6

•
7

•10 defined the har
monic regime as that range of A-values for which the energy 
levels differ from the harmonic ones by less than 10%, and 
the 2k regime as that range of A-values for which energy 
levels differ from the 2k ones by less than 10%. Besides, they 
have shown that it is more convenient to employ z as a pa-

TABLE II. Eigenvalues of the 6-anharmonic oscillator. 

>z 10-' la' 

a 1.000 187228" 1.43562462 11.47879804 
1.000 187 228b 1.4334 11.4764 
1.000 187 34< 1.481 12.18 

3.00130884 5.03339594 43.457 784 74 
3.00130884 5.0322 43.45780 
3.001310 5.15 44.98 

2 5.004664 71 9.966622 90.821 278 91 
5.004 664 65 9.9573 90.821245 
5.004 668 0 10.04 91.56 

10 21.277 841 68 78.958 068 58 771.456964 19 
21.277 829 78.9558 771.451 6 
21.2781 78.963 771.474 

100 283.323 081 57 2 287.793 566 22 821.749 929 
283.368 2287.7954 22821.777 
283.340 2287.79374 22821.7500 

1000 7346.838 298 7 71700.060 494 716823.285 169 
7346.36 71696.3 716789.6 
7346.850 71 700.060 51 716823.285171 

"Exact results from Ref. 8. 
b Present calculations: 2E •. The parameters used in n = 1000 were obtained 

from the limit n-+ 00 • 

< Results from Ref. 9. 
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rameter instead of A. Here we will refer to the 2k regime 
simply as anharmonic regime. On the other hand, Kesar
wani and Varshnill •

12 proposed the function 

O<a = A 2/3/(1 + A 2/3) < 1 (44) 

as a measure of the anharmonicity degree of the 4-anhar
monic oscillator, setting upA = 1 as an intermediate regime. 
But as n increases, the same happens with the quotient 
(X2k )/(x2 ), and the harmonic regime is shifted towards 
smaller A values. This behavior is a plain confirmation that 
the suitable variable is z and not A. Obviously, the function 
(44) will not be acceptable, unless it is writen in terms of z. 

Our aim in this section is to propose a new definition of 
the different regimes, basing such a definition on the proper
ties of the function B n (A ). This quantity is approximately a 
function dependent on z and takes finite values in both limits 
(A-<l and A---+ 00 ). In a broad sense,Bn (A) behaves as (44) if A 
is replaced by z. The comparison of the plots 7 E vs In A with 
B vs In A (Figs. 1-4) shows clearly that the latter define the 
three regions (harmonic, intermediate, and anharmonic re
gimes) with greater neatness than the former. The B curves 
possess an inflection point in z* = A * (n + ~)k - I given by 

* aB ( *) _ *2 a
2
B ( *) (45) z-z--z--z. az ar 

Substituting (32) in (45) we obtain, in an approximate fa
shion, the relationship 

z* = const. (46) 

Ifwe use this equation to define the transition among differ
ent regimes, we can appreciate that the harmonic regime is 
shifted towards small A values as nand k increase. In Fig. 5 
we display the limits of both regimes according to the defini
tion of Hioe et aC and our inflection points for the 4-anhar
monic oscillator. Our results approximately satisfy the rela
tion z* = 0.864. This result is in line with the conclusions of 
Banerjee et al.8 about the changes of regime, which were 
deduced from scaling considerations. 

In closing this section, we consider it appropriate to 
point out that it is not mandatory to resort to Eq. (45) to 

lD 

-3 -2 -1 o Ig (Al 

FIG. 5. Quadratic regime (I), boundary layer (II) and quartic regime (III) 
defined as in Ref. 7 by means of the curves A and C. Present inflection point 
calculations lay on curve B. 
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obtain A *, because the relationship 

Bn (A *) = !(Bo + bo) (47) 

is fulfilled approximately. For type II like states with a very 
deep minimum, limits of the regimes may be very doubtful, 
but in the remaining states, they are neatly defined and can 
be seen without any difficulty. 

VI. FURTHER COMMENTS AND CONCLUSIONS 

The results presented in the preceding sections show 
clearly that the VFM is very useful to build analytical ex
pressions associated with the eigenvalues of 2k-anharmonic 
oscillators. The VFM by itself is not sufficient to obtain such 
eigenvalues, but we have seen that the method takes profita
ble advantage and efficiently uses the information regarding 
those systems. As a general rule, we can state that the VFM 
is a powerful tool to treat those quantum-mechanical sys
tems that possess two extreme regimes. Whenever the infor
mation about these limits is properly introduced in the VF, it 
enables us to relate them in a correct way. 

In the examples discussed in the present work, we have 
adjusted the parameters of the VF by means of the perturba
tion theory (small A regime) and the WKB approximation 
(large A regime). The eigenvalues obtained in this manner 
yield an acceptable result, even in the intermediate zone 
about which we have no information. 

Time and again, theoretical physics must study quan
tum-mechanical models about which the eigenvalues and 
eigenfunctions are known for two extreme values of a certain 
parameter, but ignores the functional dependence of such 
eigenvalues on that parameter, which in tum prevents the 
relating of both results. The VFM would be of great help in 
these cases. A very interesting and illuminating example is a 
Rydberg atom in the presence of a magnetic field. 13 We have 
obtained very good results and they will be published else
where in a forthcoming paper. The fitting of the functions 
B n (A ) deserves, by itself, a brief comment. The functions pro
posed previously in Secs. III and IV are not essential to apply 
the method, and probably, there are simple enough relation
ships that could afford better results than the present ones. 
The point, significantly important, rests upon the fact that B 
is determined from power series expansions in both regimes. 
Besides, it is clear that it is much more convenient to ap
proximateBand then toobtainE than toapproachE direct
ly. There are two principal reasons to support this assertion. 

Firstly, B remains bounded in the whole range of (A, n) 
values, which obviously does not occur with E. It allows us 
to adjust the B plots without any extra difficulty by means of 
two points [N IN] Pade approximants. 14 

Second, it is worthwhile to note that the error intro
duced in the approximation of B is modulated and markedly 
reduced by the extremum condition imposed on the VF (that 
is to say, by the VT and HFT). For example, the function 
proposed in Sec. IV for B 2(A ) gives too deep a minimum. 
However, results obtained for E are satisfactory and rather 
good. 

Finally, we deem it appropriate to point out that the 
VFM may be applied without further difficulties to more 
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complex problems than those just presented here. Recently, 
we have analyzed,4 with particular success, several central 
field problems, bounded systems, and the hydrogen atom in 
a magnetic field. In all cases, we have used a constant value 
for B, so that the treatment presented in this paper may be 
considered as an improvement of previous methods. 
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Scalar and vector harmonic functions on the surface of a four-dimensional sphere are discussed. 
These functions are of use for numerical calculations in a hyperspherical formulation of quantum 
gauge field models. Formulas are derived for derivatives and integrals involving these functions. 
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I. INTRODUCTION 

In a recent paper,) a new Hamiltonian method was in
troduced for numerical calculations involving quantum 
gauge field models. The spatial domain was taken to be the 
surface of a four-dimensional hypersphere; this hyperspheri
cal formalism has several convenient features, in particular, 
numerical calculations have manifest rotational invariance 
in all degrees of approximation. Also, group-theoretical 
methods involving the 0(4) symmetry group can be used to 
classify states and evaluate matrix elements. A Lagrangian 
formulation on the surface of a five-dimensional hyper
sphere, given by Adler,2 has many similar features. Al
though the properties of 0(4) are widely known, and al
though many useful results exist in the literature,3-5 most of 
the specific formulas needed for numerical calculations have 
not been available. In the present work, scalar and vector 
harmonics are constructed explicitly, and derivative formu
las and integrals involving products of three of these func
tions are considered. Such integrals can be written as a pro
duct of two 3-j symbols and a reduced matrix element. 
Expressions for these reduced matrix elements are derived. 

1.1. Notation 

Let r = (x, y, z, w) denote a point on the hypersphere, 
which is taken to have a unit radius. If the hypersphere is 
parametrized in the usual way by polar angles, the scalar 
harmonic functions can be expressed in terms of the familiar 
Gegenbauer polynomials. For the present calculations, how
ever, it is more convenient to use the following parametriza
tion3.4 •6 : 

s = x + iy = cos Oeia
, 

; = z + iw = sin Oei/3. 

The volume element, in terms of these variables, is 

dfl = da d{3 sin 0 cos 0 dO. 

(1 ) 

(2) 

Let M ij = - ~i denote the 0(4) rotation operators, and let 

J i = Eijk~k = Lli + L2i' 

Ki = Mi4 - M4i = Lli - L2i' 

where L) and ~ are the generators of an SU (2) X SU (2) 
algebra. The lowering operators are 

(3) 

L
1

_ = E:*~_r*~, 
~ a; ~ as 

(4) 

L2 - = s * a: * -; ~ . 
The L,D are diagonalized, and their eigenvalues mi can be 
obtained from the expressions 

Jo = -i~, Ko= -i~. (5) 
aa a{3 

It is useful to define a parity operation P as follows: 

(x,y,z,w)-( - x, - y, - z,w), 

s--s, ;--;*, 
which interchanges L) and L2. 

(6) 

A four-dimensional notation will be used generally, 
that is, vectors will be four-vectors, except that the angular 
momentum operators defined in Eq. (3) will continue to be 
three-dimensional. Vectors which refer to physical quanti
ties must be tangent to the hypersphere, and have only three 
independent components. Thus, the operator V takes the 
form 

(7) 

The operator V2 is equal to the angular part of the ordinary 
four-dimensional Laplacian. The vector product is given by 

(BXC)a = EabcdrdBbCc' (8) 

The curl of a vector C is obtained by substituting V for B in 
(8), and can also be written as 

(9) 

For calculations involving vectors, it is sometimes useful to 
introduce an auxiliary unit vector i', which is contracted 
with the vector. Primed versions of the variables defined in 
Eqs. (1 H 3) will also be used; the tensor M ij, which acts on r', 
can be interpreted as a spin operator. The component substi
tution in Eq. (9) can be identified with M'. The permutation 
symbol converts this into the dual tensor M', giving 

(10) 

1.2. Scalar and vector harmonic functions 

Scalar harmonic functions correspond to the traceless, 
symmetric tensors of rank s formed from r, and to the repre-
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sentation (sI2,s12) of SU (2) X SU (2). The normalized func
tion with the maximal values of mj is S:12·S/2 = Cst - 5 )S, 
where, using (2), C; = (s + 1)l2~. The dimensionality of 
this representation is (s + 1)2, and the value of the Laplacian 
is - sis + 2). By application of the lowering operators (4), 
the general scalar function is found to be 

S~12 - a.s/2 - b = C
s 

[al(s - a)!b l(s _ b)!] 1/2 

(S*)k;b-k(;*t-k( _ s)'+k-a-b XL ' 
k k l(s + k - a - b )l(a - k )l(b - k )1 

(11) 
where the sum extends over all values giving nonnegative 
exponents. If either m or n is at the end of its range, there is 
only one term. These functions satisfy the following symme
tries: 

(12) 
PS~V = ( - I)'S;'". 

The scalar functions (11) have been obtained before in this 
coordinate system,4.6 and are related to the representation 
matrices for SU (2). 

The vector harmonic functions correspond to the ten
sors which are symmetric in v indices and have been anti
symmetrized in one more, and which are linear in r' and of 
degree v in r. There are 2v(v + 2) such functions. The vector 
components are the coefficients of the components of r'. The 
same notation will be used here to refer either to the function 
orr' or to the vector. As pointed out in Ref. 1, ;'V and V·V 
have antisymmetry, but depend only on r and must therefore 
vanish. To obtain these functions, components of the (vI2,vl 
2) representation (involving r) are combined with compo
nents of the (1/2,1/2) representation (involving r') by using 
the vector-addition coefficients for addition of vl2 and 1/2 
to give a total L = (v ± 1 )/2. This gives, for the components 
of the representation ((v + 1)12, (v - 1)/2) which have the 
highest values ofml' 

V~: 11/2,lv-I)/2-b 

=D[ (v-I)! ]1/2 
v b !(v - 1 - b )1 

X;b( - S)"-b-I[( - 5);' -;( - 5')], (13) 

where D ~ = vl(4~). The functions in which m2 is maximal 
are 

vlv + 1)12 - a,lv - 1)/2 
v+ 

Dv [ (v+l)! ]112 
= v(v + 1) a!(v + 1 - all 

x{(v+ l_a)(;*)a-I( _s)v-a-I[v;';*( -5) 

- (v - a)( - 5 ');; * - a; '*; ( - 5 ) 1 
+ at; *t - 2( - 5)"- Q[vs '*; *( - 5) 

- (v - a + 1)( - 5')5*;* - (a - 1);'*5*( -s)]). 
(14) 

The general vector functions are more complicated than (11), 
but are not needed here. They satisfy the Hermiticity condi
tion 

(15) 
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which can be used to determine the functions with minimal 
values off-l or v from Eqs. (13), (14). The other components of 
this 0(4) tensor representation, the functions Vv _ in the 
representation ((v - 1)/2, (v + 1)/2), are obtained by appli
cation of the parity operation ofEq. (6): 

PV~: = ( - 1)"+ IV~':. . (16) 
The curl of the vector function is given by Eq. (10): 

curl V~~ = + (v + I)V~~ . (17) 

1.3. Free massive scalar and vector fields 
The usual relativistic spectra are altered by use of the 

hyperspherical domain. To see what kinds of effects occur, 
consider some free fields of mass f-l. Expansion of a scalar 
field in terms of the scalar functions S is straightforward. 
The following energies are obtained: 

E=(,u2+k2(S))1I2, (18) 

where k 2(S) = sis + 2). The quantity k can be interpreted as 
the momentum. It takes on discrete values, and the direction 
is also quantized, corresponding to the (s + 1 f independent 
functions Ss . 

The massive spin-l field has a number of complications, 
which help to illustrate some additional features of the hy
perspherical formalism. The flat-space Hamiltonian is 7.8 

H=+J dV[II2+ (V~~)2 +(VXA)2+f-l2A2]. (19) 

The transverse and longitudinal fields must be separated, 

II = IIt - (V2)-IV'/I, A = At + VcfJ, (20) 

where the subscript t means the divergence vanishes. On the 
hypersphere, these fields are expanded in the orthonormal 
harmonic functions 

At=2qvnV~, cfJ=2Qsm S ';' 
(21) 

II t =2Pvn V~, '/I=2PsmS';', 

A condensed notation has been used, as in Ref. 1. Then, 
using the expression for the curl given by (17) as well as the 
value of the Laplacian, 

H = ~Kn {PZn + [(K + If + f-l2]qZn} 

+ ~Km{PZm [k -2 +f-l- 2
] + k 2f-l2Q;m}, (22) 

where K denotes the generic 0(4) quantum number, and 
k 2 = K(K + 2). The energies ofthe transverse and longitudi
nal modes are slightly different 

E= [,u2 + k 2 + h 2J112, (23) 

where h is the helicity and has the values 0, ± 1. The value 
K = 0 is allowed only for h = O. 

In these examples, the rotational invariance of the hy
perspherical formalism has preserved the degeneracy asso
ciated with different momentum directions. There is, how
ever, a helicity-dependent contribution to the effective mass 
arising from the curvature of the space. 

2. EVALUATION OF INTEGRALS 

A scalar integral containing a product of three harmon
ic functions can be written as a product of two 3-j symbols 
and a reduced matrix element. Similar integrals, involving 
the group 0(3) and the surface of a three-dimensional sphere, 
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are encountered in some atomic and nuclear calculations. In 
the 0(3) problem, the reduced matrix element is calculated 
by exploiting a relation between the harmonic functions and 
the rotation matrix elements. The calculations described 
here use a different trick, which is based on the direct-pro
duct nature of the group and the fact that the functions have 
relatively simple expressions if either of the m i values is at 
the end of its range. For one of the three functions, both m i 

values are chosen to be maximal; for each of the other two, a 
different one of the two m i values is chosen to be minimal. 
Except in one case, the more complicated expression (14) can 
also be avoided. The reduced matrix elements are then ob
tained by dividing by the 3-j symbols for these special cases. 
In fact, the combinations of quantum numbers which sim
plify the matrix elements are the same ones for which the 
summation formula for the 3-j symbols reduces to a single 
term9 

(-: ~ :-/3) 
= ( _ l)Y - a -,8 [ (2a)!(2/3 )! ] 112. (24) 

(a + /3 - y)!(a + /3 + y + I)! 
It is therefore possible to express each of the reduced matrix 
elements by a relatively simple algebraic formula. 

Four types of integrals are considered. The simplest in
tegral, with three scalar functionsSIS2S3, does not occur in a 
pure gauge model but would be required in a model with 
scalar fields. Integrals involving the functions S 'V·VS arise 
in the calculation of the longitudinal propagator and the 
Faddeev-Popov determinant, in the Coulomb gauge. I The 
integral ofV'·SV arises in calculation of the color-charge 
density. The integral of V I"!V 2 X V 3) arises from the cubic 
self-coupling term in the magnetic energy. 

In the magnetic energy, there is also a quartic self-cou
pling term, which involves the combination 
(V I X V 2HV 3 X V 4)' It is shown in Sec. 2.5 that the integral of 
this quantity is given by an expansion, in which each term 
can be related to integrals of the third and fourth types de
scribed above. 

2.1.SSS 

The integral to be evaluated is 

11 = f dfl S~pst;s~r 

=RI(X'Y,z)(~ ~ ~X~ ~ ~r)' (25) 
abc p q 

where R I is the reduced matrix element. For a nonzero inte
gral, the mi values satisfy a + b + c = P + q + r = 0, and 
x/2, Y 12, z/2 satisfy the triangular condition. The integrand 
is a polynomial of degree 20-, where 0- = (x + y + z)/2, and 
the integral vanishes unless 0- is an integer. The 3-j symbols 
also vanish unless 0- is an integer. If the mi are chosen to be 
b = q = y/2, a = - x/2, and r = - z/2, with c andp deter
mined from the constraint, each of the factors in II has just 
one term. The following integral is encountered: 

f dfl It 2IYI;21"-Y = 2n2y!(0- - y)!/(o- + I)!. (26) 
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Combining coefficients from Eq. (11), and using Eq. (24) for 
the 3-j symbols, we obtain 

R ( ) _ ( - 1)" [ (x + 1)(y + 1 )(z + 1)] 112 
I x,y,z - --- . 

1T 2 

2.2.SVS 

The next integral is 

I = f dfl sapvbq ·vscr 2 x y+ z 

(

X y+ 1 
= R 2(x,y,z) 2 2 

a b 
~x~ 
c p 

y-I 

2 
q 

(27) 

D 
(28) 

The triangle constraint in this case gives Ix - zl <y <x + z. 
The integrand in (28) is a polynomial of degree 2(0- - 1), 
where 0- = (x + y + z + 1)12 must again be an integer. The 
m i values are chosen to be b = (y + 1 )12, q = (y - 1 )/2, with 
a and r as before. For V·V, we make the following replace
mentsin Eq. (I3):;'-i) la; * andt'-i) lat *. There is again 
just one term in the final integral, giving the result 

R 2(x,y,z) 

= [( -I)"/21T] 

X [(X + I)(z + 1)(0- - x)(O' - y)(O' - z)(o- + 1)] 112. 

(y + 1) 
(29) 

Note that the triangle constraints are equivalent to the re
quirement that each of the factors (0' - x), (0' - y), and 
(0- - z) in (29) be positive. 

For the integral with Vy _ instead of Vy + , we use the 
parity opertion ofEq. (6) in (28). It is found that the reduced 
matrix element is the same as given by (29). 

2.3. VSV 

There are two integrals of the third type, one in which 
the two V's have the same handedness, and one in which they 
have opposite handedness: 

13 ± = f dfl V~p± ·S t;v~r+ 

~R't~~{!l ~ zn 
(

X + 1 L =-=-.!.) 
X 2 2 2. 

p q r 
(30) 

To evaluate the dot product in (30), let {A *,A,B *,B j denote, 
respectively, the coefficients of {t', t '*,;',; '*j in V. This 
gives 

V 1·V2 = 2(AJA! +A fA2 +BIB! + BfB2)· (31) 

The integrands are polynomials of degree 20', where 
0' = (x + y + z)l2 as in (25), and must again be an integer. 
For 13+ ' the triangular condition is Ix - zl <.v<x + z - 2, 
while for 13 _ , it is Ix - zl + 2<.v<x + z. The calculations, 
carried out as in the previous two cases, are simplified by the 
choices a = (x ± 1 )12, p = (x + 1 )/2, c = - (z + 1 )12, 
q = - y12. The results are 
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(_1)"+1 
R 3 + (X,y,z) = "'-----'-

'IT 

x [(y + 1)(0- + 2)(0- + 1)(0- + 1 - y)(o- - y)] 112, 
2(x + l)(z + 1) 

R3 _ (x,y,z) = ( - 1)" 
'IT 

X[(y+ 1)(0-+ 1-x)(0--x)(0-+ l-z)(o--z)]I12. 
2(x + l)(z + 1) 

2.4. VVV 

(32) 

There are again two integrals to be considered, one in 
which all three V's have the same handedness, and a second 
in which one V has a different handedness: 

I - f dIJ Vap vbq vcr A 

4± - EaPy/j x+.a Y±P z+.yr/j 

CI y±l Z!I) = R4 ± (X,y,z) ~ 2 

b 

(~ y+l ~) X 2 2 2 . (33) 

P q r 

Other handedness combinations can be obtained from (33) 
by using the parity operation and the permutation properties 
of the triple scalar product. The integrands are polynomials 
of degree 20-, where 0- = (x + y + z + 1 )/2 is an integer. The 
triangular constraints require Ix - zl <y, and y < x + z in 
14+ , Y < x + z - 2 in 14 _ . The integrals will be evaluated 
for the case a = (x + 1)12,p = (x - 1)12, C = - (z + 1)12, 
and q = - (y + 1 )/2. 

The integrand in (33) is a determinant D, which can be 
rewritten as follows by using the notation ofEq. (31): 

S Al A2 A3 

s* 
D=2; 

;* Bf B! Bt 

(34) 

The indices {I, 2, 3 J refer, respectively, to the three factors 
Vx, Vy,and Vz in (33). FromEq. (13) it is found that Vx and 
Vz can be expressed as Vx = VI(S; I_;S ') and 
Vz = V3(;*S'* - S*;'*),sothedeterminant(34)canbesim
plified to 

D = 2V IV3(1S 12 + I; 12)(Azt * - A2*S + B£ * - B2*;)' 
(35) 

Then, either (13) or (14) is used for Vy • The final results are 

(_1)"+1 
R4 + (x,y,z) = -'-----'-

'IT 

X [(0- + 2)(0- + 1)0"(0- - x)(o- - y)(o- - Z)] 112, 
(x + 1)(y + l)(z + 1) 

( _1)<Y+I 
R4 _ (x,y,z) = "'-----'--

'IT 

X[(o-+ 1)(0-+ 1- y)(0--y)(0--I-y)(0--x)(0--Z)]1I2. 
(x + 1)(y + l)(z + 1) 

(36) 
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The triangle constraints imply (along with other conditions) 
thatinR 3 + , (0- - y)is positive, and thatinR 3 _ , (0- - x) and 
(0- - z) are positive. 

2.5. VVVV 

The foregoing results can be applied to the integral 

(37) 

where a is a shorthand notation for the entire set of quantum 
numbers needed for identification of Va' The cross product 
VaX V P is a vector, although it is not transverse. It can be 
expanded as in Eqs. (20) and (21), 

(38) 
un 

The expansion coefficients for the transverse term are given 
directly by Eq. (33), 

g<::= f dIJV~·(VaXVp). (39) 

The coefficients in the longitudinal term are obtained as fol
lows: 

- k (s)2j~!:' = f dIJ S ;'V·(Va XV p) 

= f dIJ S;'[Vp'(VXVa) - Va'(VXVp)] 

= (ca - CP)h ~!:., (40) 

where the C's are given by Eq. (10) and where 

h~!:. = f dIJ S;'Va'V/3 (41) 

is given by Eq. (30). Substitution of these expansions into (37) 
gives the result 

f dIJ (Va XV/3)'(Vy XVii) 

h a/3 h yli 

= ~Pgy/j + I(ca - C/3)(CY _ CIi) sm sm. (42) 
un un un sm k (S)2 

Note that the expansions in (42) have a finite number of 
terms, and that each term contains a product of four 3-j sym
bols. 
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The large N expansion provides a powerful new tool for solving the Schrodinger equation. In this 
paper, we present simple recursion formulas which facilitate the calculation. We do some 
numerical calculations which illustrate the speed and accuracy of the technique 
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I. INTRODUCTION 

The large N expansion provides an approximation to 
the low-lying spectrum and the corresponding wave func
tions of a quantum-mechanical system. The approximation 
is based on a solution of the classical equations of motion, 
about which a perturbation series is developed. In solid-state 
physics, such expansions are well known 1-4 as the "semiclas
sical theory of spin systems," where the expansion is formal
ly an expansion in 11 s, s being the spin. The generalization of 
those ideas to include coordinate space problems has come 
only recently,4-10 having been inspired by interest in similar 
expansions being developed for quantum field theory.5-7 

Large N expansions are not expansions in a coupling 
constant (hence they are often called "nonperturbative"); 
rather, each coefficient in the expansion is a function of the 
coupling constants. Thus even the leading orders of the ex
pansion may exhibit qualitative features of the problem that 
are not readily evident in coupling-constant perturbation 
theory. Another advantage of the large N method is that it 
does not depend on the Hamiltonian's being the sum of two 
terms, one solvable and the other relatively small. Further
more, the calculation can be done using a simple algebraic 
recursion method. It is best for low-lying states, hence com
plimentary to the WKB method. 

Numerical work provides concrete evidence of the pro
mise of large N expansions. For instance, in Ref. 11, the 
method was applied to the axially symmetric problem of a 
hydrogen atom in a uniform magnetic field; with the use of 
only a few terms, good results were obtained for the ground
state energy (for each subspace of fixed azimuthal angular 
momentum) even for strong fields where the perturbation 
series in e2 diverges badly. 12-14 A recursion relation derived 
in Ref. 11 greatly facilitated the calculation. In this paper, we 
show how that recursion method can be extended to allow 
treatment of the excited states and the calculation of the 
wave function. 

For the sake of simplicity, we will explicitly treat the 
problem of a single particle in a spherically symmetric poten
tial. The generalization to more complicated problems is dis
cussed at the end of Sec. III. In Sec. II, we introduce and 
discuss the technique. The calculation is reduced to quadra-

_I Bantrell Fellow. Research supported in part by the U.S. National Science 
Foundation under Grant 81-19979. 

blWork supported in part by the U.S. Department of Energy under Con
tract No. DE-AC03-81-ER40050. 

tures. In Sec. III, we derive algebraic recursion relations 
(presented in detail in the Appendix) that are useful for ra
pidly computing the large N series for the spectrum and 
nodes. In Sec. IV, we examine the utility of the method in the 
context ofa few simple problems. We obtain energies and 
nodes, typically correct to at least several significant figures. 
The calculations were performed on a V AX-111780, essen
tially instantaneously. Alternatively, results accurate to 
within a few percent can quickly be obtained by hand. 

II. LARGE N EXPANSION 

We suppose that we wish to solve a given spherically 
symmetric Schrodinger equation with potential V (r). Al
though we may have a specific dimensionality and angular 
momentum in mind, we consider the more general problem 
where those quantities are arbitrary. 

After separating variables, we obtain the radial equa
tion (we choose units such that fz = m = 1) 

{ _ ..!..(~ + N - 1 !!....) + I (I + N - 2) + V(r)}¢ (r) 
2 dr r dr 2r 

= E¢ (r), (2.1) 

where V (r) is an N-dimensional potential to be defined short
ly. Equation (2.1) is brought to the form of a Schrodinger 
equation on the half-line by setting 

¢(r) = ,IN - 1)12¢ (r). (2.2) 

Then ¢ satisfies 

_..!.. d 2¢ + k 2[ (1 - 1Ik)(1 - 3/k) V(r)]." = E.', 
2 dr 8r + ~ ~, 

where 

k=N+2/, 

and we have chosen 

V (r)=k 2 V (r). 

(2.3) 

(2.4) 

(2.5) 

This may differ from the true potential for the number of 
spatial dimensions (and angular momentum) of interest, but 
only by a constant factor which can be absorbed in the defini
tion of the coupling constants and reinstated at the end of the 
calculation. We may now develop an expansion in inverse 
powers ofk. 
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Due to definition (2.5), in the large k limit, the eigen
functions 'if; in Eq. (2.3) peak about the minimum ro of the 
effective potential ir-1 + VIr), and the entire eigenvalue 
spectrum concentrates around the value l3 

E(-ll 1/8ra + V(ro). (2.6) 

k 2E (- 11 is the energy of a classical particle with angular mo
mentum Lcl ~ ! k = 1+ ! N executing circular motion in 
the potential V (r), and forms our "zeroth" -order approxima
tion to the quantum eigenvalue spectrum. For finite k, the 
greater the radial quantum number ( = the number of finite 
radial nodes), the greater the deviation of the wave function 
from ro, and of the quantum energy from k 2 E (-21. Hence our 
approximation is best for the low-lying states, in contrast to 
the WKB method. IS 

For the ground state, the perturbation series in powers 
of k - I is computed as follows. Since the wave function is 
nodeless, we may define 

'if;(r)=e /I( XI, 

where 

x-r- roo 

It is also convenient to define 

Veff ( x)-ir( X)-2 + V(r( x)) - E(-21, 

(2.7) 

(2.8) 

(2.9) 

which differs from the above-mentioned effective potential 
only by a constant term, chosen so that the minimum of 
Veff ( x) is zero. Using Eq. (2.3), we now find 

- ~ (Uk"( x) + Uk'( x)Uk'( x)) + k 1Veff ( x) 

+ (- ~k + i)r( X)-2 = ?t', 

?t' =E_EI-1lk 1, Uk'(x)=dUk(x). 
dx 

(2.10) 

The recursive solution is obtained by expanding the energy 
and wave function, 

00 00 

?t' = L Elnlk - n, Uk'( x)= L Ulnl( x)k - n, (2.11) 
n= -1 n= ~ 1 

and collecting terms of like order in k. Thus we obtain 

ul - II( x) = - ~2Ve(f( x), 

~2Ve(f( X)UIOI( x) = EI - I) +! r( X)-2 + ~ ul- 1),( x), 

~2Ve(f( x)u(l)( x) = E IO) - ~r( X)-l 

+ ! (UIOI'( x) + ulo)( X)U(oI( x)), 

and 

~2 Ve(f( x)uln + II( x) = Elnl 

(2.12a) 

(2.l2b) 

(2.l2c) 

+ ! (ulnl'( x) + i Ulml( x)uln - ml( X)); 
2 m=O 

n > O. (2.12d) 

We must, at this point, discuss the branch of the square root 
to be taken in Eqs. (2.12). Since we are interested in the nor
malizable wave function, the positive branch must be taken 
(i.e., the square root is defined to be a positive number) in the 
region x~O (corresponding to r~ro). At x = 0 (r = ro), the 
square root vanishes. In the region - ro';;;x.;;;O (O.;;;r.;;;ro), we 
take the negative branch (i.e., the square root is defined to be 
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a negative number), since in the large k limit 'if; peaks about 
x = 0 (r = ro). 

Equation (2. 12a) gives the leading approximation to the 
wave function. Because Ve(f(O) = 0 and UIOI(O) < 00, we find 
from (2.12b) that 

(2.13a) 

This may be substituted into Eq. (2.12b), which then defines 
the first-order wave function correction uIO)( x). Similarly, 
the higher-order energy corrections are given by 

E 101 = iro- 2 - ! (uIO)'(O) + uIOI(O)UIOI(O)), (2.13b) 

E Inl = - J..(ulnl'(O) + ± ulml(O)uln - ml(O)); 
2 m=O 

n>O. (2.13c) 

Elnl is calculated after Ulnl( x), but before uln + II( x). The (un
normalized) wave function is then given by [recall that 
r = r( x)] 

'if;(r) = exp [f n ~_ I Ulnl(y)k - n dY ]. (2.14) 

If one is not interested in the long distance behavior of the 
wave function, the method described in the next section is 
considerably more efficient than that here. It is derived by 
expanding the functions ulnl( x) themselves in a Taylor series. 

Before we discuss the excited states, it is useful to treat 
the simple example of the Coulomb problem V = - eZ Jr. 
According to our prescription, what we shall really do is to 
approximate the solutions to the Schrodinger equation (2.1), 
where 

VIr) _k1eZ/r. (2.15) 

The solution to the problem of interest is obtained through 
the identification e1 = k zez. Furthermore, instead of the co
ordinate r, we introduce the dimensionless coordinate 

p = 4e1r (2.16) 

in Eq. (2.3). The number "four" in Eq. (2.16) was chosen 
because in these units, r 0 = 1. The energy is now measured in 
units of 16€4. Thus we obtain 

and 

Ve(f(x) =x1/8(1 +X)l, XE[ -1,00]. 

From Eq. (2.12a) we find that 

ul - II( x) = - x/2( 1 + x), 

and from (2.13a), 

EI-II= -i· 
Next, Eq. (2.12b) yields 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

UIOI( x) = _ 2 + x , (2.21) 
2(1 +x) 

and so on. We have computed 

Eground = - Ak1[ 1 + 2k -1 + O(k -z)J 

= _ 2e4k 1p + 2k -1 + O(k -1)), (2.22) 

which upon identification of e2 with eZk z, is identified as the 
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beginning of the expansion of the exact ground-state energy 

(2.23) 

For the wave function, we have found (C and C / are irrele
vant constants) 

tP(r) = C exp {[! In(I + x) -! (1 + x)]k 

+ [-pn(I +x)-!(I +x)] +O(k-I)j 

= C'rk
-1)I2 exp{ - 2ke2 [r + rk -I + O(k -2)] J, 

(2.24) 

the expansion of the exact (unnormalized) ground-state wave 
function 

tP(r) = rk-11/2 exp { - 2e2/(k - I)j r. (2.25) 

We now consider the excited states. In order to account 
for the n nodes of the nth excited state, we alter the ansatz of 
Eq. (2.7): 

(2.26) 

Because as k increases the wave function increasingly con
centrates about the point ro, we must have 

r i = ro + a\llk -I + a\2lk -2 + ... , 

so that Eq. (2.26) becomes 

lfn (r) = [I;I(X - Ai)]e '* o( xl, 
Ai = a\llk -I + a\2lk -2 + .... 

(2.27) 

(2.28) 

By substituting Eq. (2.28) in Eq. (2.3), we obtain a revised 
version of Eq. (2.10) for the excited states, which we again 
solve order by order in inverse powers of k. [The expansions 
of 1f n and ~ n (x) take the same form as before.] 

To illustrate the procedure, we consider the first excited 
state 

(2.29) 

The function ~ I( x) satisfies 

-! [~;/(x) + ~;(x)~;(x)](x -a) - ~;(x) 

+ [k 2Veff ( x) + ( - ~ k + ~)r( X)-2] (x - a) = (x - a)1f I' 
(2.30) 

Solving this to order k 2, we again find (the square root is 
defined as before) the result ofEq. (2.12a): 

U\II(X)= -~2Veff(X). (2.31) 

This is the leading behavior of the exponent for all states. 
Examining the order k terms, we find 

X~2Veff( x)U\OI( x) 

= [E\ - II +! r( x) +! u\ - 11/( x)]x + ul-I)( x). (2.32) 

The energy coefficient E I - I) is determined by differentiating 
(2.32) and evaluating the result at x = 0: 

E\ - II = -! ro- 2 - ~Ul-I)'(O). 

The result for the nth excited state is 

E~-II = _! ro-
2 - (n +! )ul-l)/(O), 

(2.33) 

(2.34) 

reflecting the fact that, to this order, the spectrum is har-
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monic4
•
8

,14 with frequency proportional to (V~:r (OW 12 [recall 
that Veff(O) = V;ft'(O) = 0]. The next step is to examine the 
order k ° terms in Eq. (2.30). The node coefficient a\11 is found 
by evaluating the equation atx = 0, whereas the energy coef
ficient E \°1 is again obtained by differentiating the equation 
once and then evaluating it at x = 0, U(ll( x) is then given by 
an algebraic equation similar to Eq. (2.32), and one may then 
proceed to order k - 1, and so on. 

III. ALGEBRAIC RECURSION METHOD 

If one is not interested in the long distance behavior of 
the wave function, then it is useful to expand the functions 
U1nl( x) in a Taylor series in x. This results in purely algebraic 
recursion relations for the quantities of interest. Toward that 
end, it is convenient to rescale coordinates in the radial equa
tion(2.1): 

r /kp. (3.1) 

This necessitates a change in the definition of V: 
V(r)-kV(r//k). (3.2) 

As before, this amounts to a mere rescaling of coupling con
stants which can easily be undone at the end of the calcula
tion. For instance, if we are interested in the potential 

VIr) = - (a/r)e- Pr +..1r, 

then we consider 

VIr) = ( - k 3/Zfx/r)e - k 1/2/Jr + k I/zAr 

(3.3) 

(3.4) 

and identify k 3/Zfx = a, k -l/zjJ = [3, and k I/2A = A when 
we are done. Equation (2.3) must now be replaced by 

_~ dZlf +kZ[ (l-l/k)(l- 3/k) + V(P)]lf = Eklf· 
2 dpz 8p2 

(3.5) 

We define 

(3.6) 

Po being the point where the bracketed term in Eq. (3.5) is 
minimized (in the large k limit). Without loss of generality, 
we shall set Po = 1. The ensuing calculation parallels that of 
Sec. II. Note, however, that because of the rescalings (3.1) 
and (3.2), the intermediate equations will exhibit a different k 
dependence. 

For the ground state, we define fp = p( x)]: 

If(p)=e~/lxl, (3.7) 

which leads to 

- ~ (~"(x) + uk/(x)~/(x)) + kVetf(x) 

+(-~ +ik - l )p(X)-2=1f, 

1f-E - E I - 2Ik, (3.8) 

whereEI-ZI is given by (2.6) with ro replaced by Po, and Veff 
by (2.9), with r replaced by p. We now expand 1f as in Eq. 
(A4), and also expand ~/ in the double power series: 

~/(x)=D~x+ [cg +C~X2]y+ [D:x+D~X3]y2 

+ [C6 + C:xz + C~X4]y3 + "', y-k -1/2. 

(3.9) 
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The expansion of the potential has the form 

W(x)=kVeff(x) + [-~ +§k- l ]p(X)-2 

= [wg + W~X2] + [W6X + Wlx3]y 

00 

+ L[W~xn-2+W~xn+W~xn+2]yn. (3.10) 
n=2 

I t is because of the rescaling of coordinates that u,{t and Ware 
polynomials in x, to each order iny. Equation (3.8) can be 
solved order by order in x and y, beginning with the lowest 
order in y, but with the highest power of x within a given 
order of y. The energy appears only in the even orders in y. 
For instance, to order yO we find 

D a
l 

= _(2WOI)1/2, EI-I)= IDa + W a 
- 2 I a, (3.11) 

whereas to order y, we obtain 

C~ = Wl/D~, cg = -(1ID~)[C~ - W6],(3.l2) 

and so on. In order to treat the excited states, we include 
factors describing the nodes, as before. For example, we 
write the wave function for the first excited state as 
fp =p( x)]: 

.1. () ( 'w 1 xl 'f'1 P = xy - ale I , 

a = a(y) = alk -I + a 2k -2 + .... (3.13) 

Finally, although we have considered problems with 
spherical symmetry, more complicated problems can also be 
considered. For the ground state, application of the method 
to problems lacking spherical symmetry is straightforward. 
The function ~(x) in Eq. (3.7) is merely replaced by a new 
function of as many coordinates as are required. 

For example, for a problem with axial symmetry, ~ (x) 
becomes ~ ( x,z) and Eq. (3.8) becomes (subscripts ofx and z 
are used to denote the derivative) 

-!(~xx + ~x~x + ~zz + ~z~z)+ W=E, 
(3.14) 

where W now has the form 

W( x,z) = [W~ + W~ax2 + Wg2Z2] 

+ [W~ax3 + W~IX2Z + Wl 2xZ2 

+ W63 Z2 ]y + .... (3.15) 

[It may be necessary to rotate coordinates to eliminate a 
possible W~I xz term in Eq. (3.15). Ifso, that should be done. 
Such a rotation affects the numerical value of the coefficients 
Wij, but leaves the form ofEq. (3.15) invariant, except that it 
eliminates the undesired term.] A calculation of the ground
state energies for an axially symmetric problem using this 
method can be found in Ref. 11. 

The excited states require a little further explanation. 
Let us consider the first excited state, and for concreteness 
again consider a potential with axial symmetry. To leading 
order iny, the Schr6dinger equation (3.5) becomes 

_~ d 2¢ _~ d 2¢ 

946 

2 dx2 2 dz2 

+ k(W~ax2 + wgzz2 + W~) + O(k -lIZ) = Ek. 
(3.16) 
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This equation is separable; in particular, it is the equation for 
uncoupled harmonic oscillators: just two copies of what we 
obtain in the spherically symmetric case. To leading order, 
we determine the position of the node as before, considering 
separately the case of excitation in the x and z directions. In 
higher orders there is mixing between the directions. That is, 
the expansion for the node, which to leading order corre
sponds to an excitation in the x direction, also depends on z. 
To be precise, Eq. (3.13) is replaced by 

rP'IXI( x,z) = {Xy - n~1 mt/Ynmrm + ygnmrm + I) }e"",IX.ZI, 

(3.17) 

and an analogous expression for the other state, with x and z 
changing roles. In Eq. (3.17), y is given byll 

y = (N - 1 + 2Imll-tl2. (3.18) 

IV. DISCUSSION 

We used the formulas given in the Appendix to calcu
late the energies and nodes of the three lowest-lying states (in 
each I sector) for several potentials. The results are displayed 
in Tables I-III. In Table I, we exhibit the energies of the low
lying states for various spherically symmetric potentials. We 
compare our results with the numerical calculations of Refs. 
16 and 17. Tables II and III display the first ten partial sums 
and the first ten Shanks extrapolated partial sums, for the 
energies and nodes of the three lowest-lying states of the 
exactly solvable problem of the linear potential with N = 3, 
1=0. 

In computing Table I, we calculated the first 14 partial 
sums of the series for the energy. For the ground state and 
first excited state, we then determined the two successive 
partial sums with the smallest difference and kept as many 
significant figures as coincided. The results for the second 
excited state (n = 2) were obtained in the same way, except 
that we used the Shanks extrapolated partial sums. II ,18 

We obtain values for the nodes to about four decimal 
places accuracy. That is an indication that the behavior of 
the wave function near the classical orbit is good. The behav
ior of the wave function near the origin and at large distances 
is not apparent from its Taylor expansion, calculated in Sec. 
III; therefore it should be investigated using the methods of 
Sec. II. 

The difference between the methods of Secs. II and III 
is that in Sec. III the coordinate is rescaled by a power of the 
coupling constant (k -tlZ). This has the effect of reordering 
the 11k expansion of the wave function, but does not effect 
the expansion of the energy, which is coordinate-indepen
dent. This rescaling is done because it makes the calculation 
of the energy much easier. It is apparent from Eqs. (2.13) that 
only certain derivatives of the wave function at the origin 
( x = 0) contribute to a given coefficient in the expansion for 
the energy. When the method of Sec. III is employed, the 
only information about the wave function that is calculated 
at a given order is that relevant to the calculation of the 
energy to that order. Calculation of the rest is postponed. 
Although this method therefore makes calculation of the 
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TABLE I. Energies of the low-lying states for various sphericalJy symmetric potentials (N = 3). The numbers in parentheses were calculated in Refs. 16 and 
17. C, = 21.7, C2 = 2°.8 , and ro = 2-'/2. 

Vir) 
n In(r/ro) C, r-O.2 C

2 
r- 0.8 

1.044 33 - 2.680 3 - 1.2187 
0 

(1.044 3) (- 2.686) ( - 1.218) 
1.84744 - 2.253 - 0.462 

1=0 
(1.8474) (- 2.253) (- 0.462) 
2.289 - 2.044 -0.26 

2 
(2.2897) (- 2.044) (- 0.265) 

1.641 141 33 - 2.3449461 - 0.500439 
0 

(1.643) (- 2.345) 1- 0.500) 
2.150947 -2.100738 - 0.280 64 

1= 1 
(2.151) 1- 2.101) 1-0.281) 
2.490942 - 1.95072 - 0.187 3 

2 
(2.491) 1-1.951) 1-0.187) 

2.013 308 64 - 2.156 260 884 - 0.294 695 9 
0 

(2.015) 1- 2.156) (- 0.295) 
2.3874328 - 1.9900555 -0.194911 

1= 2 
(2.388) 1- 1.990) 1- 0.195) 
2.6624920 - 1.875032 - 0.141979 

2 
12.663) 1- 1.875) 1-0.142) 

2.284 141 353 37 - 2.029 064 889 5 - 0.201 913 656 6 
0 

12.286) (- 2.029) 1- 0.202) 
2.579 783 312 93 - 1.904 866 7 - 0.146 342 0 

1= 3 
(2.581) 1- 1.905) 1-0.146) 
2.810445386 - 1.8125020 - 0.112 787 

2 
12.811) 1- 1.812) 1- 0.113) 

TABLE II. Spectrum of the linear potential V = Ar. We treat the three lowest states in the caseN = 3,1 = 0,.1 = 27/2. For each state the left column displays 
the first ten partial sums, and the one to its right, the first ten Shanks extrapolated partial sums. For the second excited state, we also display a second Shanks 
extrapolation. The exact energies, En' calculated from Ref. 18, are also given. 

n=O n= 1 n=2 
Eo = 9.352430 E, = 16.351 80 E2 = 22.082 24 

9.90578 9.34629 9.90578 16.2888 9.90578 21.4760 22.0712 
9.31595 9.35504 16.9414 16.3558 24.5669 22.1774 22.0843 
9.34793 9.35301 16.222 I 16.3514 20.6504 22.0523 22.0817 
9.35375 9.34964 16.3864 16.3519 23.153 1 22.0953 22.0824 
9.35291 9.35229 16.3419 16.3517 21.1879 22.0754 22.0822 
9.35224 9.35222 16.3547 16.3518 22.8737 22.0863 22.0823 
9.35229 9.35250 16.3508 16.3518 21.3572 22.0796 22.0822 
9.35248 9.35249 16.3521 16.3518 22.761 5 22.0841 22.0822 
9.35250 9.35234 16.3517 16.3518 21.4359 22.0809 22.0822 
9.35240 9.35239 16.3518 16.3518 22.704 1 22.0832 22.0822 

TABLE III. Nodes of the wave functions of the first two excited states of the linear potential IN = 3,1 = 0, .1= 27/2 ). a,p, and rare defined in Eq.IA2). The 
exact answer was calculated from Ref. 18. The columns on the left display the first ten partial sums; those on the right, the Shanks extrapolated partial sums. 
The second line of the table displays the exact answers. 

947 

0.023 171 
0.019537 
0.020336 
0.020151 
0.020189 
0.020180 
0.020186 
0.020183 
0.020182 
0.020183 

a 
0.0201835 

0.020029 
0.020192 
0.020186 
0.020183 
0.020182 
0.020184 
0.020184 
0.020181 
0.020183 
0.020180 
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p 
- 0.013 933 6 

- 0.021 857 - 0.014 362 
- 0.010452 - 0.014199 
- 0.016 033 - 0.013 841 
- 0.012 423 - 0.013 972 
- 0.015135 - 0.013 916 
- 0.012 920 - 0.013 943 
- 0.014 820 - 0.013 928 
- 0.013 141 - 0.013 937 
- 0.014654 - 0.013 931 
- 0.013 271 - 0.013 935 

r 
- 0.268 043 

- 0.30577 - 0.259 80 
- 0.25167 - 0.269 51 
- 0.278 28 - 0.267 61 
- 0.26046 - 0.268 20 
- 0.27415 - 0.267 97 
- 0.26289 - 0.268 08 
- 0.272 52 - 0.268 02 
- 0.26407 - 0.268 06 
- 0.27161 - 0.268 03 
- 0.264 79 - 0.268 05 
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energy easier, it has a detrimental effect on the approxima
tion of the wave function, especially far away from the classi
cal minimum ( x = 0). 

We also obtained the eigenvalues of the three lowest
lying states to about four decimal places accuracy when 
1= 0. For I = 3, we obtained 6-12 place accuracy. The se
ries, although asymptotic, 19 is, in general, divergent. The 
sequence of partial sums does not stabilize so well for the 
more highly excited states. For these states the Shanks trans
formed sequence is more stable, which allows one to obtain 

TABLE IVa. Analytic expressions for the coefficients in the large N expan
sion of the ground state ofthe potential V = e2rv, e2 = k I - v /(8v).fis the 
positive root of 4 /2 - 2 = 2v. The expansion is defined in Eq. (A4). 

n 

-2 

-1 

o 

2 

I 1 - + ----,--
8 4(4/2 - 2) 

(f -1)/2 

( - 4/6 + 23/4 - 36/3 
- /2 + 36/ - 18)/(36j2) 

(16/" - 4D/9 + 81/' - 48/6 - 142/' + 276/4 

- 131/3 
- 156/2 + 216/ - 72)/(216/4) 

( - 20 288/ 16 + 25 392/ 14 + 43 200/ 13 
- 21036/ 12 

- 64 800/" + 18 121/10 + 110700/9 
- 96 609/8 

- 164 700j1 + 4D5 687/6 - 348 300/' + 45133/4 

+ 229 500/3 
- 307 800/2 + 194400/- 48 600)/(291 600/8

) 

more accurate results. Perhaps other summation techniques, 
which have been successfully applied to divergent coupling
constant perturbation series,20 are also useful here. 

The computations were done on a VAX 111780, using 
double precision arithmetic. For a given state, the entire cal
culation (energy, nodes, wave function expansion) took less 
CPU time than the system clock could measure. We warn 
the reader, however, that if one is not careful, significant 
roundoff error can occur as early as the eighth term. Round
off error became significant in our calculation at about the 
15th term. Presumably, it could be further forestalled by 
working on a larger machine. Another way to avoid round
off error is to employ a symbolic manipulation program, 
such as MACSYMA. Comparison of our results with those 
obtained using MACSYMA confirmed that Tables I-III are 
not affected by roundoff error. We also used MACSYMA to 
compute Tables IV-V, which exhibit analytic expressions 
for the first several coefficients of the 11 N expansion for the 
energy and nodes of the low-lying states of power potentials. 
The coefficients are given as functions of the power. 
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TABLE IVb. Analytic expressions for the coefficients in the large N expansion for the energy of the first excited state for power potentials. For the notation, 
see Table IVa. 

n 

-2 

-1 

o 

2 

1 1 -+-...,.:-.-
8 4(4/2 - 2) 

(3/ - 1)/2 

( - 52/6 + 227/4 _ 108/3 
- 157/2 + 108/- 18)/(36j2) 

(176/" - 632/9 + 1227/' - 208/6 - 1586/5 + 908/4 

+ 599/3 
_ 676j2 + 216/ - 24)/(72/4) 

(- 897 728/ 16 + 2 572 752/ 14 + 1 425600/ 13 
- 5 267 316/ 12 

- 3 693 600/" + 8 713 351/ 10 + 4 819 500/9 
- 12 116379/8 

- 2 907 900j1 + 15 177 297/6 - 6 828 300/' - 5 298 377 /4 

+ 6601 500/3 
- 2 835 000j2 + 583 200/ - 48 600)/(291600/6) 

TABLE IV c. Analytic expressions for the coefficients in the large N expansion for the energy of the second excited state for power potentials. For the notation 
see Table IVa. 

n 

-2 

-I 

o 

2 

948 

~ + __ I=---_ 
8 4(4/2 - 2) 

(5/ - 1)/2 

(- 148/6 + 635/4 - 180/3 
- 469/2 + 180/-18)/(36/2

) 

(2480/" - 9080/" + 17595/' - 1776/6 - 22 370/' + 7620/4 

+ 10 295/3 
- 5772/2 + 1080/-72)/(216/4) 

( - 6 362048/ 16 + 19711 632/ 14 + 6 696 000/ 13 

- 42 669156/ 12 -17 820000/" + 71965 291/ 10 

+ 22 990 500/9 
- 94 852 839/" - 12 892 500/' 

+ 105 866877 /6 - 30658 500/, - 45 721757/4 

+ 30712500/3 
- 7 889400/2 + 972 000/ - 48 600)/(291 600/6) 
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TABLE Va. Analytic expressions for the coefficients in the large N expansion of the node for the first excited state of power potentials. a is defined in Eq. (A2). 
For the notation see Table IVa. 

n 

2 

(- 4[' + 7/- 3)/(3/21 
(16/ + 880/6 -720/ - 1581/4 + 1620r 

+ 272/2 - 630/+ 135)1(270/4
) 

(21824/ 13 
- 87 760/" + 8064/ 10 

- 148180/9 

+ 445536/8 + 218125/7 
- 908 712/6 + 258 796/' 

3 
+ 427 014/4 

- 234455/' - 34 272P + 39 690/ - 5670) 

/(34020/6
) 

TABLE Vb. Analytic expressions for the coefficients in the large N expansion of the nodes for the second excited state of power potentials. f3 and r are defined 
in Eq. (A2). For the notation see Table IVa. 

n 

2 

3 

- 1/(2f) 

(592/6 
- 1976/4 + 528/3 

+ 1789/2 -1032/+ 144)1(144/4) 

( - 896/" - 858 880/9 + 421632/8 

+ 3057720/7 
- 2159424/6 

- 2 967 460/' + 2 947 248/, 
+ 211 021/3 

- 925 956/2 

+ 291600/ - 25 920) 
/(25920/6

) 

Massachusetts Institute of Technology for allowing us the 
use of MACSYMA to perform algebraic manipulations. 

APPENDIX 

We present the recursion relations discussed in Sec. III 
of the paper. We wish to solve the differential equation 

( - ! a; + W - ~)'" = 0. (AI) 

For the first three states we try the ansatze 

"'I =e"u1xl, 

"'2 = (xy - a(y))e~IXI, (A2) 

"'3 = (X2y2 + xy y(y) + /3(y))e~lxl. 
(Although the ~ 's are not the same for the three states, we 
do not write an index to distinguish them; no confusion 
should result.) and 

This leads to the following differential equations for the 
ground state, and first and second excited states, respective
ly: 

(~'2 +~" _ 2W + 2~) = 0, (A3) 

(xy - a)(~'2 + ~"- 2W + 2~) + 2y~' = 0, 

(x2y2 + xy y(y) +/3(y))(~'2 + ~" - 2W + 2~) 
+ 2y2 + 2(2x2y + Y y(y)) ~' = 0. 

We expand W, ~, y, /3, a, and ~ in power series as 
follows: 
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rn 

(28/3 
- 49/+ 12)1(6/2

) 

( - 128/8 
- 14544/6 + 6720/' 

+ 26 328/4 - 15 120/3 
- 7831/2 

+ 5880/-720)1(720/4
) 

( - 4 647 424/ 13 + 16066688/" 
- 387072/10 + 26 367 968/9 

- 43884288/8 
- 64 789 016/7 

+90611131/6 + 13777996/' 
- 46 487952/4 + 9 025153/3 

+ 5 920236/2 
- 2 222 640/ 

+ 181440)1(544 320/6
) 

00 

~ = L E(n-11k -n, 
n=O 

0Cl n +2 

W=EI- 2Ik+ L L Wn,mxm(/k)-n, 
n=Om=O 

(A4) 

00 n + 1 {D n en k - I12x2m + I} 
~ = L L ~x2m + m k - n, 

n = 0 m = 0 2m 2m + I 
D~ =0. 

The combination ~'2 + ~" - 2 W + 2 ~ occurs for all 
states, and it is convenient to expand it in a power series as 
well: 

00 n 

= L L !Tnmk-nx2m+snmk-ln+!lx2m+IJ. 
n=Om=O 

(A5) 

For all three states, the coefficients in ~ and ~ are deter
mined from Tnm, S nm by the following relations: 
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D nm = _l_{pm + 2W2n2m - (2m + 1)D;:'+ 1 
W~ , 

_ n~1 ~ DV D n- v _ n~1 ~ cvcn-v-I} 
~~ I' m+I-1' ~~ I'm-I' ' 

v=11' v=ol' 

c nm = 2~~{snm+2W2n+1'2m+1 -2(m+ 1)C;:'+1 

-2 i LD;C;:'~VI_I'}' 
v= 1 I' 

C~+2=D~+2==O, (A6) 

E(n-II=~(Tno_Dn +2W _ n~1 Cn-1-vcv) 
2 1 2n,0 v~o 0 0 , 

D~ = -~2W02' 

For the second excited state, 
n-m 

The limits on the sums over f.L in Eq. (A6) are such that onl~ 
those coefficients defined in Eq. (A4) appear. The T nm and 
S nm depend on the state. For the ground state 

Tnm =snm = 0, (A7) 

For the first excited state, 
n - m 

T nm = ~ a S n - k.m _ 2D n 
£... k m+l' 

k=1 

n - m 
snm = ~ a T n- k + I.m+ 1 _ 2cn 

L k m+l' (AS) 
k=1 

Tmm = _ L (2YkC;:'~\ +f3kTn-k+ I,m+ 1 + Yksn-k,m) - 4D;:'+ I' 

k=1 
n-m 

snm= - L {2YkD::,~k2+I+YkTn-k+l,m+I+f3ksn-k+l.m+I}-4C::'+I' 
k=1 

(A9) 

n-l n 

- L(2D n- k +Tn-k,0)Yk - Lf3ksn-k.0-4C3-1 
k=1 k=1 

Yk = --------------------
TOO + 2D~ 
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Unitary equivalence and scattering theory for Stark-like Hamiltonians 
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Let Ho = -.d + Vol XI)' H = Ho + V( x) be self-adjoint in L 2(Rn). Va depends only on one 
coordinate and tends monotonically to + 00 as x c-~ ± 00. Vis a real Ho-compact potential, short 
range with respect to Va. In particular, the cases Vol xd = - (sgn xdlxll a

, 0 < a..;;2 and 
I V( x)I..;;C lxi-I are included (a = 1 being the Stark effect). It is shown that (a) H is spectrally 
absolutely continuous over the entire real axis apart from a possible discrete sequence of 
eigenvalues of finite multiplicity and rapidly decaying eigenfunctions (Ho has no eigenvalues) and 
(b) the wave operators W ± (H,Ho) exist and are complete. 

PACS numbers: 03.65.Nk, 02.30. + g 

I. INTRODUCTION 

In this work we study some spectral and scattering 
properties of the operator 
H = Ho + V, Ho = -.d + Vol XI)' in L 2(Rn). Here Vol xd 
is a monotone decreasing real function depending on one 
coordinate only and tending to + 00 asxc-~ ± 00. The (real) 
function Vis a multiplication operator in L 2(Rn) (depending 
in general on all coordinates), which is assumed to be rela
tively compact with respect to H o. 

The terminology "Stark-like Hamiltonian" is derived 
from the quantum-mechanical Stark effect (for the hydrogen 
atom) where (with suitable scaling) Vol XI) = - Xl and 
V( x) = 1I1xl, corresponding to the effect ofthe application 
of an external uniform electric field to the atom. I Naturally, 
the Stark effect is always included in our admissible class of 
Hamiltonians H. 

Assuming the self-adjointness of Ho,H, two basic ques
tions arise in this connection. 2 

Q 1: Impose conditions on Va' V so that Ho,H have no 
singularly continuous spectrum, i.e., apart from eigenvalues 
the spectrum is absolutely continuous. 

The wave operators W ± (H,Ho) are defined by 

W ± (H,Ho) = s-lim exp(itH) exp( - itHo)Po, 
t-+ ± 00 

where Po is the projection on the subspace of absolute contin
uity of Ho in L 2(Rn ). When they exist, they are partial isome
tries with domain PoL 2(Rn ) and range contained in PL 2(R n ), 
the subspace of absolute continuity of H. The second ques
tion is therefore: 

Q 2: Find conditions on Vo, V so that 
(a) W ± exist, 
(b) W ± are complete in the sense that 
Range(W ± ) = pU(Rn ). 

It is well known that when W ± are complete, they in
tertwine H,Ho in the sense that 

W'± PHW ± = PaBo 

and thus establish a unitary equivalence between the absolu
tely continuous parts of Ho,H. 

In the following sections we shall deal with both Q 1 and 
Q2. To illustrate our results, we take the special case 

Let 

Ho.a = -..::1 + VO.a(x I), Ha = Ho.a + V, 

Vo.a(xd=(-sgnxl)lxlla, o < a";; 2. 

xERn, X = (XI'X'), x' = (x2, ... ,xn)' 

H 2(R n ) are functions having L 2 distributional derivatives up 
to second order. 

Suppose that V( x) = VI( x) + V2( x), where VI( x) is 
compactly supported and compact from H 2(R n ) into L 2(R n ) 
and V2( x) is bounded and satisfies 

IV( )I<-CM( ') {(I + Ix l l)a-
13

, 
2 x "" X • (1 + Ix II tl2 - I - 13, 

wherep> 0 and M( X')-+O as IX'I~oo. 

We shall prove: 
Theorem A: Ho.a,Ha are essentially self-adjoint when 

defined on C O'(Rn). Retaining the same notation for their 
unique sef-adjoint extensions, it follows that: 

(a) H o.a is absolutely continuous and its spectrum ex
tends over the entire real axis. 

(b) The set..#' of eigenvalues of Ha is at most a discrete 
sequence. Each eigenvalue is of finite multiplicity and the 
corresponding eigenfunctions u are rapidly decaying in the 
sense that, for every real s, (1 + Ix II)' uEL 2(R n ). 

(c) Ha is absolutely continuous on the orthogonal com
plement of the subspace spanned by its eigenfunctions, and 
its spectrum extends over the entire real axis. In particular, 
there is no singularly continuous spectrum. 

(d) The wave operators exist and are complete, thereby 
establishing a unitary equivalence between the absolutely 
continuous parts of Ho.a ,Ha' 

Our method of proof utilizes the so-called "limiting ab
sorption principle," namely, the observation that the resol
vent operator remains bounded when viewed as an element 
of B ( X, Y), where X, Yare Hilbert spaces such that 
Xr.;;;,L 2(Rn)r.;;;, Yr.;;;,X* and X denseinL 2(Rn). In the case dis
cussed above we define, for u>~, 7> 1, UEC O'(Rn), 

Ilull;.O' = [001,-, (1 + Ix l l)2T- alu( XI,X'W dX I dx' 

+ (00 ( (1 + IXII)20'-u12lu(xI,x'Wdxldx', Jo JR n I 
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Illulll;,<7 = [001"-1 (1 + IXIWr+alu(xl,x'Wdxl dx' 

+ 1001"1 (1 + IXIWu+al2lu(xI,x'Wdxldx', 

Denote by X ;,<7' Yr ,<7 the completions of C (f (R n ) under 

II Ilr,<7' III Illr,<7' respectively. 
For nonreal z we set 

Ro,a(z) = (Ho,a - z) - I, Ra(z) = (Ha - Z)-I, and if K is a 
compact interval, we denote 

[) ±(K) = [zl RezEK, 0< ± Imz<I), 

11 ± (K ) = [} ± (K )uK. 

We shall prove: 
Theorem B: Let r> 1, (J' > !, and z be nonreal. Then, 

Ro,a (z) and Ra (z)EB ( X r ,<7' Yr, _ (7)' 

Furthermore, if K is compact and r' < r, the operator
valued functions [with values in B (Xr,'" Yr', _ <7 )], 

z-Ro,a (z), z-Ra (z) 

can be extended to 11 ± (K ) as continuous maps, where the 
operator space is endowed with the uniform topology. In the 
statement for Ra (z) we add the restriction that KrvV = 0. 

Note that our estimates (Sec. II, IV) will be more pre
cise, involving also first-order derivatives. Also, for more 
general potentials Vo the norms involved in the definition of 
X, Y have to be suitably selected. 

It is interesting to note that in contrast with the pertur
bation-theoretical computation of the Stark effect carried 
out in some physics books3 we treat the Coulomb potential 
as a "perturbation" imposed on the electric field. 

The absolute continuity for a general Stark-like poten
tial was shown by Rejto-Sinha4 in the one-dimensional case. 
Their assumptions on Vo are quite similar to ours. However, 
V ( x I) is required to decay faster than Ix 11- I. The existence 
of wave operators in the general case was proved in Ben
Artzi. 5 Indeed, the assumptions there are considerably 
weaker than those in the present work. In particualr, Vo is 
not assumed to be monotone and V( XI,x') is allowed to ex
plode in directions other than x l _ + 00. 

The Stark case (a = 1 in the notation above) has been 
treated more thoroughly. Avron and Herbst6 showed the 
existence of wave operators as well as the nonexistence of 
eigenvalues in certain cases and the completeness was 
proved by Simon. 7 Herbst8 and Yajima9 proved in this con
text Theorems A and B. In particular, the norms and as
sumptions on V in the latter are very close to ours. In all of 
these works, special features of the potential Vol x I) = - Xl 
are utilized, notably the expansion by Airy functions and the 
possibility of removing - d 21 dxi by an explicit transforma
tion. 

Our approach is based on studying solutions of 

(Ho -z)u =J, 

which satisfy an appropriate radiation condition. For suit
ably restrictedJ, the existence and uniqueness of such solu
tions is guaranteed by some simple facts about the asympto-
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tic behavior of solutions to ordinary differential equations, 
which are given, along with the statement of the limiting 
absorption principle for H o, in Sec. II. The estimates needed 
to establish the theorem are proved in Sec. III. We use a 
representation of Ho as an ordinary differential operator 
with operator-valued coefficients. This technique was used 
for perturbations of the Laplacian by Jager 10 and Saito. II We 
will have more to say about it in Sec. VII, where some possi
ble extensions of the present work are also discussed. 

The limiting absorption principle for H is stated and 
proved in Sec. IV. For the perturbation-theoretic argument 
we need to study the invertibility of I + R o± ( A. ) V, where 
R o± (A. ) are the limiting values of (Ho - Z)-I. 

In the proof we use Lemma 4.3, which ensures the in
vertibility of these operators except for a finite (in a compact 
interval) number of points A., which represent eigenvalues of 
finite mUltiplicity. 

Section V is devoted to the proof of this lemma, includ
ing the rapid decay of eigenfunctions. This is technically the 
hardest part of the paper. The idea here is to use a bootstrap 
procedure for solutions of (Ho - A. )u = - Vu, along with a 
spectral decomposition of Ho. Thus, we upgrade first the 
decay rate of individual components of u, and then patch 
them up together, to yield an estimate for u. In Sec. VI the 
existence and completeness of wave operators are derived 
from a general theorem of Kato and Kuroda12 and the limit
ing absorption principle. 

Finally, let us list our assumptions on the basic one
dimensional potential Vo(t): 

(Vo) Vo(t)EL 2(R hoc and Vo(t) = VL (t) + Vs(t), where 
(VL 1) VL (t )EC 2( - 00 ,0]nC 2[0, 00 ) and with some 

8>!, 
(1 + IVL (t )I)-I(d Idt)i VL (t) = 0 (It I-il») 

as It 1-00, j = 1,2. 
Note that we allow a finite jump at t = 0. 
(VL 2) VL (t ) is strictly decreasing on ( - 00 ,0], [0,00), 

and there exist constants T, Co, 8 1 > 0, and c> 1 such that 

(i) ct 2;;. IVL (t)1 ;;.c-Ilt 11)\ It I;;. T, 

(ii)- V~(t);;'co(1 + IVL(tlilt-I, t;;.T. 

(VS) For some 82 >0, 

IVs(t)I(1 + IVL(t)I)-J/2 = O(lt I-I-I),) as It 1-00. 

It follows from Ref. 13 that the restriction of 
Ho = - L1 + Vo to C (f(Rn) is essentially self-adjoint. Its 
spectrum extends over the entire real axis and is absolutely 
continuous. 

The detailed assumptions on the potential Vare given in 
Sec. IV [see (4.1) for a simplified version]. 

II. THE LIMITING ABSORPTION PRINCIPLE FOR Ho 
Let! = [a,p] be a finite interval on the real line. We set 

[} +(1) = [zlRe zEl,O < 1m z< 1), 

11 +(1)= = [zIRezEl,O<lmz<IJ. 

In this section we study solutions of 

(Ho - z)u = J, zEfl + (1). 

(2.1) 

(2.2) 

Ho is self-adjoint; hence for 1m z > ° andfEL 2(Rn) the 
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solution u = (Ho - z)-' f = Ro(z)fis uniquely determined 
in L 2(Rn ). In fact, standard theorems on the regularity of 
solutions to elliptic equations imply that uElI 2(R nhoc, where 
H 2 is the space off unctions having L 2 distributional deriva
tives up to second order. 

We intend to show that, using a suitable topology, Ro(z) 
can be extended continuously to 11 + (I). To this end, we 
introduce the following norms for UEC O'(Rn). We denote 
x = (x,,x')ERn, x' = (x2, ... ,xn)' Recall that VL (x,) is the 
smooth part of Vol x d. 

Let 7,aER and UEC O'(Rn): 

Ilull;,a = [",Ln-I (l-x,f"(1 + IVL(xdl)-' 

X lu( x"x'W dx, dx' 

+ l'" L n- I (1 + x,)2a(1 + IVL (x,JI) - 112 

X lu( x,,x'W dx, dx', 
(2.3) 

Illulll;,a = [",Ln_1 (l-x,)2,. 

X [(1 + IVL(x,)I)lu(x,,x'W+ I::,n dx,dx' 

+ L'" Ln-I (1 +xd
2a 

(2.4) 

X(1 + IVL(xdl)'/2[1u(x"x'W 

+ (1 + IVL( Xdl)-'I::, n dx, dx', 

Illulll~,,.,a = Illulll;.a + IIHoull;,a' 

A norm similar to II 11,.,a was employed by Yajima'4 for 
the Stark case VL (x, ) = - x,. 

Denote by !fIT,a' CPT,a' CP2.,.,a the completions of 
CO'(W) under II IIT,a' III IIIT,a,111 1112,T,a' respectively. 

We shall prove: 
Theorem 2.1: LetfEC O'(W), zEfl +(I) and u = Ro(z)J 

Then for every 7 > 1, U > ~ there exists a constant C (depend
ing only on U,7, I, and the operator) such that 

Illull kT, - a<C Ilfll,.,a· (2.5) 

Thus Ro(z) can be extended by continuity as a map in 
B (!fI,.,a ,CP2,,., _ a)' for every zEfl +(I). 

Furthermore, for every 7' < 7 the operator-valued map 
z-Ro(z)EB (!fI,.,a,CP2,,.,, _ a) can be extended continuously to 
11 +(I), where the operator space is equipped with the uni
form topology. This extended map will be denoted by R 0+ (z). 

In the course of the proof, we shall see that functions of 
the form R 0+ (z)J, fE!fI,.,a' satisfy a "radiation condition" in 
the x, direction. In fact, this condition will be employed to 
prove uniqueness for solutions of (2.2). 

Observe that if we establish the theorem for some u, > ~, 
then it holds true for every u> u,. In what follows we there
fore assume that u is always subject to the following restric
tion. 
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~ < u < min( 1 + 15 1 + 15, 1 + 152 1 + Co ,215 _ ~). 
2 2' 2' 2' 2 2 

(2.6) 

The constants on the right-hand side are those appear
ing in the assumptions on VL , Vs in the Introduction. 

The proof of Theorem 2.1 is rather long. It will be ob
tained in the next section as a result of certain estimates for 
solutions of (2.2) with specified asymptotic behavior, which 
we call "radiative." These estimates (and uniqueness and ex
istence) of the radiative solutions will be the contents of Lem
mas 2.3, 2.4, 3.1, preceding the proof of the theorem. As a 
matter offact, the estimates we obtain are stronger than (2.5) 
in the sense that they also provide some information on the 
first-order x' derivatives of u. 

Taking the Fourier transform with respect to x' we see 
that Ho is unitarily equivalent to the direct integral 

Ho':::::.! EIl(-~+ Vo(xd+ 15"1 2)d5": 
R n-I dxi 

(2.7) 

The direct integral is self-adjoint in S R n ~ I Ell L 2(R ) d5' '. 
Theorem 4.1 of Ben-Artzi '5 implies that, for every 

5"ER n - ',Ho,s' is self-adjoint inL 2(R ) and its essential spec
trum is R and is totally absolutely continuous. 

The direct integral in (2.7) may be viewed as an ordinary 
differential operator with operator-valued coefficients in 
L 2(R,x), where X = L 2(R ~,- I). We shall denote by II Ilx and 
( , )x the norm and scalar product in X. 

Equation (2.2) now takes the form: 

( -~+ Vo(x,) + 15"1 2-Z)U(X,,5")=f(X,,5"), 
dxi 

zEfl + (I). (2.8) 

[We retain the same notation u,f for the partial trans
forms.Since the norms in (2.3)-(2.4) are given in terms of 
Ilu( x,,.lIIL'IR n- I), this will make no difference in view of the 
Parseval relation.] 

Let R ± = ( x ,/ ± x,;>O). For a functionf defined on 
R, denote by f ± its restrictions to R ± . Let 
f EL 2(R,x hoc> rER, and '1/( x d > 0 be a continuous function 
on R. We define the following norms: 

Ilf ± II; =! (1 + Ix,W'llf( xdlli- dx" 
Ric 

Ilf ± 11,,'7 = 11'1/ 112 f ± 11,· (2.9) 

We now set: 
C O'(R,x)-X- valued, compactly supported and infi

nitely strongly differentiable functions on R. 

C O'(R ± ,x )-Restriction of C O'(R,x) to R ± . 

L ;(R + ,x )-Completion of C 0' (R + ,X) with respect 
to Ilf± 11,· - -

L ;,'7 (R ± ,x )-Completion of C 0' (R ± ,x) with respect 
to Ilf ± 11,,'7' 

H '(R,X) = {f I~ 2(R,x), fEL 2(R,Y)}, 
dx, 
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where Y is the domain of multiplication by Is'l in 
X = L 2(R J ,- I). 

We suppress the symbol X in the case X = C. 
Going back to Eq. (2.8), we apply in R ± transforma

tions given by a change of variable: 

dr=Q± dx 1, xIER±, 

(2.10) 
Q± (XI,z) = [± [z- VL(X I)]j1l

2
. 

Here and below we take the branch of the logarithm 
which is defined and continuous in C \ ( - 00 ,0]. Thus, ZI/2 
and Z1l4 are continuous and positive across the positive real 
axis. 

_ Note that Q ± are well defined with Re Q ± > 0 for 
zEfl + (I) by rearranging, if necessary, the sum Vs + VL and 
allowing for a finite jump of VL at x I = o. 

The new variable r traces out curves C ± (z) in the com
plex plane, parametrized by XI. Using (2.10), Eq. (2.8) can be 
rewritten as (see Ben-Artzi 16) 

( - :; + F ± + P ± + 1 )v ± = g ± ' (2.11) 

F± =Q;;;2Is'1 2, (2.12) 

v ± = Q 1~2U ±' g ± = Q ;;; 3/2/ ± ' (2.13) 

P± =O(IQ±I-I(l+lxl l)-'-E as Ix l l---+00,(2.14) 

E = min(2<5 - 1,c52) (see the assumptions on VL ). 

The differentiation d / dr in (2.11) may be interpreted as 
performed along C ± (z) or else replaced byQ ;;; I d / dx I. 

In the sequel we shall need the following weight func
tion 

(2.15) 

Note that we have a constant c> 1 so that uniformly in 

zEfl + (I) and xlER ± 

± 1m Q ± (xl,z»O, 

C-lliJ(xtl<IQ± (xl,z)I<cliJ(x I ), 

Id~, Q± (X I ,z)I<CliJ(Xtl(l + Ixll)-O 

[(2.18) follows from assumption (VL 1) above]. 

(2.16) 

(2.17) 

(2.18) 

In what follows we refer to the pair (v ± ,g ± ), defined 
by (2.13), as the one associated with (u,J). They are X-valued 
functions defined on R ± . 

U/EL 2(R,x hoc, wesaythatuisa weak solution of(2.8)if 
for every tpEC O'(R x , XR F I) we have 

L(U(xl,),(Ho,,;' -z)tp(xI,))x dX I 

= L (f( xl,),tp (xl,·))x dx l· 

In the following definition we use the terminology of 
Saito l7: 

Definition2.2:Let/EL 2(R,xhoc andletuEH I(R,xhoc be 
a weak solution of (2.8). Let (v ± ,g ± ) be the functions asso
ciated with (u,f) by (2.13). 

u is called the radiative/unction corresponding to (/,z) 
[denoted u = rad(f,z)] if 
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:r v + - iv + EL ; _ dR +,x ), some (7 > !, (2.19) 

d 2( dr v_, v_EL T R_,x), some 7> 1. (2.20) 

We could, of course, formulate (2.19)-(2.20) in terms of 
the function u. However, this would lead to a more compli
cated form, involving Q ± ' and would also complicate the 
estimates below. 

The following two lemmas deal with the uniqueness 
and existence of the radiative function when/is suitably 
restricted. 
Lemma 2.3 (Uniqueness): If u = rad(O,z), then u=O. 
Lemma 2.4 (Existence): Let/EC O'(R x , XR F I). Then 
u = rad(/,z) exists, for every zEfl + (I). 

IfImz>O, u = Ro(z)! 
Pro%/Lemma2.3: Fora.e. S'ER n - I the function u( XI'S') 
satisfies the equation 

(Ho.s' -z)u(xl.S') 

_(- d: + Vo(xtl+ Is'1 2 -z)u(XI,S')=0 (2.21) 
dX I 

and the corresponding functions v ± (x I ,S ') satisfy the one
dimensional radiation conditions 

:r v+( XI'S') - iv+( xl,S')EL;;'_ I (R+), (2.22) 

:r v_(xl,S'). v_(xl·S')EL;(R_). (2.23) 

The asymptotic behavior of solutions of (2.21) is readily 
derived from Ref. 18. It follows that, for X I >a > 0, a large 
enough, there are two linearly independent solutions tpl,tp2 
such that 

tpl(XI,S',z)= [z-Isr- Vdxtl]-1/4 

xexP{ilx

'[Z-ls'1 2 
- VL (S)]1/2 dS } 

X [1 + h (XI'S ',z)], (2.24) 

+!V~(xtl[z-ls'12- VL(XI)]-Ij 

Xtpl· [1 + h ,( xl,S',z)], 

Ih(x"s',z)1 + Ih,(x"s',z)1 =0((1 +Xd- I- E) 

tp2 is obtained from tp I by changing ito - i and replac
ing h,h I by functions with similar properties. 

It follows easily from the assumptions on VL that 

[z- VL(xtl]1/4[Z-ls'1 2
- VL(xtl]-1/4 

- [z-IS-'1 2 
- VL(xd]1/4[Z- VL(xtl]-1I4 

EL ;;'-1 (Xl>a) 

if (7 - ! is small enough. 
This implies that 
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1 d (Q 1/2 ) 'Q 1/2 EL 2 (R) -- +CfJI -I +CfJI 00-1 +. 
Q+ dX I 

A similar computation shows that CfJ2 does not satisfy 
(2.22) for any (7 > ~ so that for some constant a = a(s' ,z), 

U( xl·s') = aCfJI( XI'S' ,z). (2.25) 

Turning now to the asymptotic behavior of solutions of 
(2.21) for X I"; - a, it follows again from Ben-Artzp9 that 
there exist two linearly independent solutions "'I' "'2 such 
that, for XI"; - a, 

"'I( xl,s',z) = [VL ( xI! + Is'1 2 - z] -1/4 exp(J:'a(VL(S) + Is'1 2 - Z)1/2 dS)[1 + g( xl,s',z)], (2.26) 

~~: (XI'S ',z) = {[ VL (xd + Is '12 - Zp/2 - ! Vi( x l )[ Vd XI! + Is '12 - z] -I}"'I'[ 1 + gl( XI'S ',z)], 

Ig(xl,s',z)1 + Igl(xl,s',z)1 =O((I-xl)-I-, as Xc .... - 00, £>0. 

"'2 is obtained from "'I by multiplying the exponent and the first term in [ ... J by ( - 1) andreplacingg,gl by functions with 
similar decay properties. 

Thus "'I and its derivative decay exponentially as X 1- - 00, whereas "'2 blows up exponentially. The same consider
ations as those leading to (2.25) now imply 

u( XI'S') = /3"'1 ( XI'S' ,z). (2.27) 

Assume first that 1m z > O. It follows from (2.25), (2.27), and the asymptotic behavior of CfJI,"'1 that u( XI'S') is an eigen
function of H o.s· , with a nonreal eigenvalue z, unless u( XI'S ')=0. 

Assume now thatz = :iE!. As is well known, the Wronskian W(u,u) is independent of XI' However, using the asymptotic 
expressions above, we find 

W(u,u) = W(aCfJI' a CfJd = - 2ilal 2
, 

W(u,u) = W(f3"'I' /3"'1) = O. 

This leads again to u( XI'S ')=0. 
Q.E.D. 

Proof of Lemma 2.4: Set 

For s'M set u(xl,s')=O. 

For S ' EA we solve (2.21) using the kernel K (s,t,s ',z) of (If. o.s· - z) - I. Since A is compact, it follows from Ben-Artzi2o that K 
can be extended as a continuous function onR X R X A X n + (/). Furthermore, for some continuous function w(5 , ,z) that never 
vanishes on A X iJ + (1) we have 

K (s,t,s',z) = K (t,s,s',z) = w(s ',z)CfJI(S,S' ,z)"'I(t,S ',z), s> t. 

The lemma now follows from the fact that CfJI''''1 satisfy (2.22), (2.23), respectively, as observed in the process of the 
previous proof. Q.E.D. 

III. ESTIMATE FOR THE RADIATIVE FUNCTION AND 
PROOF OF THEOREM 2.1 

We now give an estimate for U = rad(f ,z). However, we 
formulate it in terms of the associated pair (v ± ,g ± ) [(2.13)]. 
We use the weight function ro( XI) of (2.15) 

Lemma 3.1: Let r> 1, (7 as in (2.6) andzEfl +(1). Let 
fEI/IT •oo . Then: 
(a) u = rad(f,z) exists and is unique. The radiation condi
tions (2.22), (2.23) are satisfied with the same r,(7. 
(b) There exists a constant C, depending only on r,(7, 1, and 
the operator, such that 

955 J. Math. Phys .• Vol. 25. No.4. April 1984 

IIv+ll-oo + Ilv-IIT.W + 11:,v+ - iv+ 11 00 - 1 + 1 I:,v-I IT.w 

+ IIls'lv+ll oo _l •w-2 + Ills'lv-IIT.W-' 
";C(llg+ll oo•w2 + Ilg-IIT.W)· (3.1) 

Proof In the process of the proof, we denote by C a 
generic constant that depends only on (7,r, 1, and the opera
tor. 

The uniqueness ofrad(f,z) was proved in Lemma 2.3. 
Assume first thatfEC O'(R", XR F I). The existence of 

rad(f,z) was proved in Lemma 2.4. In the proof of that 
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lemma it was shown that u( XI'S') is a scalar multiple of 
IPI(XI,S',z) [resp.tPI(xI,s',z)]forxl>x~ (resp,xI< -xn 
Thus u and its derivative decay exponentially as x I~ - 00, 

whereas the validity of (2.22) with the same u follows from 
(2.24) and (2.6). We now prove that 

11:/+ -iV+lla_1 + II Is'lv+ll a _ I.",-2 

<C(lIv+ll_a + IIg+lIa,w2)' (3,2) 

II~V-Ilr,w + Ilv-llr,w + II Is'lv-llr,w-' 

<C(lIg-llr,w + Ifi._,IV-(X I ,S'Wdxl ds'lll2). 

(3.3) 

Here a < 0 is independent ofv,g. To establish (3.2), write 
Eq, (2.11) in the form 

d(, .) .(' .) F P -drV+-lV+-IV+-lV++ +v++ +v+=g+ 

(
, _ dV+) v+ ---. 

dr 

Multiplying this equation by Q+ and taking the real 
part of its scalar product (in X) with v'+ - iv +' we get 

- J...~lIv'+ - iv+ll~ + (1m Q+)llv'+ - iv+ll~ 
2 dX I 

+ Re Q:;: 1(ls'12v+,v'+ - iv+)x 

+ Re( P +Q+v+,v'+ - iv+)x 

= Re(Q+g+,v'+ - iv+)x' 

1m Q+>O follows from (2.10) and 

Re Q:;: 1(ls'1 2v+, - iv+lx 

= IQ+I- 2 (1m Q+)(ls'1 2v+,v+)x>0, 

Re Q :;: 1(ls '1 2v+,v'+ )x 

=J...IQ+I-2~11 Is'lv+ll~ 
2 dX I 

so that 

-J...~lIv'+ -iv+ll~ +J...IQ+I-2~11 Is'lv+ll~ 
2 dX I 2 dX I 

<1(P+Q+v+,v'+ -iv+)xl + I(Q+g+,v'+ -iv+)xl· 

Multiplying this inequality by (1 + xlfa- I, integrating 
over [O,XI]' and noting (2.14) (where 2u < 1 + E), we have 

(u-+)f'(1 +t)2Ia- I1 1Iv'+ -iv+ll~dt 

_J...(X,~ [(1 +tfa - IIQ+I- 2 ]11 15'lv+ll~dt 
2 Jo dt 

<~(1 + xd2a - I llv'+ - iv+ll~ 

+ ~ IQ+(0)1- 211 15'lv+(01l1~ 

+Clllv+ll_allv'+ -iv+lla_l) 

+ Ilg+ll aw21I v'+ - iv+lla_ d, 
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where on the right-hand side we have used the Cauchy
Schwartz inequality and (2.17). 

Our assumptions on VL and (2.6) imply that for some 
a>O, 

~ [(1 + t)2a- I IQ 1- 2 ] 
dt + 

< -k(l +tf1a-l)liJ(t)-2, k>O, t>a. 

Standard elliptic estimates imply that since 
uEll2(R nhoc the trace 15 'Iv+( Xl) can be estimated by 

II 15'lv+(xllllx <Clllv+ll_a + IIg+lla,w2), O<xl<a. 

Also, the radiation condition (2.19) yields 

liminf(1 +xd2a - I llv'+ -iv+ll~ =0. 
x 1-+ 00 

Incorporating these considerations in the last inequa
lity and letting Xl~ + 00 through an appropriate subse
quence yields (3.2). 

To prove (3.3) multiply Eq. (2.11) by (1 - xd2rQ_ and 
take the real part of the scalar product (in X) of the resulting 
equation with v _. Integrating over ( - oo,X I)' Xl < 0, we ob
tain 

Re I:'"" (1- t fr[ - (d~:/-'v-t + (Q = lis '1 2
v_,v_)x 

+ (P _Q_v_,v_)x + Q_llv _II~] dt 

J
X, 

= Re _ "" (1 - t )2r(Q _g _,v -)x dt. 

Now, 

Ref x, _(1_t)2r(d
2

V_,v_) dt 
- "" dt dr x 

= I:'"" (Re Q_)(l - t )2rll d;; II: dt 

- 21' Re (1 - t )2r-1 --=.,v_ dt Ix, (dV) 
- "" dr x 

Note that, for some c> 0, 

Re Q_ >cIQ_I~oo as XI~ - 00 

and for every 'TJ > 0 small we have some a < 0 such that 

I( P _Q_v_,v_)x 1<'TJllv-II~, t<a, 

1(1 - t )2r - I( d;; ,v - ) x I 
<'TJ(1 - t)2r(lIv_lI~ + II d;; 11:), t<a, 

I(Q_g_,v_)xl<'TJIQ_lllv_lI~ +J...IQ_llIg_II~. 
'TJ 

For a <Xl<O, the trace norms Ilv_llx,lldvjdrllx, and 
II 15' Iv -llx can be estimated as before by the right-hand side 
of (3.3). Inequality (3.3) now follows from the above consid
erations and (2.17). 
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Having established (3.2)-(3.3) and still with 
fEC ;(Rx1 xR F I) we proceed to show that, for xl;;;.a > 0, i: (1 + t)-2u(lIv+(t li li + II d;; II:) dt 

To prove (3.4), we use that 

II d;; - iv + I I: 
= II d;; I I: + Ilv+lli - 2 Im( d;; ,v+ t· 

(3.5) 

From Eq. (2.11) we have 

1m J: ( - d;~ + ,v + t dr 

+ 1m J: [(F+v+,v+)x + (P +v+,v+)x -llv+Ili-] dr 

= 1m J: (g+,u+) dr, 

where i r 

means integration along C + ( x l,z), as determined 

by (2.10). 
Now, 

J: -( d;~ + ,v + t dr 

Multiplying by (1 + t) - 2u and integrating over ( x 1,00 ) 

yields (3.4), when (3.2) is noted. 
We can prove now (3.1) forfEC ;(RxI XR F I). In view 

of (3.2)-(3.3) we only have to prove that 

lIu+Lu+ If L.-I Iv_(xl,s'Wdxlds' 1112 

<COlg+llu,,,,2 + Ilg-llr,,,,)· 

Suppose (3.6) is false. Let 

(3.6) 

! fkJ~C;(RxIXRt,-I), !zkJ~ii +(1) be sequences such 
that the corresponding functions! Uk,gk J satisfy 

Without loss of generality we assume Zk -+Z. Noting 
(3.4), we have 

(fob IIUk+ IIi- dX I) 112 + ([IIVk-lIi- dxJ12;;;. ~, 
where b > ° is independent of k. 

Let X (B I be the characteristic function of B. It follows 
from (3.2)-(3.3) that 

IIx(!s'I;;;'A lu-Il r,,,,- 1 + Ilx(!s'!;;;'A lu+ll u_ I ,,,,-2<2C IA. 

Hence, the last two estimates imply that for some fixed 
positive b,A., 

957 J. Math. Phys., Vol. 25, No.4, April 1984 

= flQ ~III :: I I: dX I 

_ (dV+ ,v+) + (dV+(O) ,v+(O)) ; 
dr x dr x 

hence 

Im(dV+ ,v+) 
dr x 

+ Q ~ l(js'1 2v+,v+)x - Q+llv+lli-] dX I 

+ 1m iXI[( P +Q+u+,v+)x - (g+Q+,u+)x] dX I 

+ Im( dU;;O) ,u+(O)) = 11 + 12 + 13, 

1m Q+;;;.O implies /1<0. 

Also (2.14), (2.17), and the trace estimates above imply 

1121 + II31<C(llv+112_u + Ilg+II~,(2)' 

From (3.5) we now have 

[f"x(s'I<A)Uk + IIi- dXlr2 

[[ ]
112 1 

+ a Ilx(!s'I<A )Vk _ IIi- dX I ;;;'4' 
However, in the Appendix we prove that for every 

bounded set D~R t'- I and every pair of bounded intervals 
J ± ~R ± we have 

where C depends only on J ± ,D. With U = Vk' g = gk' (3.7) 
is in obvious contradiction to the previous inequality. 

It now follows from the definition (2.3) ofthe norm 
II IIr,u' definition (2.13) of g ± ' and relation (2.17) that the 
right-hand side of(3.1) is less than C 11I11r,u' If 
! fj J ~C ;(RxI XR F I) is an approximating sequence tofin 
'/Ir•a and uj = rad(fj ,z), it follows from standard elliptic esti
mates that! uj J is bounded in H 2(Rn )Ioe' Rellich's compact
ness theorem guarantees the existence of a subsequence, say, 
lUI J, which converges to a limit U in H I(Rn hoc. U is a weak 
solution of (2.8), and, applying (3.1) to (ul,Ii), we see that it 
satisfies the radiation condition. Hence U = rad(f,z) and the 
uniqueness of the radiative function implies that in fact 
uj-+u inH I(Rn hoe. This proves the existence ofrad(f,z) and 
the validity of(3.1) for/e'/lr,u and concludes the proof of the 
lemma. Q.E.D. 
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ProololTheorem 2.1: Let/EtJlr.u and denote by 
u = R 0+ (z)1 the function rad(f,z) obtained in Lemma 3.1. 
Taking into account only the first four terms on the left-hand 
side of(3.I) and noting (2.4), (2.13), (2.15), (2.18), and the 
Parseval relation, we obtain 

Illu Illr. - u <C IVllr.,,· 

Obviously, uEll 2(R" hoc and Hou = zu + f, which 
yields (2.5) since IIull r. _" < II lu II Ir. - 0"' 

It follows from the construction of rad(f,z) that if 
1m z> 0 and fEC 0' (R XI X R ~ ,- I), then 

(Ho - Z)-I 1= Ro(z)1 = R 0+ (z)1 (3.8) 

This extends to any IEtJlr,,, c;;,L 2(R") by continuity. 
Finally, we prove the stated continuity of the map 

z_R 0+ (z) on 71 + (I). Due to Hou = zu + I it suffices to 
prove with if>2.r'. _" replaced by if> r'. _ ,,' 

Thus,ifzk-zEfl +(1) and/EC 0' (RxI XR F I), we need 
to show that, for every € > 0, 

III [R o+(z) - R 0+ (Zk)] 1IIIr'. -u <€IVIIT.,,' k>K(€}. 
(3.9) 

Observe that by (3.4), (3.1), and r' < r we have 

Illx(lxll>b)[ R o+(z) - R 0+ (zd] 1IIIr'. -0" <j€IVllr.u, (3.10) 

where b > 0 does not depend on k. 
Using again standard elliptic estimates for the slab 

Ix II <b we have, uniformly in zEfl + (I), 

f~ J lis 'I [ u( XI'S ') + ::1 ( x JoS ') ] II: dx I 
<C(IVII;." + IIull;,,_,,) 

<CIIVII;." [u = R 0+ (z)/]· (3.11) 

Indeed, u is a solution of (Ho - z)u = I and the slab 
Ix II <b can be divided up into a disjoint union of finite rec
tangular boxes in each of which the L 2 norms of derivatives 
can be estimated in terms of the norms of u,1 The constants 
are all equal since Ho is invariant under translation in x' 
directions. 

From (3.11) we obtain 

Illx(ls '1>..1. )x(lxll<b) [R 0+ (z) - R 0+ (zk)]/IIIT. _" 

< j€IVllr.,,' zEfl +(1), (3.12) 

where A. > 0 is sufficiently large, independent of z,1 
In the Appendix we prove that if Dc;;, R ~ ,- I is bounded 

and Jc;;,RxI is a bounded interval, then, uniformly in 
zEfl +(1), 

II IX(s'ED)X( xIEJ)[ R o+(z) - R 0+ (zk)]/1 IIT.-O" 

<j€IVllr.O" 

ifk>K(€). 
Combining (3.10), (3.12), and (3.13), we obtain 

(3.13) 

(3.9). Q.E.D. 
In the next section we shall need the following simple 

lemma, which asserts that the solution u of (Ho - z)u 
= f, 1m z > 0, decays at - 00 "faster" thanl Recall that by 

assumption (VL 2)(i) cu(t» It IE as It 1-00 ,0 <€ < ~81' Also, 
we let q;(t )EC"" (R), q; (t ) = 1 [resp.q;(t) = 0] for 
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t<O[resp.t> 1]. Note that the norm inL ;(R_,x) is defined in 
(2.9). 

Lemma 3.2: Let/EL 2(R")nL ;(R_,x), some rER, and 
for zE!1 + (I) let u = Ro(z) I Then q;UEif> T + E.O and 

111q;ull ITH.o <C(lV_ liT + (1m z)-IIVIIL2(R"))' (3.14) 

If/EL 2(R" )n tJlr.O, then q;uEif> r.O' 
Proof Assume first that/EC O'(RxI xR F I). Observe 

that (3.3) was proved for every rER. In particular 

II ~:~ II r+ E + II u - II r H.w2 

<c(ll:r V- rH.w II + IIv-IIrH . ., )<C(IIg-IIr+E.w 

+ If L"-I Iv_( Xps'W dX I ds'11I2) 
<C(lV-IIr + (Imz)-IIVII L2(R"))' 

where the first term was estimated in view of (2.13) and the 
second by IIRo(z)II L2(R") «1m Z)-I. 

Also, since the support of q; in R + is bounded, we get 
from standard elliptic estimates 

IIq;u+llo . ., + 11q; ~:7110.w-1 <C(II u ll L2(R") + IVIIL2(Rn)) 

<C(lmz)-IIVIIL2(R n)' 

Combining the two inequalities (3.14) follows for 
IEC O'(RxI xR F I). A general/can be approximated in 

II IIL2(Rn) + II t~R_.X) by such functions (truncate and 

mollify) Ilk J. Applying (3.14) to Uk = Ro(z)lk and using 
that uk-u in H I(R" hoc, (3.14) follows. 

The last statement is just (3.3) as observed above for 
r=O. Q.E.D. 

IV. THE LIMITING ABSORPTION PRINCIPLE FOR H 

Let H = Ho + V, where Ho = L1 + Vol xtl and 
V( x) = V( xl, ... ,x") is a real function depending on all co
ordinates. 

For r,sER letpr.s( xtl#O be a smooth function, such 
that 

{
(I + Xi)'l2, x l< - 1, 

Pr.s( xtl = (1 + xijsl2, XI> 1. 

Our assumptions on the multiplication operator V are 
the following: 

(V 1) V is relatively compact with respect to H o, i.e., 
V(Ho + i)-I is compact in L 2(R"). 

(V 2) For some f3 > 0, the multiplication operator 
PP.I +P V is compact as a map from if>2.0,O into tJlo.o and 
PO.(I + P)/2 V maps D (Ho) into tJlo,o' 

Remark 4.1: It is an easy matter to check that multipli
cation by Pr.s( Xl) is continuous (in fact, bijective) from 
if>2.r.u-if>2.r _ r.O"- sand tJlr,O"-tJlr _ r.O"- s' [This is why du/ 
dX1 was thrown into the definitions (2.3)-(2.4) to avoid inter
polation estimates.] Thus, assumption ( V 2) implies that for 
every r,u, multiplication by V is compact from 
if>2.T.0"-tJlr + p,O"+ I +p' Note that (V 1) implies that 
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H IC o(R") is essentially self-adjoint (Kat021 ). We retain the 
notation H for its unique self-adjoint extension in L 2(R" ). 

A sufficient condition for (V l}-( V 2) is provided by the 
following (see also Herbst,22 Yajima23): 
V( x) = VI ( x) + V2( x), where VI( x) is compactly supported 
andcompactfromH 2(R" )intoL 2(R"). V2( X) is bounded and 
satisfies 

1V2(X)I<;CM(x'){X(x l <;0)(1 + IVL(XI)I)(1 +Xi)-P'12 

+ X( xl>O)[ 1 + IVL (xdl] 1/2(1 + xi) - (1 +P')i2}, 

{3'>{3, M(x')-o as Ix'l-co. (4.1) 

For the Stark case (VL (XI) = - xd this is in accordance 
with the assumption of Yajima. 24 

By a well-known theorem ofWeyl25 the relative com
pactness of V implies that the essential spectrum of H is 
equal to that of Ho, namely, the entire real line. However, in 
general we cannot expect in this case the absence of eigenval-
ues. 

Let I, lJ + (I) be as in (2.1). By Theorem 2.1 and Remark 
4.1 

T(z): = R 0+ (z)VElJ (<P2 ,T, _",<P2•T",,) 

is compact for T' < T + {3, I < 20" < 1 + {3, and the operator
valued map z_ T (z) is continuous in lJ + (I) (the uniform to
pology is used for the operator space). For 1m z > 0 let 
R (z) = (H - Z)-I. The resolvent equation implies 

R (z) = [I + T(z)) -IRO(Z). (4.2) 

Observe that [I + T(Z)]-I exists in B (<PZ.T, _ ,,), 
1 < 20" < 1 + {3, T> I by the Fredholm-Riesz theory, since 

C o(R" )~RangeRo(z)~Range[I + T(z)]. 

Analogously to Ro(z), we would like to extend R (z) con
tinuously to lJ + (I), in a suitable topology. The following 
theorem states that this is possible, if we avoid finitely many 
eigenvalues in I. 

Theorem 4.2: Let JY be the set of eigenvalues of H in I. 
Then JY is at most finite (including multiplicity). If U is an 
eigenfunction associated with AEA', then UE<P2,'1,8 for every 
real 1],0. 

Theoperator-valuedfunctionz-R (z)ElJ ('/'T"'<P2T' _ u) 
can be extended continuously to lJ +(I)\.JY, if ~>! ~d 
I < T' < T. The operator space is equipped with the uniform 
topology. 

Proof By (4.2) and Theorem 2.1 it suffices to study the 
invertibilityof! + T(A) inB (<P2,T, -,,). Observe that proving 
the statement for some 0"0> ! implies its validity for all 
0" > 0"0' Thus we shall assume that 0" satisfies (2.6) and 
20"< 1 + {3. 

Supposethat[I + T(A )]-1 exists for someAEl. (4.2)im
plies that R (z) can be extended as stated to a neighborhood of 
A in lJ +(1). In particular (R (z)f,f) is continuous near A for 
fEC o(R"). Using the well-known formula26 

(E(A I.A2)J,f) = lim J... t'2 
Im(R (p + i€)J,f) dJL 

£-+0 + 1T ))., 

(4.3) 
[E (0) being the spectral family associated with H), it follows 
that A lies in an interval which is entirely contained in the 
absolutely continuous spectrum of H. Hence 
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JY ~ I A IAEl, I + T (A) not invertible in B (<P2,T, _ u) }. 

(4.4) 

Since T (A ) is compact, I + T (A ) is noninvertible if and 
only if there exists a function UE<P2,T, _ u such that 

U = - T(A )u = - R 0+ (A )Vu. (4.5) 

We state now a lemma, the proof of which is postponed 
to the next section. 

Lemma 4.3: Let UE<P2,T, _ u satisfy (4.5) for some T> I 
and 0" satisfying (2.6) and 20" < I + {3. Then UE<P2,'1,8 for every 
1],OER. In particular, U is an L 2 eigenfunction of 
H, Hu = AU. Furthermore, there exists a constant C, de
pending only on 1/,0,1, and the operator, such that 

(4.6) 

Assuming this lemma, we can conclude the proof of the 
theorem, applying an argument similar to that of Agmon. 27 

Let I Uk J be a sequence of solutions of (4.5) for some 
Ak El, Iluk ilL 2(R n) = 1. By (4.6), I ud is bounded in 
<P2,'1,8' 1],0> 1; hence I VUk J is precompact in 1/1'1,8' and, as 
in the proof of (3.9), I Uk = - R 0+ (Ad VUk J is precompact 
in L 2(R"). Since they are all eigenfunctions of a self-adjoint 
operator, the set must be finite. By (4.4) JY is finite. 

Finally, let uEL 2(R") be an eigenfunction of H associat
ed with AEA'. If Z = A + to, 0 > 0, we have 

U + Ro(z)Vu = - tORo(z)u. (4.7) 

We want to show that VUEI/IT,,,, T> I, O">!. Observe 
that for some r,sER we have UE<P2",s' Indeed, Vol XI) = O(xi) 
so that VouEI/I _ 2, _ 2 and -.1u = Hou - VouEI/I - 2, - 2' 

Hence VUE 1/1, + p,s + I + p' Applying Lemma 3.2 we have from 
(4.7) that UE<P, + '1,s and Hou = - Vu + AUEI[I, + '1,s' where 
1/ = min(€,{3). 

Thus 

UE<P2" + '1,s' 

Repeating this procedure we obtain UE<PZ,T.S for T> 1. 
Since uEf) (H ) = D (H 0)' assumption (V 2) implies 
VUEl/lo,u' O">~; hence VUEI/IT,U' The limiting absorption 
principle can therefore be applied to Ro(z) Vu. 

As 0-0+ , the left-hand side of (4.7) converges to 
qJ = U + R 0+ (A )VUE<PZ,T,8[0 = mints, - 0")]. The right
hand side is bounded inL 2(R" )(IIRo(zllIL2(R n) <; 1/0) and thus 
has a weakly convergent subsequence which necessarily con
verges to qJ. Hence tpEL 2(R"). But 
(H 0 - A )qJ = (H - A )u = 0, which implies qJ = 0 (H 0 has no 
eigenvalues), i.e., U = - R 0+ (A) VUE<P2•T, _ u' Lemma 4.3 
can now be applied to conclude that U decays of any order 
and verifies (4.6). This concludes the proof of the theorem. 

Q.E.D. 
Note that by (4.2) the functions in the range of 

R + (z), zEfl + (I ), are radiative functions in the sense of De
finition 2.2. 

Corollary 4.4: The essential spectrum of H is the entire 
real axis. It is absolutely continuous apart from a possible 
discrete sequence of eigenvalues of finite mUltiplicity. The 
corresponding eigenfunctions are rapidly decaying as 
lXII-co. 
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v. RAPID DECAY OF EIGENFUNCTIONS 

In this section we prove Lemma 4.3. As observed by 
Herbst,28 the proof of this "division" lemma constitutes the 
hardest part in the proof of the limiting absorption principle. 
Our method is similar to the one used in Ben-Artzf9 and 
exploits a generalized one-dimensional eigenfunction expan
sion associated with Ho,s" rather than an expansion corre
sponding to the complete operator Ho. This enables one to 
treat more general cases of the basic operator on the underly
ing domain, where an eigenfunction expansion is not readily 
available (see Sec. VII below). 

We shall find it convenient to use here, along with the 
spaces IJIT,<7'tP T.U' tP 2,T,U' also their one-dimensional analogs, 
denoted, respectively, by Ip T,U' iP T,U' and iP 2,T,U' Their norms 
are obtained from (2.3)-(2.4) by omitting x' and f R n ,. 

Proof of Lemma 4.3: Set F = - Vu, By assumption 
(V 2) we have FEIJIT + fJ, _ U + 1 + fJ ~ IJIT + fJ,u' Hence Eq. (4.5) 
and Theorem 2.1 imply UEtP2,T + fJ, _ u' Continuing in this 
fashion we see that UEtP2,1), _ U for every 1JER. Without loss of 
generality we therefore assume UEtP2,T, _ U' 7> 1. It remains 
to show that - 0' can be replaced by any eER. 

Throughout this section we use the representation (2.8) 
for u,F. Let J~R F I. For a function u(XtoS ') we denote uJ 
= X(J)u. The proof of the lemma follows from the following 

two propositions. 
Proposition 5.1: If UEtP2,T,fJ satisfies (4.5) with e;;. - 0', 

then UJEtP2,T,fJ + l' for every bounded J~R ~,- I, where 
0< r </3 is fixed independently of e, J. 

Proposition 5.2: If UEtP2,T,fJ satisfies (4.5) with e;;. - 0', 

and if UJEtP2,T,fJ + 1'" for every bounded J, then UEtP2,T,fJ + 1" 

for some fixed 0 < r<ro, and 

(5.1) 

where r does not depend on e. 
Proof of Proposition 5.1: Let Ho,s' be the self-adjoint 

operator in L 2(R ) defined by (2.7). We recall some facts from 
Ben-Artzi30 concerning the spectral representation of Ho,s" 

Let R o;s' (A L = lim8-;:O+ (Ho,s' - A - it5) -I, where the 
limit exists in B( 1JIr+ fJ,u' tP2,T, _ u), ,1El. As already men
tioned in the proof of Lemma 2.4, this operator is represent
ed by a kernel K (s,t,s ' ,A ), which is continuous on 
R XR XJ Xl, and given explicitly by 

K ( t S',A ) = {W(S',A )9?I(S,S',A )tPI(t,S',A), s> t, 
s, , w(S',A )tPI(S,S',A )9?I(t,S /,,1.), sq, 

(5.2) 

where 9?I' tPI are given by (2.24), (2.26). 
Ho,s' is absolutely continuous and of multiplicity one 

over R, and can be diagonalized by means of an eigenfunc
tion expansion, Specifically, let Eo,s' (.) be the spectral family 
associated with Ho,s" There exists a unitary map of 
Eo,s' (I)L 2(R ) onto L 2(1) such that, for gEL 2(R ), 

UEo,s·(I)g(P): =gs'(P) = ;~ f:/(S)V(S,s',,u) ds, ,uEl, 

(UHo,.,Eo,s·(I)U -lgs' )(P) = ,ugs'(P)' 

where 
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(5.3) 

(5.4) 

and k (P) =1= 0 is continuous in I. 
Using the asymptotic behavior of tPI (which near + co 

is a linear combination of 9? I' q:.l) we see that for gE ijJ T,U' 7 > I, 
0' > ~,gs' (P) is continuous in I [the integral in (5.3) is absolute
ly convergent and continuous in,u by dominated conver
gence). 

Using the formula (4.3), we have, ifgEijJT.u, 

d
d (Eo.s· ( - co,,u )g,g) = ..!.. Im(R 0;.' (p )g,g) 
,u 1T 

= Igs'(PW, (5.5) 

Note that the middle term is well defined since 

gEijJT.U=:,>R 0;.' (A )gEtP T, - u' 

An application of the representation (2.7) and Eq. (4.5) 
gives 

1m in ,(R o;s-!,1 )F(xl,s'),F(xl,s')) ds' 

= Im(R 0+ (A )F,F) 

= Im(u, - Vu) = 0 

(the scalar product is well defined since UEtP2,T,fJ 

=:,>VuEIJIT,fJ+ 1 +fJ)' 
Noting (5.5), we conclude 

Im(R 0;.' (A )F(x1,s '),F(xtos ')) = Igr;-!,1 W = 0, (5.6) 

which holds for a,e. S 'EJ. (5.3), (5.4), and (5.6) imply that 
f RF(S,S ')tPI(S,S ',A) ds = 0 so that, from (5.2), 

u(x1,S ') = w(S /,,1. {tPl(XtoS /,,1. )l~F(S'S ')9?I(S,S ',A) ds 

- 9?1(X I,S /,,1. )l~ F(s,S ')tPl(S,S ',A) dS) (5.7) 

and, by differentiation, 

~ (XI'S ') = W(S',A)( dtPl rx

, F(s,s')9?I(s,s /,,1.) ds 
aX I dX1 Jx, 

- d9?1 1'>0 F(s,s ')tPI(S,S',A ) dS). (5.8) 
dX 1 Jx, 

It follows from our assumptions thatFJEIJIT,fJ+ 1 + fJ and 
the asymptotic estimates (2.24), (2.26) hold uniformly in 
S 'EJ, so that, with w(xtl defined by (2.15), 

1'''1(1 + xtl2
(0+ y)w(xtlluJ(xl,s /W dX 1 ds / 

<c 11=(1 + XI )2(0+ Y{l~W(S)-I/2IF(S's ') IdS)2 dX1 ds / 

<c L=(1 + xtl2 (fJ+ Y{i~ iW(s)-I(1 + sf'fJ+ 1 +fJ) 

IF (s,s 'w ds ds 'i~ (1 + s) - 2(0+ 1 + fJ) dS) dx 1 

<CIIFJII;,fJ+l+fJ since r</3· 

A similar computation using (5.8) shows that 
UJEtPT,fJ+ y' Also, by (4.5), HouJ = ,1UJ + FJEIJIT,fJ+ 1'; hence 
UJEtP2,T,fJ + y' 
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This concludes the proof of Proposition 5.1. Note that 
in the last inequality C depends on J, so that we cannot de
duce from it that UE<P2.T,e+ y' This is what we show next. 

Proof of Proposition 5.2: Since Hou = AU + F and 
FE'PT,e+ 1 +/3' it clearly suffices to prove that UE<PT.e+ y' with 
III 1I12,T,e + y replaced by III IllT,e + y on the left-hand side 
of(5.1). 

Note that, as has already been observed in the beginning 
of this section, T can be taken arbitrarily large, so that all 
integrations over R _ are justified. In such a case, assume 
that in (2.8)zis real, take the scalar product (inX) with u, and 
integrate over (- 00 ,XI) to obtain 

Im(u,duldx.)x = Im(f,u)x (1m z = 0). (5.9) 

In particular, in our casef = F = - Vu, and we have 
the important relation 

Im(u, dU) = O. (5.10) 
dX I x 

Transforming the equation (Ho - A )u = F as in (2.11), 
let (v,g) be the pair corresponding to (u,F). When relation 
(5.10) is incorporated into inequality (3.1) (note that Q ± are 
real), we get 

II d;; Ila-1 + IIv+lla_1 = II d;; -iv+lla_l 

<C IIFIIT,a<C IIFIIT.e+ 1 +!3' 

which implies, by (2.15), (2.17) that UE<P T,a _ 1 ~UE<P2'T,a _ 1 • 

Furthermore, the last inequality implies, in fact 

III u III T,a _ 1 < C III u 1112, T, - a' (5.11) 

We can now start our proof with (J = a-I + s, s;>O. 
Let W = (1 + x1)Su, x1;>0. In what follows we work only on 
R +. Thus, the norms defined in (2.9) will be used. For simpli
city, we suppress the index +, 

Clearly, w satisfies the following equation: 

( - £ + Vo(x.) + 15'12 - A )W = G, 
dxi 

G = [(1 +x.)sF-s(s-l)(l +X1)S-2U ] 

+ (- 2s(1 +X1)S-1 ~u) = G1 + G2 • 

dX 1 

Since UJ E<P2,T.e + Yo' we have 

wJEL ~- 1 + yo,UJ(R+,x), 

d _T 2 
-WJCLa_l+v UJ·,(R+,x) 
dX I "" 

and also 

G1EL ~+/3.UJ~' (R+,x), G2EL ~,UJ~' (R+,x). 

(5.12) 

(5.13) 

(5.14) 

Clearly we are done if the following claim is proved: 
Claim: wEL ~_ 1 + y,ll)(R+,x),dwldx1 

EL ~_ I + y,UJ~' (R+,x),and 

IIwlla-I+Y.UJ + II ddW II ~ <CllluIl12,T,e, 
XI a-I +y,@ , 

(5.15) 
where 0 < y<Yo is independent of s (Le., (J). 
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Now, to prove the claim, we multiply Eq. (5.12) by X (J) 
and transform as in (2.11) to obtain, with Y = Q t!2W , 

y' =dyldr, 

d (y' .) 'Q (y' .) - -d J - zy J - Z J - zy J 
Xl 
+Q- l ls'1 2YJ +PQYJ =Q- 1I2GJ • (5.16) 

Let t = a - 1 + y, where 0 < y<Yo is still to be selected. 
It follows from (5.13) that 

YJ,y;EL ;(R+,x). (5.17) 

Also, from (2.14), ify<€, 

PQyEL ~+«R+,x)~L i +t(R+,x). (5.18) 

We now take the scalar product (in X) of (5.16) with 
(1 + X I )2t+ l(y; - iYJ), then take the real part and integrate 
over [O,T] to get 

(t + ~ ) iT(l + X1)2t IlY; - iYJ IIi dX 1 

+ + iT Q -2(1 + X1)2t+ I d~1 Ills 'IYJlli dX 1 

«1 + Tft+lll(y; -iYJ)(T)lIi + iT(1 +Xlt+1 

X I( - PQy, + Q -1/2GI ."y; - ih)xl dX I (5.19) 

+ Re iT(l +xl)Zt+ I(Q -1/2G2,J,Y; - ih)x dX I 

= II(T) + 12(T) + 13(T). 

We now impose our restriction on y. Our assumptions 
on VL imply for somep > 0, (d Idt )[(1 + t Y'Q -2]<0 if t;> to. 
We assume now that 0 < 2t + 1 <p, namely, 
0< y < ~(1 + p) - a. Note that by the remarks in the begin
ning of the proof of Theorem 4.2, we can take a arbitrarily 
close to ~, adding still another restriction to (2.6). 

Integrating by parts in the second integral on the left
hand side of (5.19), and using (3.1) to estimate the integral 
over the finite interval [O,to], we have 

iT(l +xltllY; -iy,lIi dX I 

<C (Il(t) + 12(t) + 13(t) + l/lull/z.T.e)' 
By (5.17) we have 

lim inf II(T) = o. 
T~oo 

Noting (5.14), (5.18), we have 

II - PQy, + Q -1/2GI.,III + t<COlYlla- I + IIlul/12,T,e) 

<C /llu Il/z.T.e. 

In order to estimate Q - 1/2G I we need that 

(5.20) 

1 + t<a + /3, i.e., y</3. Then we note that the above estimate 
follows directly from the expression for G I since 

11(1 + x.)sF liT. I + t < IIF IIT,6 + 1 + /3 <C Illu 1112.T.e· The con
stant C is, of course, independent of J. Hence, using the 
Cauchy-Schwartz inequality in 12(T), 
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II2(T)I<~ IllulIl~.TO + 'TJ ((1 + xlf'IIY; - iYJlli dXiJ 
rt Jo 

(5.21) 

where 'TJ > ° is arbitrarily small. 
The estimate of I3(T) is considerably more subtle. The 

reason is that we cannot proceed as in the case of I 2( T), since 
then we would need an estimate of II Q - 1/2G2.J III + " where
as by (5.14) we only have Q -1/

2G2EL ~(R+,x) (note that 
1 + t> a). 

Let us therefore estimate the expression 

Re(1 + xlf'+ I(Q - 112G2,J,Y; - iYJ)x 

= _ 2s[Re(1 +Xtl2'+S(Q -1/2 dUJ ,y;) 
dX I x 

-Im(1 +XI)2'+s(Q-1I
2 ~:~ ,YJ)J 

- 2s [ L ~ (x tl + L ~ (x I)] , 

IL~(xtll = (1 + XI)2(t+s)IIm( ~:~ 'UJ t I 
= (1 +xl )2('+sIIIm(uJ,FJ)xl 

«1 +xl )ollullx(1 +xtl°+ 2r llFlix =hdxtJ, 

where obviously hl(xl)EL I(R+)if2y< 1 +/3. The passage to 
Im(uJ,FJ)x was done as in (5.9) (but it does not vanish). 
Now, 

where, using the assumption on VL , 

\P(xdl <C (1 + XI)' - 8. 

Hence 

L~(xtl>Re(1 +xlt + S(Q-1/2 ~:~ ,P(XI)UJt =MJ(xtl, 

and, if 2y < 15, 

IM
J

(x l )I<Cw(x l )-1/2(1 +x1)O II ~:~ Ilx 

·(1 + x1tllullx = h2(xtl, 

where again uE<PT •o=;,h2(X1)EL I(R+). 

Since s;;;.O, we have 

I 3(T)<2si
T 

[MJ(xtl + IL~(xI)I] dX I 

<2s iT [hl(xtl + h2(X1)] dx l. (5.22) 

Substituting (5.20)-(5.22) into (5.19) and letting T-oo 
along a suitable sequence, we get 

1'''(1 +xlf'IIY~ - iYJlli dX1 

<C(IIIUIIIL.e + f" [MJ(xd + IL~(xl)l] dX 1} 
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C is independent of J. 
Take now a sequence of bounded sets J k t R ~.- I. By 

(5.10) we have, pointwise, 

lim L ~k(xtl = lim MJk(xtl = 0 
k---+~ k-oo 

so that by dominated convergence the last inequality yields: 

1"'(1 + x l)2'llY' - iYlli dxl<C IlluIIIL.e· 

By (5.10) Im(y',y)x = 0, so that the last inequality im
plies 

1'''(1 + xtl2(a- 1 + rl 

x [W(xtlIIW(Xlllli +W(XI)-lll :~ 1!:]dX1 

<C IlluIIIL.e, 

which is exactly (5.15). As was observed in the beginning of 
the proof of this proposition, inequality (5.1) is an immediate 
consequence. 

We can now finish up the proof of Lemma 4.3. Using 
the remarks preceding the statement of the proposition, we 
now have 

IlluII12.'7'O <C IlluII12.T. - <7' 

where e,rt are arbitrary and C = C (7,e,rt'/). In particular, u, 
HuEL 2(R n). Let 7 < rt and - a < e, and set 
B = \xERn/lxll <b j. If b is sufficiently large, we obviously 
have 

Illx(R n'\B )uII12.T. _ a«1I2C)llluII12.'7'o, 

and, since Vo depends on x 1 only, standard elliptic estimates 
imply 

Illx(B)uII12.T.-a<C1UluIIL'(R nl + IIHouIlL'(Rn,) 

[see the reasoning following (3.11)). 
Now assumption (V 1) (Sec. IV) implies that the graph 

norm of Ho is equivalent to that of H. SinceHu = AU, the last 
inequality yields Illx (B )uII1 2•T. _ a <C2 I1 u II L '(R nJ' 

Inequality (4.6) is now a direct consequence of these 
considerations. This concludes the proof of Lemma 4.3. 

VI. UNITARY EQUIVALENCE AND WAVE OPERATORS 

In Ben-Artzi31 the existence of the wave operators W ± 

= s-limt~ ± 00 eitHe - iHo was proved under very mild growth 
conditions on V. However, if V satisfies the more restrictive 
assumptions of Sec. IV, we obtain the following: 

Theorem 6.1: Let V satisfy assumptions (V 1)-( V 2) and 
H = Ho + V. Let L 2(R n)p be the closed subspace spanned 
by eigenfunctions of Hand L 2(R n)ac the subspace of abso
lute continuity with respect to H. Then: 

(a) The point spectrum of H constitutes at most a dis
crete set of eigenvalues of finite multiplicity. 

(b) The absolutely continuous spectrum of H covers the 
entire real axis and L 2(R n) = L 2(R nIp 6) L 2(R n)ac (i.e., there 
is no singularly continuous spectrum). 

(c) The wave operators W ± exist and are complete in 
the sense that Range( W ± ) = L 2(R n)ac' Furthermore, if Hac 
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is the restriction of H toL 2(R n)ae, thenHae is unitarilyequi

valent to Ho and W,:: Hae W ± = Ho· 
Proof: (a) and (b) follow from Corollary 4.4. As for part 

(c), let e(H) denote the discrete set of eigenvalues of H. Let 
Ic;;,R \.e(H) be a compact interval. Obviously, Theorem 4.2 
applies equally well to lJ + (I) and lJ - (I), where the latter is 
the complex conjugate of the former. Thus Ro(z), R (z) can be 
extended continuously to lJ ± (I) in B('llr,,, , (/>2,7', _ ,,) and 
VR (z), VRo(z) can be extended continuously to B ('llr,a)' Since 
T> 1 and O'>!, it follows from (2.3) that tJlr,,, c;;,L 2(R n) is a 
Hilbert space, dense in L 2(R n). These remarks allow us to 
apply a general theorem of Kato and Kuroda,32 which yields 
all the assertions of (c). 

Q.E.D. 
Corollary 6.2: Let Vo(x t) = - (sgn xt)lxtl a

, ° <a...;2, 
and V(x) = Vt(x) + V2(x), where Vt(x) is compactly support
ed and compact fromH2(R n)intoL 2(R n)and V2(X) is bound
ed and satisfies, for some /3 > 0, 

1V2(Xt,x') I ...;CM(x'){X(xt ...;0)(1 - xda
-

P 

+ X(xt>O)(1 + Xtt/2-I-P J, (6.1) 

whereM(x')-o as Ix'l~oo. 
Then all the conclusions of Theorem 6.1 hold true for 

Ho= -.:1 + VO(x I), H=Ho+ V. 

Proof: V satisfies (V J)-(V2) in view of (4. 1). 

VII. SOME ADDITIONAL REMARKS 

Our basic operator Ho was given by [see (2.7)] 
Ho = - d 2/dxi + Is '12 + Vo(xd. Underasuitabletransfor
mation it takes the form [see (2.11)] 

d 2 

Ho= --+B(t)+C(t), (7.1) 
dt 2 

viewed as an operator in L 2(R,x), where B (t) = f(t)B, B is 
positive (self-adjoint) in X, andf(t) is monotonically decreas
ing [see (2.12)], whereas C (t) is bounded in X for every tER 
and IIC(tlil decays faster than It 1-I-E,E>O,as It I~oo.ltis 
in this context that a limiting absorption principle for Ho is 
established, where weighted L 2(R,x) norms are used. This 
approach to the spectral study of short-range perturbations 
of the Laplacian was started by Jage~3 and further utilized 
by Sait034 forlong-range perturbations, where C (t ) includes a 
smooth part that decays only as It 1- E (with better decay of 
its derivative). The authors study the perturbed operator 
H = Ho + Vin the form (7. 1), admitting V = V(t,x)aspartof 
C (t). This approach introduces restrictive boundedness re
quirements on Vand at the same time complicates consider
ably some of the proofs (e.g., the equivalent of the Unique
ness Lemma 2.3). 

In our treatment we split the study of H into two phases. 
First we establish the limiting absorption principle for H o, 

using the form (7.1). In this setup, the basic facts about uni
queness and existence of solutions are simple consequences 
ofthe spectral representation of B and asymptotic estimates 
for one-dimensional solutions. Then we proceed to analyze 
H, using a perturbation-theoretic argument. Here again the 
spectral structure of B is exploited, allowing a bootstrap pro
cedure on one-dimensional components of Ho, which is used 
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in proving the rapid decay of eigenfunctions and hence the 
discreteness of the set of eigenvalues. It should be noted that 
only minimal information is needed concerning the asymp
totic behavior of the kernel [-d 2/dxi + Is'12+ Vo(xd 
-Z]-I in L 2(R ). Inparticular,onlyvaluesofs ',zrestrict

ed to bounded sets should be considered. 
Our method was used in Ben-Artzi35 to give a proof of 

Agmon's theorem concerning the limiting absorption princi
ple for a general short-range perturbation of the Laplacian as 
well as some cases of "exploding" potentials. 

Also, since the "global" Fourier transform techniques 
are replaced by "local" estimates on the spectrum of B, the 
underlying domain need not be the whole of R n. To illustrate 
such a possibility, consider the following case. 

Let E = [0,00 )XDc;;,Rx , XR ~,- I be a cylinder in R n , 

where D is a bounded domain in R n - I having a smooth 
boundary. The operator Ho = -.:1 + VO(x l) is self-adjoint 
on 

D(Ho) = lulu,HouEL 2(E), u = ° on JE J; 
in fact, it is unitarily equivalent to the direct sum ~j 
Ell [ - d 2/dx~ + J.lj + VO(x l)], where J.lj t + 00 is the se
quence of eigenvalues of - .:1 x' in D (with zero Dirichlet 
data) and each component is self-adjoint on L 2(R +) (with 
zero data at XI = 0). Let V(x) be bounded in E and satisfy 

IV(XI'X') I...;C (1 + IVL (x IW12)( 1 + xtl- I - E, E> 0, 

then it follows from Rellich's compactness theorem that Vis 
relatively compact with respect toHo and soH = Ho + Vis 
self-adjoint in D (Ho). Our arguments in the preceding sec
tions are applicable to the present situation word for word, 
with Is '12 replaced by lJ.lj J. DefiningL ;(E) to be the closure 
of CO' (E) under the norm 

Ilfll; = L(l + xlfV(xW dx, 

we get the following therorem. 
Theorem 7.1: (a) Ho is spectrally absolutely continuous 

and its spectrum is the entire real axis. 
(b) Let I = [a, /3] be a finite interval, n + (I), lJ (I) as in 

(2,1), and Ro(z) = (Ho - z) -I, Let 0' >!. There exists a con
stant C such that 

IIRo(zlfll_"",;C Ilfll", zEfl +(I). 

Furthermore, the map z~Ro(z)EB (L~, L 2_ ,,) can be ex
tended as a continuous map on lJ + (I), where the uniform 
topology is used for the operator space. 

(c) IfR (z) = (H -Z)-I, themapz~R (z) can also be ex
tended to lJ + (I) continuously in B (L ~, L 2_ a)' excluding, 
however, a possible finite set of eigenvalues of finite multi
plicity. If u is an eigenfunction associated with such an eigen
value, it is rapidly decaying in the sense that uEL ;(E) for 
every sER. 

Observe that the spectrum of each component of Ho 
extends over the entire real axis. This follows from a well
known theorem in ordinary differential operators.36 

Again, the cylinder E can be replaced by a conic domain 
with apex at the origin, in which caseJ.lj = J.lj(xtl are mono
tone decreasing functions. 
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APPENDIX 

Let Ho = - d Z / dxz + Vo(x), viewed as an operator in 
L Z(R ). Its restriction to C a (R n) is essentially self-adjoint and 
thus admits a unique self-adjoint extension, still denoted by 
H. Let Ro(z) = (Ho - Z)-I, zen +(1). It is known from Ben
ArtzP7 that Ro(z) is an integral operator having a kernel 
%(s,t,z), which can be extended as a continuous function on 
R XR XC+ (C + = !zIImz>OJ). Furthermore, iff = [a,p), 
li + (1) as in (2.1), there exists a constant C = C (1) such that 

1% (s,t,z)I.;;;Cw(s)-IIZw(t )-IIZ, (s,t,z)ER XR xli +(1), 
(AI) 

where w(s) is defined by (2.15). 
Proof of (3.7): As in the proof of Lemma 2.4, u(x I'S ') 

solves the equation (Ho + Is 'I z - z)u(xl,s') =f(xl,s '). 
Thesetlz-ls'lzlzEli +(1),s'Ef) jiscontainedinsome 

li +(L ), where L is again a compact interval. Hence, 

u(s,s /) = 1 %(s,t,z - Is' IZ)((t,s ') dt, (A2) 

and, using (A 1), 

w(s)lu(s,s 'W.;;;C [(1Y'(t,s 'Ww(t )-1(1 + t fU dt ) 

X (1+ (1 + t) - Zu dt ) 

+ (1 If(t,s 'Ww(t )-Z(1 - t )2,- dt) 

x(1 W(t)(1-t)-2'-dt)]. (A3) 

Note that the last integral converges since T> 1 and 
w(t) = 0 (It I). Integrating overs ' and using (2. 13), (2.17),and 
the definition (2.9) of the norms on the right-hand side, we 
obtain (3.7). 

Proof of (3.13): From (A2) we have 

u(s,s ',z) = i + f %(s,t,z - Is' IZ)((t,s /) dt 
Irl>b Jlrl<b 

= ul(s,s',z) + uz(s,s',z)· 

As in (A3), we have, uniformly in zEli +(1), 

i w(s)lul(s,s',zW ds' ,;;;CE(b lIlfll;.u' 
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E(b)=max((l +b)-zu+I,(l +b)-2,-+2). 

The continuity of %(s,t,z - Is' IZ) as a function of all argu
ments implies 

ilu2(S,s',zd - uz(s,s ',zW ds' 

<Ellfll;,u if k>K(E), sE.!. 
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The minimum potential strength for the existence of bound states 
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Bounds are deduced for both the minimum potential strength for the existence of bound states and 
the scattering length for everywhere attractive potentials which fall off faster than (l/r) for large 
r. These bounds are the second Born approximations. A variational calculation is then invoked to 
prove that, interestingly, these bounds are actually good estimates when a specified sufficiency 
condition is satisfied. The estimates are then shown to compare favorably with known results for a 
number of potentials of practical interest, viz., the square-well, Morse, exponential, and Yukawa 
potentials. 

PACS numbers: 03.65.Nk, 03.65.Ge 

INTRODUCTION 

We consider the radial Schrodinger equation, when the 
potential A U (r) is attractive, A being a parameter. It is known 
that I if AU (r)-o like r - n, as r-+ 00 , n < 2, then there are an 
infinite number of bound states for any A > O. 

In general there may exist a ..1.0 > 0 such that there are 
bound states when A > ..1.0, but not when A < ..1.0' We shall call 
..1.0 the minimum potential strength. The question that arises 
is, what is the value of Ao? 

In what follows, we shall consider potentials that are 
nonsingular; that is, 1 r U (r) 1 < M as r-o. Otherwise the 
question of a minimum potential strength does not arise. 2

•
3 

We shall first show that if the potential falls off as fast as 
or faster than r- 2 as r-+ 00, then the minimum potential 
strength ..1.0 is not arbitrarily small. Next we shall deduce an 
estimate for ..1.0, when r - m U (r)-o as r-+ 00 for some m > 3. 
In the process we shall also obtain an estimate for the scatter
ing length. 

THE MINIMUM POTENTIAL STRENGTH 

For the radial Schrodinger equation, 

u" + [K 2 -/(1 + l)1r - AU(r)]u = 0, u(O) = 0, (1) 

we shall, in the sequel, require the following results: 
(A) The ground state for a spherically symmetrical po

tential is an 1= 0 state4
; 

(B) The number of bound states for a particular I equals 
the number of nodes of the zero energy, thatis,K 2 = 0, wave 
function in 0 < r<, 00 5; 

(C) For an attractive potential A U (r), with 1= 0, if the 
phase shift 8 (K;..i )-oasK-o, there are no bound states. The 
first bound state appears when the scattering length 
Co- -lim (tan8IK) = 00.

6
•
7 

K--<J 

Now, let A U(r) fall off as fast as or faster than r- 2 as 
r-+ 00. We shall prove that ..1.0 cannot be arbitrarily small. 

By (A), the first bound state is an I = 0 state. Assume 
..1.0 = O. Then, bound states exist for every A > 0, when I = O. 

From (1), the I = 0 zero-energy wave function V satis-
fies, 

V" + AI U(r)1V = 0, 

al Permanent address: Birla Planetarium & Astronomical Research Centre, 
96, lawaharlal Nehru Road, Calcutta 700071, India. 

remembering that 

- AU (r) = A IU (r) 1 
because the potential is attractive. 

By (B) it follows that there lies at least one zero, r 0 say, of 
Vin r>O. 

Now let Wbe any solution of 

W" + (1/4r)W=0 . 

As U (r) is nonsingular, we can choose A suitably small, 
such that 

A lU(r) 1 <,1/4r 

everywhere. Hence, by Sturm's lemma,8 there lies at least 
one zero of Win 0 < r < r o' This is impossible if we choose 
W= r1/2. 

So bound states cannot exist for arbitrarily small A 
when U (r) falls off as fast as or faster than r- 2 as r-+ 00 • 

We next proceed to obtain an estimate for ..1.0 ' For this, 
we assume that 

lim ,mUIr) = 0 for some m > 3. 

We now use the inequalities9
•
1O

: 

~ [~ + KB cot 8(..1. )] >0, 
JA A 
1/..1. + KB cot 8(..1. »C IB, 

where 

1 100 

B = -2 sin2 KrU (r)dr, 
K 0 

(2) 

(3) 

(4) 

C = - ~3 100 

U(r) sin Kr[cosKr f sin2 Kr'U(r')dr' 

+ sinKr 100 

sinKr' cos Kr'U(r')dr']dr. (5) 

The inequalities (3) and (4) are valid when 0 < 181 < 1T 

and for potentials which are everywhere attractive only or 
repulsive only . 

It can be easily shown that 

tan 8(,1, ) = - ,1,KB + 0 (A. 2), (6) 

tan 8 (A) = - ,1,KB - A 2KC + 0 (A 3). (7) 

Equation (6) shows that" - ,1,KB" is the first Born esti
mate for tan 8 while (7) shows that Band C are related to the 
second Born estimate. 
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Now, from (5), we get, 

lim B =Ii = i oo 

rU(r)dr, 
K-->D 0 

~~ C-C = - [iOO 

U(r)r{fr'2U(r')dr' 

+ r f" r'U(r')dr'}dr]. (8) 

The justification for passing to the limit within the inte
gral is that sin Kr, etc. are uniformly continuous with respect 
to K and r, while, owing to (2), the integrals are uniformly 
convergent with respect to K. 11 

So, taking the limit K-+O in (4), we get 

1 B C 
---->=, 
A ColA) B 

where ColA ) is the scattering length defined in (C). 
From (C) we know that at the minimum potential 

strength ,10' lICo(Ao) = 0. So, from (9) we get 

(9) 

1 C Ii ->-=- or Ao<-=- AI' (10) 
,10 B C 

where Ii and C are given by (8). 
The inequality (10) has also been obtained from other 

considerations. 12 It is interesting that A I is the second Born 
estimate for the minimum potential strength in that it fol
lows from the expression (7), when A 3 and higher powers can 
be neglected. 

We shall now show that the inequality (10) is an ap
proximate equality under certain conditions, which are valid 
in a number of cases of practical interest. Firstly we note that 
from (3) it follows that 

~<_1_ + lim KB cot 8(,1 /) = _1_ -~, (11) 
,10 A / K->O A ' ColA ') 

where ColA /) is the scattering length at the potential strength 
,1/>,10' 

We next use the fact that 7 the scattering length is given 
by 

( 12) 

where the function <p (r) is such that the expression on the 
right side is stationary for arbitrary variations of the function 
<p (r), and where 

ifJ (0) = 0, ifJ (r)-+r + a as r-+oo (13) 

and 
d 2 

H= - dr + AU(r). 

Let us find a wave function ifJ for which the right side of 
(12) becomes stationary. For this, we choose 

ifJ (r) = 1/J(r) + a1](r), 

where 

1/J(r) = r + A i>z U (r')dr' + Ar f" r/ U (r')dr' r - ,10 (r), 

(14) 
so that 

1/J(0) = 0, 1/J(r)-+r + a as r-+oo, 
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where 

a = A i oo 

r U (r)dr. 

1/J is the first Born estimate; that is, the estimate ob
tained by neglecting A z and higher powers in the expression 
for the wave function u defined in (1). a is a parameter and 
1](r) is arbitrary, except that 

1](0) = 0, 1]( 00 ) = b, (15) 

This ensures that <p (r) satisfies (13), viz., 

ifJ (0) = 0, ifJ (r)-+r + (a + ab) as r-+oo. 

We substitute (14) on the right side of(12) and vary a 
about the value a = 0. This yields 

~[(a + ab) - i oo 

1/JH1/J dr - a (00 {1/JH1] + 1]H1/J}dr 
da 0 Jo 

- a
Z I" 1]H1] dr] = ° at a = 0, 

or 

b + l'" 1/J1]" dr + lcc 1]1/J" dr - U l'" U(r)1/J1] dr = 0. 

From (14), 

1/J' = 1 + A 100 

rU(r)dr, 1/J" = - ArU(r). 

Also, integrating by parts, the integral, 

100 
1/J1]" dr = - A 100 

rU(r)1] dr - b, 

(16) 

where we have used (15) and the fact that 1/J/(r)-+l as r-+oo. 

So, (16) becomes 

iCC U(r)1]{1/J(r)+r}dr=O. (17) 

This means that, if 

!p(r) + r = ° everywhere, (18) 

then substitution of <p (r) = [1/J(r) + a1](r)]a ~ 0 = 1/J(r) in (12) 
will give the value ofCo(A ). Actually, if U(r) falls off rapidly, 
so that U (r):::: ° forr > R then (18) need be true only for r < R, 
because 

LOO U(r)1](1/J + r)dr::::O. 

We can see roughly, why we can expect that (18) will 
hold, at least when r is not large. 

From (14) 

1/J(r)=r(l +,1 100 
rU(r)dr) 

+ A (1)2 U (r')dr' - r f r/ U (r')dr) 

If U (r) = const + 0 (r) as r-+O, then for small r, 

1/J = aor + 0 (r). 

If U (r) - 1/ r as r-+O, then 

1/J = aor + 0 (r). 
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In either case, at least for small r, 

¢-;::;:aor, 

though in the latter case, this is true for small values of r as 
compared to the former case. 

Moreover, a suitable choice of A would ensure that 
ao = - 1, so that (18) would be valid for sufficiently small 
values of r. If U (r) falls off rapidly, therefore, (17) would be 
valid for this value of A. 

The rigorous condition which ensures that (18) will 
hold, i.e., that 

,.1,8= 2r, 

where 8 is defined in (14), can be obtained in a form conven
ient for the subsequent work: 

This is so because it is well known that the Cauchy
Schwarz inequality, 

reduces to an equality only whenfcx:g. 
The condition (19) ensures that 8cx:r. We can easily 

compute the value A ' for which 

A'8=2r (20) 

in the following manner: In the expression (10) for AI' viz., 

AI = - So' ,.zU(r)dr 
So' rU(r)[S~ r,2U(r')dr' + rS;'r'U(r')dr']dr 

fO',.z U (r)dr 

fa rU (r)8 (r)dr' 
(21) 

we multiply numerator and denominator by A ' and substi
tute Eq. (20). This gives 

(22) 

[Equation (22) can be obtained alternatively, directly from 
the variational problem.] 

Next, we rewrite the condition (19) in a more compact 
form: 

(
fO'rU8dr)2=_1_= fO'U82dr D, 
fO',.zUdr Ai fO'U,.zdr 

(23) 

where we have used (21). 
What we have proved is, that if(19) or (23) is satisfied, 

then, for A ' given by (22), the scattering length is obtained by 
substituting (14) in (12). This gives 

- Co(A') =,.1,'0 - [fO ¢{A 'rU +,.1, 'U¢}dr] 

as ¢" = - ArU, 0 being defined in (8), or 

967 

-0+ ioou(¢-r)2dr+2ioo,.zudr 

+ 3 i
oo 

rU(¢ - r)dr. 
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So, 

Co(~) = 1 ,.1,'2 fO'U8
2

dr -3,.1,' fO'rU8dr 
A'B + B B . 

On using the condition (19) and Eq. (21) we get 

Co(~) = 1 +(£)2 -3£. 
A'B AI AI 

Remembering that A' = 2,.1,1 by (22), we have finally, 

ColA ')/,.1,'0 = - 1. 

Substituting this in (11), we get 

1 2 1 
-<;- = - or ,.1,0>,.1, I' (24) 
,.1,0 A' AI 
The inequality (24) is valid for potentials which are not 

necessarily everywhere attractive. But the inequality (10) is 
valid for everywhere attractive potentials only. 

Combining (24) with (10) we get 

(25) 

where A I is given by (21). 
In summary, for everywhere attractive potentials, 

whenever the sufficiency condition (23) is satisfied, then (25) 
is valid. 

Further, taking the limit K __ O in inequality (3) and 
combining it with inequality (9), we get for any ,.1,<,.1,0' 

1 1 0 C 1 ->- - -->-= = -. 
,.1,0 A Co(A) B A I 
When (23) is satisfied as ,.1,0 = AI' this shows that 

1 0 1 
----
A Co(A) ,.1,0 

or 

C (,.1,)- 0 ,.1,<,.1,0 
o - 1/,.1, - 1/,.1,0' 

which is an expression for the scattering length. 

(26) 

If (23) is satisfied only approximately, then the ensuing 
steps show that (25) and (26) are approximate equalities. We 
have seen that (23) can be expected to be valid. Let us now 
verify in some examples that this is so, and that consequently 
(25) holds. 

(i) The attractive square-well potential: U (r) = - V < 0, 
r<;a, U(r) = 0, r>a. 

In this case 

DA i = 1.0125, 

so that 

D-;::;:1/Ai; 

that is, (23) is nearly satisfied. 
Formula (25) gives 

,.1,0 Va 2-;::;: 2.5. 

From the theory, it is known 13 that bound states exist 
only if 

AVa2 > 2.46. 

(ii) The Morse potential: U (r) = A exp( - 2ar) 
.- 2,.1, exp( - arlo 

This time 

DA i = 1.081 8014 
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and condition (23) is approximately satisfied. 
Formula (2S) gives 

v'ToIa::::::0.942. 

From the theory, it is known 14 that bound states begin 
to exist for 

.jTala:::::: 1. 

(iii) The exponential potential: U (r) = - A exp( - 2ar). 
Here 

DA i = 1.0889. 

So condition (23) is approximately satisfied. 
Formula (2S) gives 

.jTala::::::2.S29. 

It is known from theory 15 that the minimum potential 
strength is given by 

.jTala::::::2.40S. 

(iv) The Yukawa potential: U (r) = - (A Ir)exp( - arlo 
By a suitable transformation, we can set a = 1. 
In this case, 

DA i = 1.1 SO 728. 

Here, U(r)~ l/r as r---+O. Though condition (23) holds 
approximately, as remarked earlier, the agreement is not as 
good as in the preceding cases where U (r)-const as r_O. 

Formula (2S) gives 

,10= 2. 

A numerical integration and a variational calculation 
give, respectively, 16 

,10 = 1.68 and ,10 = 1.74. 

Thus in all the above cases, formula (2S) gives a credible 
result. 

CONCLUDING REMARKS 

We have seen that the second Born estimates for the 
minimum potential strength and the scattering length, viz., 
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formulas (2S) and (26), respectively, are valid for everywhere 
attractive potentials when condition (23) is satisfied. We 
would expect that the second Born estimates would be valid 
only for weak potentials when the cube and higher powers of 
the potential strength can be neglected, and not for poten
tials which are so strong that they can produce bound states. 
Indeed, in the examples considered, the minimum potential 
strength has not been small. We have shown that, surprising
ly, the condition (23) ensures that these second Born esti
mates are valid right up to the minimum potential strength. 

ACKNOWLEDGMENTS 

The author is grateful to Professor Abdus Salam, the 
International Atomic Energy Agency, and UNESCO for 
hospitality at the International Centre for Theoretical Phys
ics, Trieste, Italy, and also to the referee, in the light of whose 
constructive comments, the paper has been rewritten . 

'L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New 
York, 1965), pp. 54 and 55. 

2W. M. Frank, D. J. Land, and M. S. Spector, Rev. Mod. Phys. 43(1), 36 
(1971). 

3B. G. Sidharth, Act. Phys. Pol. B 9(4),359 (1978). 
4B. W. Downs, Am. J. Phys. 31, 277 (1963). 
ST. Regge and V. de Alfaro, Potential Scattering (North-Holland, Amster
dam, 1965), p. 73. 

6p. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, MA, 
1965), pp. 175-179. 

7R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, 
New York, 1965), p. 308ff. 

8E. C. Titchmarsh, Eigenfunction Expansion (Part 1) (Oxford U. P., New 
York, 1962), p. \07. 

9B. G. Sidharth, Bull. Cal. Math. Soc. 71(6), 370 (1979). 
lOB. G. Sidharth and A. Abdel-Hafez, Act. Phys. Pol. A 56(4),577 (1979). 
lIE. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Cam-

bridge U. P., New York, 1952), pp. 73 and 74. 
12W. Kohn, Rev. Mod. Phys. 26(3), 292 (1954). 
13L.1. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1949), p. 77. 
I4E. U. Condon and P. M. Morse, Quantum Mechanics (McGraw-Hill, 

New York, 1929), p. 71. 
ISD. Ter Haar, Selected Problems in Quantum Mechanics (Academic, New 

York, 1964), p. 218. 
16H. M. Schey and J. L. Schwartz, Phys. Rev. B139, 1428 (1965). 

B. G. Sidharth 968 



                                                                                                                                    

On quantum solitons and their classical relatives: Reducible quantum fields 
and infinite constituent "elementary" systems 
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We demonstrate that the emergence of translation modes in the quantization of some at least 
nonlinear field theory models (like, e.g., ¢ 4 or the sine-Gordon systems) implies a specific 
structure of their state spaces namely this of the direct integral Hilbert space, which follows from 
the reducibility of the involved quantum field canonical commutation relations (CCR) algebras. 
As a special manifestation of this structure, one recovers infinite constituent "elementary" 
quantum systems living in the commutant of the CCR algebra, which appear as the Schrodinger 
or the two level ones. The corresponding Hamiltonians are derived. In addition, we propose a 
modification of the standard infrared Hilbert (photon field) space construction employed in 
quantum electrodynamics. We demonstrate that, in principle, Fermi (CAR) generators, carrying 
the spin-charge-momentum labels of Dirac particles, can be defined as operators in the 
electromagnetic (photon field) Hilbert space. The photon field (CCR) algebra is highly reducible, 
and in the present case fermions arise in the commutant of it, playing the role of intertwining 
operators. 

PACS numbers: 03.70. + k, 11.10.Lm 

1. MOTIVATION 

Usually one quantizes the classical field theory models 
under a tacit assumption that the field ¢ exhibits at most a 
space-time functional dependence: ¢ = ¢ (x, t), x E R 3 ( or 
rather that the x, t dependence only is relevant for the quan
tization). An example of a classical field theory where the 
configuration space variable x is augmented by an auxiliary 
real variable w was considered in Ref. 1 : 

!£' = !£'(x, w) = ! [all ¢ (x, w)] 2 - !m2¢ 2(X, w) 

-V[¢,x,w] (1.1) 

with x E M 4, all being the space-time derivative, x = (x, t). 
One insists there on a dynamical independence for all 

space and time of fields with distinct w value. This w-ultralo
cality of the field (1.1) has been exploited in Ref. 1 to con
struct a relatively simple quantized model. However, under 
an assumption that the quantum field CCR algebra is de
fined as follows: 

[A/(w), A r (w')] _ = Dl/'D(W - w'), 
(1.2) 

[A/(w), A/(w')] _ = 0, A/(w) [J = 0 \;J I, w. 

Here I = 1,2, ... enumerates the oscillatorlike degrees of 
freedom of the wth field, and [J is the Fock state. Let us recall 
that a conventional quantization procedure for the neutral 
scalar field theory model [omit w in (1.1)] would result in the 
commutation relations 

[A/,A rJ - =DI/ [A/,A/,] _ =0 = [A r,A rJ-
(1.3) 

and, as noticed, for example, in Refs. 2-4 still remains suc
cessful for models of the type (1.1). An oversimplified model 
with local fields which are at most bilinear in the generators 
(1.2) does not occur in case (1.3). 

On the other hand, the quantization procedures devel
oped during the 1970s for, for example, the sine-Gordon 
model, did ignore the fact that classical solutions of its field 
equation, at least in the soliton sector, exhibit a parametriza
tion additional to x,t. In the simplest I-soliton case it reduces 
to the real w-parametrization of (1.1), while for N-solitons 
the situation becomes more complex. The underlying para
metrizationenterssolitonsolutions¢ = ¢ (x, t )ofthe(1 + 1)
dimensional field equation: 

D¢ (x, t) = m2 sin ¢ (x, t) m >0, (1.4) 

via non plane wave solutions <P (x, t) of the free field equation 

(0 - m2)<p(x, t) = 0, 

<P (x, t) = <Pa(x, t) = exp[mYa(x - vat) + D], 

V = la1
2

-1 Ya=(sgna)(l-v~)-1/2, (1.5) 
a lal 2 + l' 

aER I, lal E(O, 00) 

so that (see Refs. 2-5) 

¢ = ¢ (x, t) = ¢ [<Pa ] (x, t) = ¢a (x, t) 

=! tan-I <Pa(x, t) 

for one soliton, while 

¢(x,t)=¢ [<Pa""',<PaN](x,t) 

= ¢a, ... a)x, t) 

(1.6) 

(1.7) 

for N solitons, in the absence of "breathing" components. 
When the latter are present the parameters may become 
complex, and then are required to appear in complex conju
gate pairs as, e.g., in the N-soliton (one breather) case of 

¢ (x, t) = ¢aa,a" ... ,ao, ... ,aN(x, t), (1.8) 

where N-2 parameters are real and there is a complex conju
gate pair. 

Let us mention that in (1.5)-( 1.8) one has still a freedom 
of choice of the phases DI , ... ,DN • For I-solitons, the sine-
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Gordon Lagrangian density has the form (1.1) with the pa
rameter w replaced by a. In the N-soliton case the parameter 
w of (1.1) may be replaced by a sequence (a I, aN) = (a). 

As mentioned before, the (a) parametrization is insuffi
cient for a unique characterization of the sine-Gordon soli
ton fields: the (8 ) parametrization should also be taken into 
account. In the notation 

ffa(X, t) = exp my a (X + q) = ffaq(X), 

q=qa = va(to-t):::::;><5=8a = my a Va to, 

we have absorbed both 8 and time t dependence of ff a in a 
new parameter q. The a dependence of q = q a can be ignored 
due to the freedom of choice of the initial time instant to' 
Hence (1.7) can be rewritten as 

4> (X, t) = 4>(a,q)(X) = 4>a, ",aN'!," .q)X), (1.9) 

thus leading to the (2N + 1 I-parameter family of N-solitons, 
where both (a) and (q) are viewed as independent parametric 
families. Notice that the time variable completely disappears 
from the formalism, which is obviously an effect of the trans
lation fre~dom ofi1.4). 

Let ffin (x, O),1Tin (x, 0) be a canonical pair generating the 
CCR algebra of the mass m neutral scalar field in 1 + 1 di
mensions: 

A A 

[ l{Jin (x, 0), 1Tin (y, 0)] _ = i8(x - y), 

a(k) = f dx exp( - ikx) [ ~ k 2 + m2~in (x, 0) 
A 

+ i1Tin(X, 0)], (1.10) 

a(k)IO)=O Vk. 

We introduce the coherent states (coherent soliton states of 
Refs. 2-4) as these states of the field (1.10) which satisfy 

a(k )II{J) = a(k )II{J), 

(I{J l~in(x)lff) = (OJl~in(X) + ff (x)J 10) = ff (x), (1.11) 

( 0 - m2)ff (x) = O. 

Here a(k ) is not a square-integrable function, since we make 
an identification of l{J(x) with either l{Jaq (x), (1.8) in the sine
Gordon soliton case, or with ~;"= I ffa,q,(x) as required in the 
N-soliton case (without breathers).2-4 Coherent states (2.11) 
should be viewed as continuous generalizations of the more 
familiar direct product coherent states 

" II{J) = u: 10) = II{exp(aa* - aa)!O}k (1.12) 
k 

with an ultraviolet cutoff implicit,J° being a Fock state of the 
SchrOdinger representation of the CCR algebra. If one takes 
a coherent soliton state Iff), then applies polynomials in cre
ation and annihilation operators (1.10) to Iff), and finally 
closes the resulting set of vectors, one arrives at the Hilbert 
space IDPS (Iff)), which is separable and carries an irreduci
ble representation of the CCR algebra. IDPS (Iff)) is the one 
among infinitely many separable subspaces of the complete 
(von Neumann's) Hilbert space JY' of the quantum field 
(1.10). 

Since we use coherent product states as the generating 
vectors for IDPS (Iff)), the theory of Ref. 6 can be applied to 
classify the unitarily (in) equivalent representations of the 
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CCR algebra affiliated with different coherent states. In 
Ref.2 we have done it for the soliton coherent states of the 
sine-Gordon fields; compare also Ref.7. 

Because the above-introduced parametrization (a, 8) 
characterizes uniquely both the soliton field (1.9) and its free 
field constituents ff aq' we arrive at the unambiguous labeling 
of quantum soliton (Hilbert space) sectors: 

Iff) = la l , .. ·, aN' ql, ... ,qN)~IDPS(lff I): = JY'~.q). 
(1.13) 

It happens because the free fields ~;"= Il{Jall,(X) are the boson 
transformation parameters of (1.11). Suppose we have two 
distinct coherent soliton states Iff) and Iff ') in JY'. If the re
spective boson transformation parametersff (x) andff '(x) sa
tisfy 

L ' dx [ff (x) - ff '(xW</: 00, (1.14) 

then the representations of the CCR algebra in IDPS (Iff)) 
and IDPS(lff ')) respectively, are unitarily inequivalent,3,6 
and the scalar product (fflff') = 0 is conventionally intro
duced in JY' for ff#ff' while Ilffll = Ilff'll = 1 and 
IIffl12 = (fflff)· Obviously, the function ffaq(x) of(1.8) is not 
square integrable on the real line R I and the same concerns 

both ~;"= I ffa,q,(X) and any (ff - ff')(X) with ff#ff'· 
For an example of the one-soliton boson transformation 

parameter ffaq (x), let us notice that even if q = q' and 
a = - a' (i.e., lal = la'I), we still have (1{JIff') = O. Moregen
erally, classical N-soliton sine-Gordon fields give rise to the 
rich (nondenumerable) family of normalized and pairwise
inequivalent vectors together with the related CCR algebra 
carrier spaces of (1.13) I JY'~q) J:';E1R2

! ... , 

where each JY'~. q) = IDPS (Ia» ... , aN' ql'"'' qN)) is by defin
ition separable. We get in fact the field JY', of separable Hil
bert spaces labeled by a continuous index set T3 t. The pres
ent paper is the fourth one in the series of investigations 
devoted to the problem of quantum solitons and their classi
cal relatives. We continue the discussion of different aspects 
of the quantization of nonlinear fields, with emphasis on the 
(1 + 1 I-dimensional models (Refs. 2-4; see also Ref.5). The 
presence of the soliton solutions is known to complicate the 
traditional local quantization program by giving rise to zero
energy modes (related to translations) and then necessitating 
the "collective coordinates." 

In the present paper we show that the translation free
dom implies a very specific form of the state space of the 
quantized nonlinear system, namely, this of the direct inte
gral Hilbert space, which we describe in Sec. 2 together with 
the derivation of the (inherent) infinite constituent "elemen
tary" quantum systems. In Sec. 3 we introduce the "elemen
tary" two-level systems, and investigate possible forms of 
their interaction. In Sec. 4 we propose a modification of the 
standard infrared Hilbert space construction employed in 
quantum electrodynamics, to allow the direct integral proce
dures of Sec. 2. Then, we construct Fermi (CAR) generators 
and represent them as operators in the electromagnetic field 
Hilbert space. The fermions carry the spin-charge-momen
tum labels of the Dirac particles and belong to the commu
tant of the photon field algebra (this is a consequence ofthe 
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reducibility of the latter). 
Remark: Our knowledge of soluble models in 1 + 1 di

mensions is not broad enough to state that the above sine
Gordon structure (1.4)-( 1.15) may always be found. Since, 
however, some of these features were observed to be valid for 
¢J 4 and appeared also in the quantization of the c-number 
massive Thirring model, we feel that, even if not quite gen
eral, the sine-Gordon structure assumption may be of some 
use for the construction ofthe nontrivial quantum field the
ory models, preserving a correct classics--quanta relation
ship. 

2. A LITTLE BIT OF THE OLD-FASHIONED 
MATHEMATICS: CONTINUOUS DIRECT SUMS OF 
HILBERT SPACES AND "ELEMENTARY" QUANTUM 
SYSTEMS 

A. Let fh k }k= 1,2"" be a countable sequence ofsepara
ble Hilbert spaces. By h we denote the set of all sequences 
S = ISk 11= 1,2, ... , Sk E hk' subject to the restriction 
~k IISk 112 < OC! and satisfying the linearity properties 
S+'TI= fSk +'TIk} Eh,aS= lask } Eh, aEC,hisaHil
bert space called a direct sum of separable Hilbert spaces h k ' 

To deal with a continuous generalization of this concept, we 
shall follow Refs. 8 and 9. 

Let Tbe all-measurable set, wherell is a positive mea
sure. We introduce a field of separable Hilbert spaces labeled 
by elements of the index set T: f h" t E T}. 

By h we denote the set of all vector valued functions: 
s: t--+$" S = [S, E h" t E T} such that 

IL(s,,'TI,)dll(t)1 <00 (2.1) 

for any two functions S' 'TI E h. In particular, from (2.1) there 
follows the requirement: 

L lis, 112 dll(t) < 00 Vs E h. 

In addition to (2.1) the linearity is introduced via 

S + 'TI = Is, + 'TI, J, as = [as,}· 

The scalar product formula in h is given by (2.1): 

(S, 'TI) = L (S" 'TIt) dll(t); 

(2.2) 

(2.3) 

h is a Hilbert space called a direct integral of Hilbert spaces 
h, with respect to the measure Il: 

(2.4) 

Let rp(t ) be a continuous (together with derivatives) function 
T~L (T) with the property 

i. I rp (t) 1211s, 112 dll(t) < OC! (2.5) 

for all S E h. We shall define a linear operator L", in h: 

L",: S ---+ L",S = f rp (t )Sl ). (2.6) 

Here upon S T Irp (t W dll(t ) < OC! we have 
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IIL",s 112 = Llrp(t Wlls,ll z dll(t) 

.;;; [Llrp (t W dll(!)] '11Sli z 

= Ilrp II! lis 11
2

, 

and, consequently, L", is a bounded operator in h. 

(2.7) 

By taking a set of suitable functions [rp I we get a corre
sponding set of bounded linear operators in h, which form a 
weakly closed commuting ring of bounded in h linear opera
tors with unity. Notice that if Ltp' Lr/J E R then also 
Ltp +Lr/J =L{j ER andL", 'Lr/J =Ly ER. 

Moreover, if rp is a real function, then it gives rise to a 
self-adjoint operator in h. If Irp(t)1 = 1, the corresponding 
operator is a unitary one. 

In this way to each direct integral of Hilbert spaces we 
have assigned a commuting ring of bounded operators. An 
inverse problem of the decomposition of a Hilbert space into 
a direct integral, with respect to a given commuting ring, is 
much more involved,7-9 albeit useful for the solution of the 
reduction problem once an operator algebra is given in a 
Hilbert space. Let us mention that for an example of the 
sine-Gordon system we have a detailed knowledge about the 
state space of the system, but no clear understanding of the 
sine-Gordon field algebra. Z.3.1O.11 

B. Let us choose a one-parameter index set T E R I and a 
related one-parameter family [h)., A. E R I} of Hilbert 
spaces. Let U, be a unitary element of the commuting ring in 
h = S"'h), dll(A.): 

UtS = Ut I IA. Jl = [exp(iA.t) . IA. Jl = St· (2.8) 

Each h). is separable Hilbert space; hence it can be equipped 
with an orthonormal complete basis system 

Iln,A.)}n=o.I .... (n, A.lm,A.)=onm' 

I In,A.j(n,A.)1 = 1)., l),h), =h),. 
n 

(2.9) 

A definition of Ut equivalent to (2.8) can be given as follows: 

U, = L~ exp(itA. ) ~In, A. )(n, A. I dll(A. ). (2.10) 

Let us introduce an operator Vs which is not an element 
a/the commuting ring: 

Vs = r"' I In,..t - s)exp( - s ~ )(n, A. I dll(A. ), 
JR' " JA. 

(2.11) 

VsS = Vs I IA. Jl 

= [II n, A. - s)exp( - s ~)(n, A. I Ilm, A. )(m, A. IA. Jl 
n JA. m 

= IIln,A. -s)exp( - s~)(n,A.IA.)} 
It JA. 

= [Iln, A. - s)(n, A. - SIA. - sJl = [IA. - sJl. 
It 

Consequently, 
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Vs Uts = Vs (exp(itA )IA ) I 
= (exp(itA )IA -sllexp( - its), (2.12) 

Ut VsS = Ut { IA - sll = (exp(itA )IA - s) J, 
which yields 

Vs Ut = exp( - its)Ut Vs, (2.13) 

i.e., a typical definition of the CCR algebra as given in the 
Weyl form. 

Notice that 

(Vss, VsS) = ( (A - SIA - s) dJ1-(A ) = (S, S); (2.14) 
JR' 

hence Vs is a unitary operator. Moreover, in addition to 
U, U,. = U, + " we have a semigroup property for Vs as well: 

Vs Vs'S = Vs {IA - s')1 = {IA - s - s'll = Vs+s·s· 
(2.15) 

A strong continuity for both U, and Vs is apparent; hence, by 
an application of the Stone theorem, the infinitesimal (self
adjoint) generators Q and P of U, and Vs are recovered, 

Q = i~ A ~ In, A. )(n, A I df.L(A. ), 
(2.16) 

P= (<I> L In,A)(-i~)(n,A.1 dJ1-(A) 
JR' n aA. 

such that 

QPs= {A.L In'A)(-i~)(n'A 1A.1I, 
n aA. 

PQs = P (A IA ) I = (L I n, A )( - i)(n, A. IA ) 
n 

+ A. L In, A. )( - i ~)(n, A. IA. ) I (2.17) 
n aA 

= -is+QPs, 

which implies 

[Q,PLS=iS, (2.18) 

provided an appropriate domain is chosen to guarantee that 
both PQ and QP have a meaning in it (see Remark 1 below). 

In this way we have demonstrated that, in addition to 
the commuting ring, the noncommuting pair can be intro
duced, which generates the CCR algebra representation in 
the direct integral h = S;, h). df.L(A ) of separable Hilbert 
spaces. The respective creation and annihilation operators 
read as follows: 

A = ~ (Q+iP) 

= (<I> L In, A. ) _1 (A. + ~)(n, A. I df.l(A), 
JR' n v'2 aA. 

A * = _1_ (Q _ iP) (2.19) 
v'2 

= ('" L In, A.) _1 (A. - ~)(n, A.I df.l(A.), 
JR' n v'2 aA. 

[A,A *]-S=S 
Let us recall that if one intends (as we do) to choose h). 

= IDPS( IA.)) as determined by starting from (2.10) and 
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(2.11), i.e., by the canonical generators (a*(k), a(k ) IkE R ' , 

then the received generators (2.19) are essentially new quan
tum objects, since we cannot reconstruct A and A * solely in 
terms of a*(k ) and a(k ). This last feature is rather common 
for these nontrivial field theory models which lead to reduc
ible field algebras; see, for example, Refs. 12-16, but also 
Refs. 5, 17-20, where an infrared problem for charged parti
cles involves reducible electromagnetic field algebras. The 
pair (2.19) gives rise to the Schrodinger representation of the 
CCR algebra, with the (direct integral) vacuum 
n E h = S;, h). df.L(A. ) selected by the requirements 

n = ( In, A) J, i, ~I(n, A I n, A. W dJ1-(A ) < 00, 

(2.20) 

Notice that all h). can be inequivalent to the Fock space of 
the field algebra (2.10). Moreover, an index n in (n, A. In, A) 
identifies the nth basis vector in h which can be received 
from IA. ) by applying the nth function of generators a*(k ) and 
a(k ). It has nothing in common with an index N of 

_l_A ON n: = liN, A. 1I 
/Nf 

= I L In, A. )(n, A. IN, A.)j (2.21) 
n 

which corresponds to the N th excitation level, but in terms of 
the secondary quanta (2.19). 

Remark 1: As is well known,8 the direct integral of sep
arable Hilbert spaces with respect to any standard measure is 
a separable Hilbert space again. Hence properties of the re
presentation (2.13) and its generators (2.17) can be under
stood on the basis of general results described in Ref. (9). 

It is not useless to mention that elements of the direct 
integral space!lt"/" = S <I> IDPS( IA. )) df.L(A ) have the form 

"'If) = J'" f(A. )1"', A. ) df.l(A. ), I"', A. ) E IDPS(IA. I), 

("', A. I"', A.) = 1 VA., ("', A I"', A. ') = 0, A. 'fA.', 

("'If), tPlf)) = II "'If) II 2 
= J If(A. W df.L(A. ) < 00. 

Notice that we can formally represent the continuous set of 
orthonormal (in von Neumann's space) vectors 
("', A. I"', A') = 0, A. 'fA.', ("', A. I"', A. ) = 1 as generalized vec
tors associated with !It"/": 

"'). (0): = J '" 0(A. - A. ') I "', A ') df.L(A. ') 

so that if considered in the topology of!lt"/" we arrive at 

("'). (0), "').. (0)) = 0(A. - A. '). 

It demonstrates how the continuity of the orthonormal set 
IIA. ) J is lost while passing to the direct integral Hilbert space 
!It"/": "'). (0) is not a Hilbert space vector. 
Because of "'(I) = S<I> f(A. )I""A )df.L(A.), wheref(A.) is a 
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function R I-+C whose modulus is square Jl-integrable, the 
problem of finding a dense in:7t'1' domain 
g C g(P) n g(Q)reducestothisoffindinganappropriate 
domain g in the set offunctionsf(A). Notice that if 
ItP, A) = l:ntPn In, A), tPn E C, tP(f) = S"f(A )ltP, A) dJl(A), 
then the action of P, Q, PQ, and QP on tPif) reduces to 

QPtPif) = SOl A ~In, A) - tPn( - i a~~) ) dJl(A) 

= SOl A ( - i :{ ) -ltP, A) dJl(A) 

PQtPlf) = SOl dJl(A) 

X{ -if(A)ltP,A)+A( _ia~~))ltP'A)}' 
i.e., to the well-known Schrodinger representation problem 
in the Hilbert space of square Jl- integrable functions. 

Remark 2: The representation (2.10) of the CCR alge
bra in the separable Hilbert space is unitarily equivalent to 
the direct sum of Schrodinger representations. Consequent
ly, the vector [J of (2.20) would be unique in the irreducible 
case only. However, this is not the case in:7t'I" Let us define 

[J = [In: = J''' fo(A )In, A) dJl(A), 

where In, A) is the nth basis vector in IDPS (IA)) andfo(A) 
satisfies: (l/v1)(A + a/aA lfo(A) = O. Then 

A[Jn=S"[~(A+ ~)ro(A)]ln'A) 
X dJl(A ) = 0 V n = 0, 1, ... 

and 

Hence the representation (2.13) is not irreducible in :7t'1" 
C. Since we have in h = S; ,h A dJl(A ) a canonical pair 

P, Q, it seems rather natural to follow a conventional quan
tum route, and to search for a Hamiltonian system in h. In an 
abstract scheme, there is no natural choice of the Hamilton
ian. However, for a particular quantization procedure for 
the classical (e.g., sine-Gordon) model H can be determined 
once time-dependent trajectories are established in the set of 
parameters A E R I. This is the case when the (underlying) 
classical dynamics is taken into account. 

Let us consider a family ofsine-Gordon I-solitons, 
each one with a fixed a value, but differing in the choice of 
q=qa =A of(1.8).Infact, 

A = A (t) = Va (to - t) = A - Va t = A + At, (2.22) 

and A = Va to E R 1 is quite arbitrary. We look for the time 
development generator H such that 

Qs = fA IA lJ-+Q(t)s 
= exp(iHt)Q exp( - iHt )s 
= {A '(A, t)IA '(A, t))}, A '(A, t) =A +At. (2.23) 

Notice that for the infinitesimal time variations we have 
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Q(.:it)~Q+.:itQ, Q= -i[Q,HL, 

Q (.:it)S ~ {(A + .:itA )IA + A.:it)}, 

and, consequently, because of (2.23), 

Q= -i[Q,HL =0 

(2.24) 

(2.25) 

so that the form (2.24) persists for all t E R 1 in (2.23). Notice 
that H = H (Q ) solves (2.25). 

We shall deduce an explicit form of H = H (Q ) by fol
lowing the idea of Ref. 21, which, if appropriately modified, 
can be applied to our case. 

For the translation operator P we have the formula 
(2.17). Let us rewrite it in the form 

P = I" dJl(A) TIO(A), TIO(A) = To1(A ), (2.26) 
R' 

= I" L In, A )(i ~ )(n, A I dJl(A ). 
R' n aA 

Analogously for H 

H = I" dJl(A) Too(A) 
R' 

(2.27) 

with T oo(A ) being still unspecified. Let us now introduce a 
symmetric stress energy tensor Tl'v(A ) so that the generator 
of Lorentz transformations in h can be introduced as follows: 

MIO = L~ dJl(A)!A T oo(A) - tTIO(A)j 

=HQ- tP. 

Upon a standard requirement 

0= dMIO = aMIO _ i[MIO, H]_ 
dt at 

= -P+HQ-tP, 

(2.28) 

(2.29) 

provided with a momentum conservation demand P = 0, we 
arrive at the identity 

P=HQ, 

which yields 

i = [Q, PL = [Q, QLH + iQ2. 

(2.30) 

(2.31) 

Recall now that H = H (Q); hence formally one can intro
duce the notion of aH / aQ. Suppose that in the domain of H 
there exists at least one vector on which the following two 
operator identities hold true (the nature of the constraint will 
be investigated below): 

[Q, al!] = i, 
aQ -

2iQ= [Q, 2HL = [Q, Q ~~L (2.32) 

In (2.32) for some vectors the following holds: 

.' . aH .' 2lQ = [Q, Q L -. + IQ, 
JQ 

(2.33) 

which by taking into account (2.31) leads to the conclusion 
that, for such vectors, 

aH=~H 
aQ l-Q' 
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which is satisfied by 

H=MI(I_Q2)1/2, (2.35) 

with Mbeing an integration constant, MER I. Furthermore, 

P=MQI(I- (2)1/2 (2.36) 

and 

(Q, QL = i(1 - (2)H -I = (iIM) (1 - (2)3/2. (2.37) 

Because of(2.36) a conventional relativistic formula for H (in 
1 + 1 dimensions) follows: 

H = (P 2 + M2)1/2. (2.38) 

Due to Q = Q (P) and H = H (P), the representation of Pin 
h = f; I h;.. dll(}. ) as given by (2.17) and (2.26) leads to 

Q = Lin, }. ) 2 1 2 112 (n,). I dll(). ), f'" 'a 
R' n (M -a) 

(2.39) 

D. Let us now analyze the constraints (2.32) which di
minish the arbitrariness in the choice of H, by demanding the 
existence of suitable vectors in the domain. By making use of 
the first constraint (2.32) we get formally 

aH MQ PH 2 

aQ = (1 - (2)1I2 = M2 

with [P, HL = iP = O. Hence the second one reads 

[Q al!) 1.1,) = _1 [Q PH 2 ] 11f;) 
'aQ _ 'I' M 2 ' -

(2.40) 

= { 2p
2 

+ i H2 } 11f;) = il1f;) (2.41) 
M2 M2 ' 

where [Q, H] _ = 0 is taken into account. From (2.41) it fol
lows that 11f;) is a common eigenvector of both P and H: 

PI1f;) =0, HI1f;)=~p2+M211f;)=MI1f;). (2.42) 

Then we find 

. ' [ . aH) 1 2 21Q= Q, Q-. = -2 [Q,P HL, 
aQ _ M 

(2.43) 

and hence 

(P 2 + 2H2)12M2 Q 11f;) = Q 11f;) 

=>Q 11f;) = 0 or [Q, H L = 0 = [Q, P L , (2.44) 

which may impose a restriction on Q if applied to 11f;). Conse
quently, (2.32) is equivalent to 

HI1f;)=MI1f;), PI1f;) =0, (2.45) 

and thus the parameter M corresponds to the rest mass of the 
elementary quantum system associated with the direct inte
gral h = f; I h;.. dll(}. ) of separable Hilbert spaces. The main 
problem now is to find M while maintaining consistency 
with the classical field equations (e.g., the sine-Gordon one) 
which underlies the whole derivation of(2.42). Recall thatM 
appears in (2.35) as an integration constant, but is not at all 
constrained to be a c-number. The more natural requirement 
is that M belongs to the commutant of the {P, Q I C *-alge
bra. Since the! P, Q I pair arises in the reducible representa
tion of the primary scalar field, (2.10) algebra, both P and Q 
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do commute with the CCR algebra generators 
! a*(k ), a(k ) J k E R ' • If Mis a c-number then H does commute 
also, as being solely constructed in terms of P and Q. How
ever, an integration procedure leading to (2.35) does not ex
clude the fact that M = M (a*, a) is an operator element of 
the neutral scalar field algebra. This route has been followed 
in Ref. (22); however, the authors start from another as
sumption: (1) about the Hilbert space structure, which is a 
direct product of the Fock space for collective modes and the 
Hilbert space for the primary quantum field; (2) about the 
existence of the particle number operator for the neutral sca
lar field in its soliton sectors. 

Let us assume to have a rest frame vector 11f;) of (2.45), 
and let us further assumethatH 11f;) = Mol1f;), Mo E R I. By 
applying to 11f;) polynomials in a*(k ), a(k ) and then making a 
Hilbert space closure of the set obtained, we arrive at the 
previously introduced notion ofIDPS (11f;)). Consequently, if 
one has any Hamiltonian operator Ho(a*, a) = Ho generat
ing a unitary in time evolution in IDPS(I1f;)), it can be safely 
added to M o, thus giving rise to the following modification of 

H=~p2+M~: 

H=~p2+(Mo+Hof, Ho = Ho(a*, a). (2.46) 

Recall that IZ = c = 1. In Ref. (22) Ho is supposed to be a free 
neutral scalar field Hamiltonian, which, however, has no 
eigenvectors outside of the Fock space IDPS (10)). Our 
IDPS(I1f;)) is inequivalent to IDPS (10)). However, Ho can be 
regarded to be (if specialized to our example) the quantum 
sine-Gordon Hamiltonian, constrained to the particular so
liton sector. Then we can expect2.3. 10. 1 1 that the conventional 
sine-Gordon spectrum and eigenvectors can be produced in 
IDPS (11f;)). 

Remark: A construction of coherent soliton states for 
the sine-Gordon system is motivated by the following as
sumptions: If ~ (x, t ) is an interacting sine-Gordon field, then 
it admits the Haag type expansion in terms of (asymptotic
like but not asymptotic at all) free mass m neutral scalar field 
generators a*(k) and a(k), i.e., ~ (x, t) = ¢> (a*, a, x, t ) . 
Then, a coherent state expectation value of ~ in the tree (zero 
loop) approximation, 

(al:~ (a*, a, x, t ):Ia) = (Ol:~ (a* + a, a + a, x, t ):10) 
= ¢> (a, a, x, t) = ¢>c/(x, t), (2.47) 

should allow us to restore both the classical sine-Gordon 
field, its equations of motion, and the Hamiltonian 

(al:H(~ ):Ia) = (al:H(~ )(a*, a):la) 
= (OI:H(¢> )(a* + a,a + a):I(O) 

= H (¢> )(a, a). (2.48) 

In the above, 10) is the Fock state for the! a*, a J field algebra. 
Consequently, the quantum sine-Gordon Hamiltonian, 

consistent with the above tree approximation mappings, 
should implement an evolution unitary in time in each of the 
irreducibility sectors for the! a*, a J field algebra, i.e., in each 
IDPS (Ia)). Hence it is a rather natural choice to identify 
Ho = Ho(a*, a) of (2.46) with the sine-Gordon Hamiltonian, 
while constructed solely in terms of a*(k ) and a(k ). 

Let us add that the original Haag expansions in terms of 
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free asymptotic fields of the model are of the perturbative 
nature. In the above we admit expansions which formally 
have the Haag form (infinite power series), but (1) are non
perturbative and (2) can be defined with respect to the free 
fields which are not asymptotic ones for the model under 
consideration ("confinement"). 

The choice of the c-number constant Mo is to some ex
tent arbitrary, but we are motivated by the fact that the sine
Gordon parameter m of (2.4) gives rise to the classical 1-
soliton mass equal Sm. The I-soliton momentum 

ka = Smva / ~ is in a relativistic relationship with Sm: 

E = ~(Sm)2 + k 2. Hence an identification Mo = Sm is quite 
natural. 

Suppose now that we have solved the spectral problem 
for Ho in lOPS (I¢)). If I E, ¢) is an eigenvector of Ho in 
IOPS(I¢)), then it is also an eigenvector of H, 

HIE, ¢) = ~p2 + (Sm + E)2 IE, ¢). (2.49) 

Hence we are in principle capable of producing quantum 
corrections (due to the primary field excitations built over 
the extended particle state) to the I-soliton mass 8m. Ifwe 
adopt the discrete (bound state, WKB) spectrum of the sine
Gordon Hamiltonian: [E; L ~ '.2 .... then the secondary Ha
miltonian H = H (Ho, P, Q) = H (a*, a, P, Q) has a discrete 
mass spectrum with HoIO, ¢) = ° corresponding to the 
H I ¢) = Sm I ¢) equation. 

Let us emphasize that in contrast to Ref. (22), but in 
agreement with the observations of Ref. (6), the asymptotic 
problem for the neutral scalar (sine-Gordon) field cannot be 
solved in lOPS (I ",)). There is no unitary mappings (solely in 
the scalar field algebra) of the soliton Hilbert space 
lOPS (I"')) into a Fock space lOPS (10)). Consequently, we 
havea typical "confinement" o/the quantum scalar field con
stituents o/the extended particle state (soliton) generating 
IDPS (I"')). 

On the other hand, a folk-lore statement is to attribute 
the notion of a quantum particle to an elementary quantum 
system (Le., an irreducible representation of the CCR alge
bra, which the pair P, Q does indeed generate). Consequent
ly, for each fixed a value, the I-soliton Hilbert space 
ha = s;, ha). dlL(J.. ) can be interpreted as the carrier state 
space for a quantum particle, which though "elementary" is 
still an infinite constituent object, see, e.g., in this connection 
Ref. (23). The constituents can never be seen in the conven
tional (Fock space) sense, due to the above-mentioned "con
finement" property. 

Let us emphasize a paradoxical situation: a folk-lore 
understanding of P, Q is that an elementary particle is struc
tureless. Quite the contrary, our derivation of P, Q is based 
on the rich infinite constituent structure underlying the con
struction of the state space for the sine-Gordon field, while 
soliton sectors are taken into account. 

3. "ELEMENTARY" TWO LEVEL SYSTEMS AND THEIR 
INTERACTION IN 1 + 1 DIMENSIONS 

A. The modulus lal of the I-soliton parameter a is rel
evant to the velocity Va and Va = V _ a' Here sgn a is relevant 
to the topological invariant value: 
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R = _1_ f a¢ dx, 
41T JR' ax (3.1) 

which for the ath I-soliton reads 
R = R (a) = R (± lal) = ±!. We assume a#O and then 
compose a direct sum of the ± ath soliton Hilbert spaces: 

h(a)=haffih_a' aER+. (3.2) 

One can observe (see, e.g., Ref. 3) that a classical I-soliton 
momentum value reads k = Sm(a2 - I)l21al and hence the 
a label can be replaced by a joint (R, k) label: h ±a-+hRk so 
that 

h (a) = hk = ffi R ~ ± '12 hRk · (3.3) 

It means that now we are able to give a quantum meaning to 
the topological invariant R. For this purpose, we shall define 
the spin-! SU(2) group raising and lowering operators, as has 
been previously done in Ref. (3), in a slightly different con
text: 

Uk+ = f'" I In, k, + ,J.. )(n, -, k,J..1 df1(J..), 
JR 1 n 

Uk- = f'" I In, k, -, J.. )(n, +, k, J..I df1(J..). JR I n 

(3.4) 

Becauseof(n, a, J.. 1m, - a, J.. ) = ° 'tin, m, J.., we find imme
diately that 

i.e., 

Uk+S'fk =S±k' S+kEh+k,S_kEh_k' 

(ut)2 = 0, (3.5) 

~S±k =(±!)S±k' ~ =(-!)I k +utuk-, 

Ik = [ut, Uk- ] + (3.6) 

In accordance with Ref. 2 and 3 the N-soliton coherent state 
(without breathers) exhibits the following parametrization: 

Ik" R
" 

J..I,· .. ,kN, R N, J.. N) = I~,~, ~ )N' 
(3.7) 

k, <k2 < '" <kN 

where, due to the classical momentum ordering, R; is a topo
logical invariant of the k; th (asymptotic) I-soliton. 

A generalization of the previous direct integral proce
dure reads now as follows: 

I~,~, ~ )N-+IOPS(I~,~, ~ )N)' 

hk,R, ... kNRN=h~~ = f'" df1(J.. , ) ... f'" df1(J.. N) 
JR ' JR i 

XIOPS(I~, ~, ~ )N)' (3.S) 

By our choice of the sharply ordered momentum sequence 
k I < k2 < ... < k N we have guaranteed a fulfillment of the 
"classical Pauli exclusion principle" regarding that neither 
a; in the parametric sequence [al, ... ,aN J can appear more 
than once. By composing a direct sum with respect to all 
possible configurations of ± 's in the sequence [R" ... ,RN J 
we fip':llly arrive at the N-soliton analog of the two-level Hil
bert space hk of (3.3): 

(3.9) 

The corresponding set of spin-!SU(2)N generators can be 

Piotr Garbaczewski 975 



                                                                                                                                    

constructed by adopting the idea of Ref. (3) to our (direct 
integral) case: 

u;+ = UJ, .. kN = I re ... re 
d,u(AIl'" d,u(AN) 

conf1~)JR' JR' 

X Ik), R), A), ... ,R; = +~, 

... ,kN, RN.AN)(k)Rl' A1,···,R; = - ~, ... ,kN' RN, ANI, 

U; I re ... re 
d,u(A 1)·· .d,u(AN) 

confl~ I JR ' JR' 

X Ikp R1, A1,···,R; = - ~, ... ,kN' RN, AN) (3.10) 

X(kpR),A), ... ,R;= +~, ... ,kN,RN,ANI, 

where l:~nflR I means that we perform summations over all 
admissible configurations of I R ), ... ,RN J under an assump
tion that R; is left untouched. Obviously, 

[ u/ , u/ ] _ = ° = [u;- , uj - ] _ , 

[u;-, u/ ] _ 0, i=j=j, 

[u;+ , u;- ] + = lk, ... k
N 

= If, 
Ifh f = h f· 

(3.11) 

All mappings changing a configuration of I R ), ... ,R N J at a 
fixed choice of k) < ... < kN leave the Hilbert space hk,k, ... kN 
invariant. Since with such configuration-to-configuration 
mappings we have automatically associated the spin-! xyz 
Heisenberg model Hamiltonian (see Refs. 2 and 3), hk,k

2
•• .k

N 

can be viewed as the carrier Hilbert space for a system of N 
interacting spins! on a linear lattice with sites labeled by 
k), ... ,kN : 

3 N 

H"yz = - I I /au'tu't+ l' 
a= 1;=] 

for systems subject to the infinite set of conservation laws. 
Namely, let us adopt the following scattering principles: (1) 
absence of particle production; (2) equality of the sets of in i
tial and final momenta !PW",PN J = !P: , ... ,P'tv J; (3) if there is 
more than one type of particles involved, then the numbers 
n; of particles of the same type are unchanged in the scatter
ing process . 

Now let us make an assumption that the classical soli
ton momentum indices appearing in h k, .. . k

N 
are the "particle 

momenta" of the would-be scattered extended quantum sys
tems. Then hk ,. 0 ok

N 
appears as a substitute (albeit completely 

different in its structure) of the conventional N-particle Fock 
space sector: ®; ~ ) N (h j). Instead of speaking about different 
(topological R = ±~) spin projections for a given "parti
cle," we can view them as completely distinct species, having 
thus introduced a soliton and antisoliton as the two-"parti
cle" types. Due to requirement (3), the number of soliton or 
antisoliton labels remains unchanged in any scattering, and, 
moreover, by (1)-(3) we find that25 theS operator acts on the 
states in hk, 000 kN by a possible permutation of momentum 
labels. In terms of soliton states 

S: Ik),RI ... kN,RN)--Ik.lTjll' R\> ... ,krrjNI,RN) 

= Ik), Rrrj,I,···,kN, RrrjNI)' (3.13) 

which means that the scattering process is described by an 
"exchange" of topological charges at a fixed k 1 < ... < k N 

sequence, which is subject to our requirements (3). Here 

(3.14) 

(3.12) so that 

u:= _1_(u+ + u.-) cr = _1_' (u+ - u.-) vL I " I vL I I' 

07 = -! + u/ u j - • 

Needless to say, the spectrum of the weakly anisotropic xyz 
model, while going to continuum is mapped into the WKB 
sine-Gordon/massive Thirring model spectrum. Hence a 
close relationship with the quantum sine-Gordon model still 
persists despite the direct integrals involved. Be aware, how
ever, that (3.12) is not a continuum but an (irregular) lattice 
Hamiltonian. 

An explicit construction of the eigenvectors of (3.12), 
which can be easily reproduced in each hk,k2 0 •• kN' was given 
together with the derivation of the eigenvalues in Ref. 24; see 
also Ref. II. Let us emphasize that the spin-! notion arising 
in the above is of the purely topological (classical topological 
invariant) origin; hence, with H xyz in mind, we should say 
rather about an interacting system of topological spins !. 

B. Before, we have introduced the Hamiltonian system 
in hk, 00. kN by allowing mappings among configurations 
! R 1, ... ,RN J at a fixed choice of kl < ... < kN' which resulted 
in the spin ~ H xyz operator as the appropriate generator of 
time translations. 

We can, however, define a more restrictive set of map
pings, by following the route of Refs. 25 and 26, which aims 
at the description of particle scattering in 1 + I dimensions, 
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= IfRrrflloooR"'Nllkl,RI, ... ,kN,RN) = 11') (3.15) 
I~ I 

with the normalization 

(k p R}, .. o,kN, RN Ik), R ; , ... ,kN,R ;) = 0R,R;' .ORNR ,,' 
(3.16) 

Because of (I H 3) the S operator should be factorized if de
fined on states in hk, '.0 kN (see Refs. 25 and 26): 

= (g, k1,· .. ,kNI IT S(k;,kj)lJ, k1 .. ·,kN), 
l';"i<}<N 

(3.17) 

where, since the two-particle S operators S (k;, k j) in general 
fail to commute, it is necessary to specify the order offactors 
occuring in (3.17). A possible choice which corresponds to 
the ordering of momenta k 1 < ... < k N (see Ref. 25) is 

SN_ 2.N ... (S2N ... S23)(SIN ... Sd = II Sjj' 
l<.i<j,N 

(3.18) 

where 
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(3.19) 
SijSjkSjk = SjkSjkSjj' 

i,j ,k,l all unequal. Let us once more recall the sharp mo
mentum ordering we use in the above. 

Suppose for a while that h k, ... kN is formally construct
ed without any reference to the kl < ... < kN demand. Then 
let us notice that the antisymmetrizing symbol 

II [e(kj - k j ) - elk) - k j )] 

l,j<j,N 

(3.20) 

with e (p) = 1 for p > 0 and e (p) = 0 for p<.O equals 1 except 
for the case of an odd permutation when it equals - 1, and 
for the case of coinciding momenta (kj = k j for some choice 
of i, j) when it equals o. 

Therefore, rr is nonnegative and equals 1 for any choice 
of non coinciding k 's in the momentum sequence. It implies 
that 

rr( 1 - rr) = 0, cr = u, 
(3.21) 

and h 1. ... kN can always be written in the form (3.14) with 
kl < ... < k N • The analysis of Ref. 27 (see also Ref. 11) shows 
that h 1 ... k includes Fermi states of the Bose system de-, N 

fined in hk, ... kN with k 's unrestricted by (3.20). 
Because the soliton Hilbert space of (3.14) respects the 

sharp ordering of momenta, we have rrhk, ... kN 

= h 1. ... kN = hk, ... kN· Consequently, the soliton "particle" 
scattering is the same as the scattering of particles subject to 
the Pauli exclusion principle. 

Since R = + ~----+R = -! implies the soliton ----+ antiso
liton, i.e., the "particle" ----+ "antiparticle" mapping, the gen
eral features of the scattering (3.15) should coincide with 
these observed for the conventional Fermi massive Thirring 
model, irrespective of the fact that we make the whole of the 
construction for the Bose system only. 

The state If, k I ... ,k N) is a normalized vector for any N; 
hence the two-particle S matrices Sij can be studied in more 
detail: 

Sij = Tij +Rij' 

(f, kl' k21 Tijlf, kl' k2) = tij' 

(f, k2' k4 1Rij If, k2' k l ) = rij. 

(3.22) 

In particular, if we consider a particle-antiparticle (Le., soli
ton-antisoliton) pair, we have only four functions occurring 
in (3.22): tn, tn, tn, rn, which are still related by crossing, 
symmetry and unitarity. If to introduce the rapidity e, 
k? = mj cosh ej, k: = mj sinh ej, 

(kj +kY=m;+m]+2mjm j cosheij' eij =8j -8j , 
(3.23) 

(kj - kjf = mJ + m; + 2mjm j cosh(i1r - 8ij)' 

then, by making use of the crossing and unitarity relations, 
one arrives25 at 
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(3.24) 

tIe) = u(hr - e), r(e) = r(i17"- e), 

and 

~(e) = t2(e){ 1 - [t( - e)t(e)-I]}, (3.25) 

which proves that the scattering is described by only one 
independent function, t (e), say. 

A particular choice of t (8) determines the quantum 
field theory model which governs the scattering process. If 
we, for example, decide to follow Refs. 25 and 28, then the 
choice of the transmission amplitude: 

A ee- j1Tk/A + 1 
tIe) = (- I)A II ., A integer, (3.26) 

k ~ I ee + e - l1Tk / A 

corresponds to the so called soliton-antisoliton scattering, 
and t (e) has poles at e k = hr( 1 - k 1 A) which is in relation 
with the WKB sine-Gordon spectrum: 
mk = 2m sin 17" k IU provided that A = 817"ly = 817"1 
P 2( 1 - P 2/817") and the coupling term of the sine-Gordon 
equation reads (m21P )sin pt/J. Due to the fact that A is chosen 
to be an integer, the reflection amplitude r(e) vanishes. 

Consequently, we have found it possible to introduce in 
the soliton Hilbert space hk , ... k

N
' a concept of what is usual

ly known as the "soliton-antisoliton scattering" for the 
quantized sine-Gordon system. If we make one more identi
fication, A = 1 + 2g117", the amplitude (3.26) describes the 
transmission phenomena in the massive Thirring model with 
the coupling constant g. 

4. ON REDUCIBLE FIELD ALGEBRAS IN QUANTUM 
ELECTRODYNAMICS 

A. One says that a representation 17"( ~) of some (field) 
algebra ~ is reducible in a Hilbert space cW", if there is at 
least one nontrivial (i.e., different from zero and unity) oper
ator R, which (1) commutes in cW" with the whole of tr( ~) 
and (2) is not an element of 17"( ~) 

In terms of quantum fields, one may assume that ~ is 
generated by (say) the CCR algebra creation-annihilation 
operators! a*, a J of some Bose field. Then the weakest state
ment about R is that it cannot be solely constructed in terms 
of! a*, a J 12-14: Obviously, for an irreducible representation, 
any element of 17"( ~) can be given as a function of {a*, a J . A 
particular example of such a situation was considered before 
in Sec. 2. One of the observations of Ref. 29 was that a quan
tized solution of the free massive Dirac equation, satisfying 
the usual CAR algebra commutation relations can be recon
structed in terms of the two potential Maxwell (Bose) opera
tors. Then, upon imposing suitable constraints, one can ar
rive at the free electromagnetic field (the Bose quantized 
Coulomb gauge potential Aft) reconstruction of ¢(x), so that 

¢(x) = ¢(Aft)(x). 

If by ~ (A ) we denote the electromagnetic free field al
gebra, then ¢ is necessarily an element of it, as all its spinor 
components can be solely expressed in terms of A . How-

A ~ 
ever, then ¢ does not in any case commute with A : 

A A ft 
[¢(x), Aft (y)] _ #2,5 while the mutual commutativity re-
quirement [¢(x), Aft ( y)] _ = 0 lies at the foundations of the 
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conventional (perturbative) investigations in the infrared 
quantum electrodynamics. 17-19 On the other hand, this as
sumption is not at all necessary for the understanding of the 
QED Hilbert space structure, as described in Ref. 20. At this 
point, it is worthwhile to recall the fundamental conjecture 
of Ref. 20 that the asymptotic electron (Dirac) field must not 
locally commute with the electromagnetic field. Conse
quently, even if one follows the traditional route by starting 
from the mutually commuting free fields 
[¢,(x), AI' (y)] _ = 0, the final goal must be a construction of 
the asymptotic free fields (arising as weak limits of the inter
polating ones) which do fail to mutually commute. 

In the Kulish-Faddeev-Zwanziger approach, 17.19 one 
incorporates the radiation/Coulomb phase operator so as to 
arrive at the asymptotic electron field ;Pas = t/Jas (;p, ,¢, AI")' 
which is a nonlocal function of the mutually commuting 
plane wave solutions to respective free field equations: nona-

A A 

sympotic electron t/J(x) an~ photon AI' ones (see also Ref. 30). 
While constructing t/Jas' one believes 19 that an appropri

ate Hilbert space is the direct product of the free field repre
sentation space for photons and the traditional Fock repre
sentation space for electrons. Let us mention that this kind of 
assumption has been made by Matsumoto, et aU I

•
22 to give 

account of the collective degrees of freedom for soliton 
fields. 

On the other hand, it is well known that the free electro
magnetic field algebra has a highly reducible representation 
in the Hilbert space of infrared states,6.18,20,30 hence quite a 
natural way of getting the mutually commuting free fields 
!;p, AI' I would be to follow the construction of Sec. 2. Then 
the nonasymptoticfree Fermifield would be in principle iden
tifiable in the commutant of the (reducible) free photon field 
algebra. 

For this purpose we need, however, an appropriate set 
of electromagnetic field (coherent) states, In the traditional 
perturbative framework 6,31,.7,19,30 one encounters the coher
ent photon states, which describe the soft photon clouds ac
companying one or more Dirac particles. Like the soliton 
states lPI' R I , AI"'" PN' RN, AN) of(3.7) the photon coherent 
states lPI' el, ... ,PN,eN) can be used to generate the respective 
incomplete direct product spaces, which carry pairwise uni
tarily inequivalent irreducible representations of the CCR 
algebra. However, in the photon case the parametrization is 
not rich enough, and the translation freedom, which is so 
crucial for the procedures of Sec. 2, is lacking. 

B. Let! b ~(k), d ~(k), bs(k), ds(k) I = 1,2 be the CAR al
gebra generators associated with the free Dirac field, 

;P(x) = (2:)3/2 f (:Y/2 ~ [bs(p)ws(p)e
iPX 

+ d ~(p)vs(p)e - iPX] dp, 

¢,(k) = (2:)3/2 f (:) ~ [b ~(p)ws(p)e - ipx 

+ ds(p)vs(p)eiPX ] dp, (4.1) 

[ bi(p), b !(q)] + = 8(p - q)8ij 

= [di(p),d!(p)] +, 
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and let! a:(p), al' (p) I be the CCR algebra ones for the free 
Maxwell field: 

A 1 f dk 
AI" (x) = (217")3/2 [a:(k)e - ikx + al" (k)e'

kx
] (2k

o
)I/2 

[ aJl(k), a~(p)] _ = - gl",,8(k - p) 

with diaggl'v = (1, - 1, - 1, - 1), 

(4.2) 

P = ((p2 + m2
)1/2, pI, k = (Ikl, k). The mutual commutativ

ity condition 

[a! (k), b~(p)] _ = 0 = [a! (k), d~(p)]_ (4.3) 

is imposed according to convention. 
The electric charge operator for the Dirac particles 

reads 

Q = - e f d 4 p 8(p2 - m2)8(po) ~ [b ~(p)bs(p) 

-d~(p)ds(p)]. (4.4) 

One knows that the n-particle-antiparticle Dirac state vec
tor 

(4.5) 

induces the infrared coherent photon state describing the 
associated radiation 

(4.6) 

Here 10)F and 10)B are the respective Fock vacua and one 
should realize that IpI' e., ... , Pn + m' en + m) is not an element 
of the Fock space, since 

where cp(k, PI'''' Pn' ql, ... ,qm) = 1 forlkl<8<1 while cp ra
pidly vanishes for Ikl > 8. Notice that because of (4.5) no 
coinciding (p, e) pairs can appear in (4.6). By introducing the 
orthonormal transverse polarization vectors e;'(k), 
s = 1, 2, €~(k) = 0, Es • k = 0 we can rewrite (4.6) in the (non
covariant) Chung form,3. 

Ip., e.,oo·,Pn + m' en + m) = exp { (2~3/2 

X f st. [f~,m(" 'Ik)a~(k) 
- dk } -f~,m(" 'Ik)as(k)] (2k

o
)I/2 10)B 

: = WnmLe, ~)IO)B' 
(4,8) 

where 

f~, m( ••• Ik) =fn m( •• , Ik)· €s(k) (4.9) 

so that 

Piotr Garbaczewski 978 



                                                                                                                                    

[aj(k),aj(p)] _ = I Ef(k)Ej(p)[all(k),a~(p))_ 

(4.10) 

provided 1:1l,,( - gll,,)Ef(k)Ej(k) = ~ij' 
C. In the above discussion we have distinguished a ball 

fl with the radius smaller than ~ in the momentum space. 
Let ~ be the photon momentum detectability threshold. 
Then photons with Ikl <~ may be called "soft" while those 
with Ikl >~ the "hard" ones. 31 The soft photons are de
scribed by the previously introduced coherent states, while, 
for the hard ones, the conventional occupation number re
presentation is adopted in the literature. 

Let fls be the momentum space region with 
s . ~< Ikl < (s + 1 )~. The previous fl is flo in the present nota
tion. Let Xs(p) be the characteristic function of the set fls: 
Xs(p) = 1 for p E fls' 0 otherwise, and let Vs be the respective 
momentum space volume of fl s • Then we introduce 

a~(s) = -1-f dp a~(p)xs(p), 
JV: 

[a;(s), aj*(t)] _ = ~ij~s" i,j = 1,2 s, t = 0, 1,2, .. " 
(4.11) 

and quite analogously 

[bj(s), b j(t)] + = DijDs, = [d;(s), d j(t)] + (4.12) 

for Fermi operators (4.1). 
At this point let us consider a single hard (s> 0) photon 

mode ! a~(s), aj(s) L= 1,2' By Ws(a·, a) we denote a polyno
mial in a~(s), a; (s), i = 1,2, s fixed. Let us consider the set of 
all such polynomials! Ws(a* ,a)J, s fixed. Then the Hilbert 
space closure of the set of vectors I Ws(a·, a)IO)B J isaHilbert 

space hs = ! Ws(a*, a)IO)B J ofthesth photon mode. 
The lattice index s will be, for simplicity, omitted in 

below. While in hs = h we have the two Bose degrees of 
freedom I a~, a j L = 1. 2' By using them we can easily con
struct the infinitesimal generators of the E (2) group Lie alge
bra in h, namely, the obvious formulas: 

a = q + ip, a* = q - ip (4.13) 

allows us to introduce in h the two translation generators 

N j = (l/2i)(a j - aj*) =Pj' qj = !(a j + aj), j = 1,2, (4.14) 

which together with the rotation generator 

/3 = qlP2 - q2PI (4.15) 

form the E (2) group Lie algebra 

[/3' N I ] _ = iN2' 

(4.16) 

In the most obvious Schrodinger representation (4.14)-(4.15) 
read 

N . a N· a 
I = - I -, q I = U, 2 = - I -, q2 = v, au au 

/3= -i(U~ -u~), fz=c= 1. (4.17) au au 
The unitary in h translation operators have the form 

2 A 
T). =expi}.,N=exp I -' (a j -an (4.18) 

j= I 2 
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hence, if applied to the Fock vacuum, they generate the co
herent states for the sth (hard photon) mode, parametrized 
by real labels AI' .,1,2: 

T).IO) = 1.,1,1' .,1,2)' a j 1.,1,1' .,1,2) =! A j 1.,1,1' .,1,2)' (4.19) 

If to recall that the coherent soft photon states (4.8) were 
constructed under an assumption that all entering photon 
modes belong to flo, we find that each soft photon state may 
be considered as a substitute for the (Fock) vacuum for all 
non-flo (i.e., hard) photon modes: 

a j(s)lpI,el, .. ·,Pn + m' en + m) = 0 

Vj= 1,2, Vs>O. (4.20) 

On the other hand, due to the sufficiently bad k = 0 behavior 
of the boson transformation parameters fll, 

(4.21) 

the hard photon (but soft) vacua (4.7) generate the rich family 
of unitarily inequivalent representations of the photon field 
(CCR) algebra, despite the fact that one exploits only the 
k E flo modes for the construction of generating vectors. It is 
rather clear that the concentration on the infrared aspect of 
the radiation field made people6,17-20,30,31 not even notice 
that theory does not seem to forbid such boson transforma
tion parameters for the radiation field, which (1) behave like 
f~.m(·· 'Ik) of (4.7) for kEno i.e., Ikl<l, but (2) behave as 
badly at Ikl -+ 00, as, say, the sine-Gordon parameters (1.8). 
Property ( 1 ) would allow for the standard infrared construc
tion, while property (2), upon appropriately varying the bo
son transformation parameters with respect to their (bad) 
Ikl -+ 00 behavior, allows in principle for the construction of 
the set of unitarily inequivalent families of infrared represen
tations: Within each family the unitarily inequivalent in
frared representations would still persist. 

Below we shall not enter into the problem of determin
ing the boson transformation parameters which in addition 
to (1) and (2) would exhibit a consistency with the equations 
of motion for the radiation field [as f~, m of (4.8 ) do]. Instead 
we shall assume the appropriate parameters to be granted, 
and analyze some consequences of this ansatz. 

D, Let us notice that f~,m ( ... I k) may be written as a 
sum of contributions following from single charged parti
cles: 

n+m 

= IP'(eij,rjlk), (4.22) 
i= 1 

(jJ (k, r;) = 1 for kEno Vi = 1, 2, ... ,n + m. 

Our idea is to introduce a modified boson transformation 
parameter in the place of this in (4.7)-(4.8): 

p'(e, r, A, A 'Ik) = Xo(k)p'(e, rlk) 

+ [I - Xo(k)]gIl(e, r, A, A 'Ik) (4.23) 

withXo(k) = I for kEno, 0 otherwise. We demand further 
that the Ikl -+ 00 dependence be regulated by the choice of 
two real parameters A, A '. An analogy with the sine-Gordon 
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considerations of Sec. 2 suggests that the modified coherent 
photon states 

IpI' e l, AI' A; , ... , PN' eN' AN' A~) 

=exp{~J ± I [r(Pj,ej,Aj,Ajlk)a:(k) 
(21T) s ~ I j ~ I 

- rip j' e j' A j A j Ik)as(k)] (2:o~/2} 10)B (4.24) 

should form the set of vectors, which are pairwise neither 
equivalent nor weakly equivalent, unless the respective para
metric sets 9 and 9' with 

9 = {PI' e l, AI' A; "",PN' eN' AN' A ~ J do coincide: 
9 n 9' = 9 = 9'. Then at a fixed choice of N, and 
{Ai' A;] l<i<N we remain on the level of standard infrared 
recipes. The infrared photon Hilbert spaces received from 
the generating vectors IpI' el"",PN' eN),u' by varying Pi' ei 

carry pairwise inequivalent representatIons of the photon 
field algebra. In addition, the infrared families arising for 
different choices of {Ai' A ; ll<i<N are unitarily inequivalent, 
albeit for each fixed choice of {Ai' A;] l<i<N the same in
frared physics is described. 

At this point let us fix N and the other charged particles 

data {ei , Pi J l<i<N' For each sequence {A;. A; ll<i<N we deal 
with a separable Hilbert space IDPS (Ie, p, A, A ')N) [whose 
orthonormal basis system we distinguish byall" additional 
index n = 1,2, ... ; compare, (2.9)]. We shall adopt both the 
direct integral procedures of Sec. 2 [see (2.20)] and the spin-~ 
SU(2) operator construction of(3.1O) to arrive at operators in 
the Hilbert space: 

7f?J = )' f$ IDPSlle,p,~, ~ ')N) d,u(~, ~ '). (4.25) 
mJR 1 

Let us introduce 

A a± = _l_(Qa± + ipa± 
1 v'1 1 1 

(/1 i$ i$ I . . . d,u(~, ~ ') 
conf\e) R I R I 

x Iln"",pj' ± ,A], A j, . .. ) 
n 

x ~ (A i + a~ a )in, ... , Pj' ±A], A j"'-I 
1 (4,26) 

with (A i ± )* = A t a ±, a = 1, 2, A j = A ), 
A j = A j, j = 1,2 ... , N, the sum l:~~ntk) having exactly the 
same meaning as the one in (3.10). The object A r ± differs 
from A i ± in the replacement of (lIv2)(A i + a/ aA j) by 
lIv'1(A i - a/aA i), 
Due to the orthogonality of inequivalent coherent states con
stituting objects (4.26) we have 

(4.27) 
[A a + A *a + ] + [A a - A *a - ] = 1 
l'l - l'j -

so that the operators 

B r = A i + + i( - l)q - IA i - , 
a = 1,2, q = 1, 2, j = 1,2, ... , N 

(4.28) 
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together with their Hermitian adjoints satisfy the (infinitesi
mal) CCR algebra commutation relations 

[B?, B r'q'] _ = Oaa,Oqq,Ojj" 

[ B~q B~'q'] = 0 = [B*aq B*a'q'] 
J' ]' -I J 'J -I' 

(4.29) 

The operators (4.28) do carry the charge-spin-momentum 
labels of the Dirac particles (fermions), though acting expli
citly in the (direct integral) Hilbert space of the (reducible) 
electromagnetic field algebra and satisfying the canonical 
commutation relations (the CCR). Notice that by construc
tion, operators (4.28) belong to the commutant of the electro
magnetic field algebra and the Fock-ness property for the 
representation (4,29) can be introduced analogously to this 
of(2,21}. 

Once the CCR algebra generators are given, one can 
exploit the study of isomorphisms between Hilbert spaces of 
symmetric and antisymmetric functions,27 to construct the 
CAR algebra generators and then to represent them in the 
Hilbert space of the Bose system. For Dirac fermions, this 
construction has been accomplished in Refs. 32, 29, and 5 
(see also Ref. 33, and the number of integral degrees offree
dom {a, q I is preserved in this CCR -> CAR = CAR(CCR} 
mapping. 

Operators (4.28) completely suffice for the construction 
of the Fermi set {ba(s), b ~(s), dais}, b ~(s)] of (4.12), where, 
however, in contrast to the case of Ref. 29, the Fermi opera
tors do belong to the commutant of the photon field algebra, 
and obviously (this time like in the case of Ref. 29) do not 
need any separate Fermi Hilbert space to have them repre
sented, 

Let us once more emphasize that the present construc
tion differs essentially from the one given in Ref. 29 and Ref. 
5, example 2, where a possible electromagnetic field content 
of the massive Dirac field was analyzed. Namely, in the lat
ter case fermions were essentially arising in the photon field 
algebra, while in the present case they arise in the commu
tant ofthis algebra, thus not belonging to it (but acting in the 
photon field Hilbert space). 

It seems to be a quite appealing idea that the asymptotic 
solution for the quantized coupled Dirac-Maxwell system 
given for example, by Zwanziger l9 (on the basis of the ansatz 
concerning the asymptotic limit of the renormalized Heisen
berg electric current operator) can be given in terms of the 
objects we have introduced above. However, for this pur
pose, we find it unavoidable to have solved the existence 
problem for boson transformation parameters (4.23). By ex
istence we mean a consistency with the classical equations of 
motion for the coupled Dirac-Maxwell system. 

Let us reca1l29 our statement of belief: A necessary con
dition/or the existence 0/ any physically meaningful quantum 
field theory model is that the corresponding classical model 
exists and is soluble. 

For the classical Dirac-Maxwell system both the exis
tence and (local in time) solubility were proved,34,35 but in 
contrast to (1 + 1 I-dimensional models the explicit solutions 
are painfully lacking. 

Let us mention that, despite the latter problem, the rela
tionship between the quantized Fermi-Dirac-Maxwell sys
tem and the corresponding classical (c-number) one has been 
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investigated in the series of papers of the present au
thor32.29.5.36 on the quantization of spinor fields, see also 
Refs. 37, 38. 
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Using the known form of the on-shell singularities of the off-shell incoming and outgoing wave 
solutions, we investigate the on-shell singularities of the off-shell lost solutions and off- and half
shell lost functions for local central potentials vanishing at infinity as cr ~ a , where aE(O, 1]. We 
show that all the singularities can be expressed via the renormalization factors of the incoming 
and outgoing wave solutions. The obtained results explain the singular term appearing for long
range potentials in the partial waves of the half-shell scattering amplitude in the neighborhood of 
the energy shell. 

PACS numbers: 03.80. + r, 11.20. - e, 02.30.Hq 

I. INTRODUCTION 

For various quantities relative to long-range potentials, 
the on-shell values cannot be obtained as limits of the off
shell ones. These on-shell singularities are closely related to 
the renormalization factors that have to be introduced in the 
time-dependent scattering theory in order that the asympto
tic condition might be generalized to long-range poten
tials. 1

,2 This connection has been proved by Zorbas3 in the 
Coulomb case, and the method3 can be used to give a formal 
expression relating the time-independent renormalization 
factors to the time-dependent ones in the general case of 
potentials of Ref. 2. In Refs. 4 and 5 we have investigated 
explicit forms of singularities of the partial wave projections 
of the off- and half-shell Coulomb and Coulomb-like T ma
trix and of the off-shell Coulomb wave functions. We have 
shown that when passing from the partial waves of the off
shell T matrix and off-shell wave function to half- and on
shell values, respectively, the same singularities appear as in 
the unprojected quantities. However, the partial waves of the 
half-shell T matrix have been shown to contain, unlike the 
unprojected half-shell T matrix,6 not only a singular factor 
but also a singular term. The presence of the singular term 
has been explained in Ref. 4 using the properties of the par
tial wave decomposition of the Coulomb scattering ampli
tude found by Taylor.7 

The method of Refs. 4 and 7 neither explains the form of 
the singular term nor reveals the connection to the on-shell 
singularities of the off-shell Coulomb wave functions. 3 It ap
pears that such a connection exists. It can be established by 
investigating the on-shell singularities of half-shell Cou
lomb-lost functions. 

In the present paper, we study the on-shell singularities 
of various quantities obtained in the generalized off-shell 
lost formalism. 8

-
13 In Sec. II, we analyze the possibilities of 

defining various quantities and of extending the validity of 
several relations of the standard short-range lost formalism 
in the case when a long-range potential is present. We find 
that off the energy shell, the short-range relations can be 
taken over directly. The short-range definitions of the on
shell lost solutions and half- and on-shell lost functions can 
no longer be used. We give a convenient way of defining 

these quantities. In Sec. III, we derive the form of the on
shell singularities of the off-shell lost solutions and off- and 
half-shell lost functions. Our considerations are based only 
on the relation between the off- and on-shell values of the 
incoming and outgoing wave solutions resulting from the 
theory of Refs. 1-3. All the on-shell singularities appearing 
in the lost formalism in the long-range case are determined 
by the renormalization factors for the incoming and outgo
ing wave solutions. 

Units such that fz = 2m = 1 are used throughout the 
paper. 

II. SOLUTIONS OF THE HOMOGENEOUS AND 
INHOMOGENEOUS SCHRODINGER EQUATION FOR 
LONG-RANGE POTENTIALS 

We consider the case oflocal central potentials VIr) 
such that 

VIr) = VL(r) + Vs(r), 

where the short-range part of the potential Vs obeys the 
standard conditions of the short-range theory l4: 

fWs(r)lrdr< 00, LOOWs(r)ldr< 00 

for some a, a' €(O, 00 ), and VL satisfies 15 

I djVL(r) I<C(I +r)-j~a, j<M, 
dr1 

(I) 

(2) 

where a > ~ ifM = 1, a >j ifM = 2, and a >OifM = 3. For 
such potentials there exists 15 a Coo function W(k,t) for 
k€R3 

\ ( 01; t€R, so that 

W(k,s + t) - W(k,t )_sk 2 

as t- ± 00 for each fixed k,s and that the generalized wave 
operators 

fl± = s-limeiH'exp[ -iW(-iV,t)] 
t __ =F 00 

exist for H = Ho + V(Ho = -.:i). 
For a central potential VL , the function W(k,t) can be 

found so that it depends only on k 2 = Ho. Denoting then 

G (Ho,t) = W(Ho,t) - Hot, 
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we can write 

n± = s-limeiHtexp [_iG(Ho,t))e-iHot. (3) 
t--=f 00 

(Both functions W (k 2,t ) and G (k 2,t ) are real and can be cho
sen odd.) 

Having defined the interaction, we can write the homo-
geneous radial Schrodinger equation 

(
d2 ,.1,2_1 ) 
____ 4 _ V(r)+k2 if!(A,k,r) =0, 
dr r 

(4) 

where if!( A,k,r) stands for an arbitrary on-shell solution and 
where, for half-integer values, the angular variable is related 
to the angular momentum quantum number by 

A = 1+ 1, 
A can, in general, assume complex values. 

All the off-shell solutions can be written as solutions of 
the inhomogeneous Schrodinger equation 

(~ _ ,.1,2 - ! _ VIr) + k 2)if!( A,k,p,r) 
dr r 

= (k 2 - p2)if!O( A,p,r) (5) 

with properly chosen solutions if!o( A,p,r) of the free Schro
dinger equation and with properly defined boundary condi
tions. In Ref. 13 we have shown that, in the short-range case, 
it is useful to define the boundary conditions also in terms of 
the free solutions. For the off-shell solutions of Eq. (5), this 
method can still be used. There are many ways to choose 
these free solutions. We shall use the choice of Ref. 16, sub
stituting for if!o( A,p,r) one of the following Riccati-Bessel
Hankel functions: 

J( A,pr) = ~'TTpr/2 J). (pr), 

il( A,pr) = - ~'TTpr/2 N). (pr), 
I 

~ c::::::-FI I I 
h ± (A,pr) = ± iV'TTpr/2 H 1 (pr), 

where the functions J). (z), N). (z), and H ~.21(z) are the Bessel, 
Neumann, and Hankel functions, 17 respectively. 

The solutions of Eq. (5) can be defined equivalently as 
solutions of integral equations. For Re A > 0, the regular so
lution is the solution of the integral equation 

q:; ( A,k, p,r) = J( Apr) + f go( A,k,r,r') V (r') 

Xq:; (A,k,p,r')dr', (6) 

where l6 

gol A,k,r,r') = []( A,kr)il( A,kr') - il( A,kr)j( A,kr')]!k 

= {l/2ik)[h +{A,kr)h -(A,kr')-h -(A,kr)h +(A,kr')). 
(7) 

The integral on the rhs ofEq. (6) is regular even if p = k 
for Re A > 0. It can therefore also be used to define the regu
lar on-shell solution q:;{ A,k,r), and the regular on-shell solu
tion is an ordinary limit of the off-shell one: 

q:; ( A,k,r) = lim q:; ( A,k,p,r). (8) 
p--k 

The existence of the limit (8) is due to the fact that the asymp-
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totic part ofthe potential is absent in Eq. (6) for finite values 
of r. The situation is different for the Jost and wave solutions. 
The usual integral equations can be used to define the off
shell Jost solutions: 

/1 ± I( A,k,p,r) = h ± (A,pr) - LOO go( A,k,r,r') VIr') 

X/I ± I( A,k,p,r')dr' 

(p=/=k). (9) 

If p_k, Eq. (9) contains a singular integral and does not 
define the on-shell Jost solutions. We shall define the on
shell Jost solutions later in a different way. Similarly, the 
Lippmann-Schwinger equation can be used to define the off
shell wave solutions but involves a singular integral if consid
ered on-shell. Let us denote by if! + ( A,k,p,r) and if! _ ( A,k,p,r) 
the incoming and outgoing off-shell wave solutions, respec
tively. Then 

if!± (A,k,p,r) =J(A,pr) + 1"" Go ± (A,k,r,r')V(r') 

X if! ± ( A,k,p,r')dr', (10) 

where Go ± (A,k,r,r') are given byl6 

Go ± (A,k,r,r') = - J{ A,kr < )h ± (A,kr > )/k, (11) 

with 

r < = min ! r,r' l , r> = max ! r,r' l. 
The integral on the rhs of Eq. (10) is nonsingular pro

vided p =/= k, but Eq. (10) is not suitable for the investigation of 
the asymptotic behavior of the wave solutions. The reason is 
that the integral has no limit for r_ 00, i.e., the off-shell wave 
solutions do not behave asymptotically like the free solu
tions. This is characteristic of the long-range interactions. 
We therefore have to require that the asymptotic behavior of 
the scattered wave of the incoming wave solution be de
scribed by the on-shell Jost solution /1 + I{ A,k,r): 

if! + (A,k,p,r)-J( A,pr) + pl( A,k,p)/I + I( A,k,r) (r-oo). 
(12) 

Equation (5), with if!o( A,p,r) = J( A,pr) and with the boundary 
conditions (12) and 

lim if! + ( A,k,p,r) = 0, 
r--+O 

can be solved by the standard Green's function techniques 
yielding 

if! + (A,k,p,r) = J( A,pr) + 1"" G + (A,k,r,r')V(r')j( A,pr')dr', 

(13) 

where 

G + (A,k,r,r) = - [Wi + I(A,k)] -Iq:; (A,k,r < ~I + I(A,k,r ». 

(14) 

Wi ± I{ A,k) stands for the Wronskians 

Wi ± I( A,k ) = /1 ± I( A,k,r~q:; (A,k,r) - q:; (A,k,r~ j1 ± I( A,k,r). 
dr dr 

(15) 

Inserting Eq. (14) into Eq. (13), taking r-oo, and comparing 
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the obtained asymptotic expression with the rhs of relation 
(12), we obtain 

f(A,k,p) = - [pWI + I(A,k)] - If'" rp (A,k,r')V(r'~A,pr')dr'. 
(16) 

Due to the fact that [see Eq. (9)] 

/1 ± I( A,k,p,r)-h ± (A,pr) for r-+oo 

and that 

j( A,pr) = [h + (A,pr) - h - (A,pr) l/2i, 

the asymptotic relation (12) implies 

t/J + ( A,k,p,r) = [/1 + I( A,k,p,r) - /1 - I( A,k,p,r)] /2i 

+ p f( A,k,p)/I + I( A,k,r). (17) 

Equations (15H 17) can be used to define the on-shell Jost 
solution /1 + I( A,k,r) up to an arbitrary constant factor. 

The case of the outgoing wave solution need not be con
sidered separately as by Eqs. (10) and (11), 

t/J _ ( A,k,p,r) = t/J"'+ (A,k,p,r). (18) 

Equations (15H 17) then also imply 

/1 - I( A,k,r) = /1 + 1·( A,k,r). (19) 

( • means complex conjugation.) 
The half-shell Jost functions can be defined by the ex

pressions of the short-range theory13 

FI ± I( A,k,q) - 1 = k - 11"'>1 ± I( A,k,r)V(rV( A,q,r)dr (20) 

and 

FI ± I( A,q,k) - 1 = k -11'0 h ± (A,qr)V(r)rp (A,k,r)dr. (21) 

[Sometimes slightly different normalization is used. For ex
ample,8.11,12 the rhs ofEq. (20) is multiplied by (k /q)A + 112 to 
obtain expressions regular for k-+O.] Using the Jost func
tions (20), we can express the solution rp( A,k,p,r) by means of 
the Jost solutions as follows I2,13: 

rp ( A,k,p,r) = (1I2i) [/1 + I( A,k,p,r) 

+ (FI - I( A,k,p) - 1)/1 + I( A,k,r) 

- /1 - I( A,k,p,r) 

- (FI+I(A,k,p) - 1)/I-I(A,k,r)]. (22) 

Similarly, the Jost functions (21) express the behavior ofthe 
Jost solutions in the neighborhood ofr = O. Assuming all the 
time Re A> 0, Eqs. (7) and (9) yield (see also Ref. 13) 

/1 ± I( A,k,p,r)-(FI ± I( A,p,k) - 1) 

X ii( A,kr) + ii( A,pr) + 0 (rA + 1/2) 

for r-+O. (23) 

It is immediately seen that for q-+k, both integrals (20) 
and (21) diverge. A special definition is thus needed for the 
on-shell Jost functions. In analogy with Ref. 14, we shall 
define them as follows: 

FI ± I( A,k) = Wi ± I( A,k )lk. (24) 

Using definition (24), we can write 
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rp (A,k,r) = [FI - I( A,k )/1 + I( A,k,r) 

- FI + I( A,k )/1 - I( A,k,r)] /2i (25) 

and 

/' ± I( A,k,r) _ FI ± I( A,k )il( A,kr) + 0 (rA + 1/2) 

(r-+O). (26) 

Of course, the fully off-shell Jost functions I2,13 can be 
defined by the relations of the short-range theory13: 

FI ± I( A,p,q;k) - 1 = k -1100 

h ± (A,pr) V (r)rp (A,k,q,r)dr 

= k - 1100 

j( A,qr) V (r)/I ± I( A,k,p,r)dr. 

(27) 

Equation (27) implies that the limit limp-+k FI ± I( A,p,q;k ) 
does not exist but that 

FI ± I( A,p,k) = FI ± I( A,p,k;k) (28) 

if p=j=k. 
We have examined the definition of all necessary quan

tities involved in the Jost formalism for long-range poten
tials. We have not defined the on-shell incoming and outgo
ing wave solutions and the normalization of the on-shell Jost 
solutions. This will be done in the next section. 

III. ON-SHELL SINGULARITIES OF THE JOST 
FUNCTIONS AND OF THE JOST SOLUTIONS 

In this section, we derive the form of the on-shell singu
larities of the Jost functions and Jost solutions. We shall take 
the relation between the off- and on-shell incoming and out
going solutions as the starting point. The procedure of Ref. 
3, establishing the connection between time-dependent and 
time-independent renormalization factors, can, in fact, be 
applied directly to the general class of potentials of the type 
(1 ),(2). The time-dependent renormalization factor on the rhs 
ofEq. (3) yields 

R + (k 2 + iE,k) = fOe -Z exp [ - iG (k 2 + iE,z/E)]dz, (29) 

where the time-independent renormalization factor 
R + (k 2 + iE,k ) gives the on-shell wave function as the limit 

t/J + (A,k,r) = lim R :;: I(k 2 + iE,k)t/J + (A,~k 2 + iE,k,r). 
€-.() 

[The function of the lhs is the incoming wave solution of Eq. 
(4) and the second factor on the rhs is the incoming off-shell 
solution (10) with complex energy. As the renormalization 
factor does not depend on angular variables, the same rela
tion holds for the full wave function as well as its partial 
waves.] 

As our off-shell wave functions are with real energy, we 
need renormalization factors R + (k,p) for k,p real, and p =j:. k. 
It is not our purpose to discuss their existence in detail. We 
only observe that the theorem 15 as formulated in Ref. 2 gives 
no result in this respect. However, ifthe function G (k 2,t ) has 
the property that the real t axis can be rotated around the 
origin of the complex t plane so that the integral 
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R + (k,p) = i'" e-
Z 

exp [ - iG (k 2, i(p2 _ ~2 _ iO) ]dZ(30) 

is defined, the sought time-independent renormalization fac
tor, yielding the on-shell incoming wave function as the limit 

tP + (A,k,r) = lim R ~ '(k,p)tP + (A,k,p,r), (31) 
p-+k 

is obtained from factor (29) by analytic continuation. For the 
Coulomb potential and a large class oflong-range potentials 
with a < ~ for which time-dependent renormalization factors 
are given in Ref. 18, integral (30) exists. 

The case of outgoing wave solutions need not be consid
eredseparately. Taking into acount that the function G (k 2,t) 
is real for real values of the arguments and odd as a function 
of t, and assuming Eq. (30) holds, we can determine the re
normalization factor for the outgoing wave solution as 

R _ (k,p) = R ~ (k,p). (32) 

The on-shell outgoing wave solution, defined by Eq. (31) 
with the subscripts + replaced by - , is due to Eqs. (10) and 
(32), the complex conjugate of the incoming one: 

tP _ ( A,k,r) = tP~ ( A,k,r). (33) 

In the Coulomb case (VL = V C = clr) the renormaliza
tion factor (30) has the form3.'9 

Rc+ (k,p) = r(1 - iYHi(p2 - k 2 - iO)/4k 2]iY, (34) 

where Y = cl2k. 
The on-shell incoming wave solution is again zero for 

r-D which implies that 

tP + (A,k,r) = A ( A,k )qJ ( A,k,r). (35) 

Moreover, tP + (A,k,r) is a linear combination of the on-shell 
Jost functions /1 + I( A,k,r) and /1 -iI A,k,r), which could be 
defined only up to an undetermined factor in the previous 
section. We shall define this factor by requiring 

tP + (A,k,r) = (1I2i) fJI + I( A,k,r) - fl -iI A,k,r)] 

+ kf(k)ll + I( A,k,r). (36) 

Equation (36) defines the on-shell scattering amplitude f(k) 
as well. 

If we compare Eqs. (25) and (35) to Eq. (36), we get 

(37) 

By inserting Eq. (14) into Eq. (13), taking r-D, and using 
Eqs. (20) and (24), we obtain 

tP + ( A,k,p,r) = qJ ( A,k,p,r) 

- ((F I + I( A,k,p) - 1 )1 F I + I( A,k ))cp (A,k,r). 
(38) 

Equations (8), (31), (35), (37), and (38) now yield 

lim [FI ± I( A,k,p) + R ± (k,p)] = FI ± I( A,k) + 1. (39) 
p-+k 

To include the index - when writing Eq. (39), we have used 
the relation 

FI -iI A, ... ) = FI + 1·( A, ... ), (40) 

which holds due to Eqs. (9), (19), (24), and (27) for off-, half-, 
and on-shell Jost functions defined in Sec. II. Equation (39) 
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shows that FI ± I( A,k,p) contain singular terms. 
Ifwe insert Eqs. (24) and (25) into Eq. (16), and use Eq. 

(20), we get 

f(A,k,p) = - (1I2ipFI+I(A,k)) 

X [FI -iI A,k )(FI + I( A,k,p) - 1) 

_FI+I(A,k)(FI-I(A,k,p) - 1)]. (41) 

Equation (39) then yields [see also Eqs. (25) and (36)] 

limR ~ '(k,p) [2ipf( A,k,p) + R _ (k,p)] 
p-+k 

=FI-I(A,k)/ FI+I(A,k) 

= 2ikf(k) + 1. (42) 

This relation has already been discussed in Ref. 4 in the Cou
lomb case. Equation (42) shows that a singular term 
[ - R _ (k,p)] , independent on A, is to be left out in 
2ip f(A,k,p) in order that the renormalization by the factor 
R ~ '(k,p) might be performed. 

The on-shell singularities of the off-shell Jost solutions 
can be obtained simply with the help of Eqs. (22) and (39): 

lim R ~ '(k,p)/I ± I( A,k,p,r) = /1 ± I( A,k,r). (43) 
p-+k 

Equation (43) and relation (23) directly yield the singu
larity of the half-shell Jost function FI ± I( A,p,k): 

lim R ~ '(k,p)FI ± I( A,p,k ) = FI ± I( A,k ). (44) 
p-+k 

To obtain the singularity of the fully off-shell Jost func
tion (27) arising if the variablep approaches the energy shell, 
it is sufficient to consider the integral representations (20) 
and (27). The singularity of integral (27) is determined mani
festly by the singularity (43) of the Jost solution. Thus 

lim R ~ '(k,p)[FI ± I( A,p,q; k) - 1] = FI ± I( A,k,q) - 1. (45) 
p-+k 

This completes the description of all the possible ways 
that the on-shell Jost functions FI ± I( A,k) can be calculated 
from the fully off-shell Jost functions (27). We have also ob
tained the relation between the off- and on-shell Jost solu
tions. It is interesting to note that the on-shell Jost solutions 
defined by Eqs. (13)-(17) and (36) have the same Wronskian 
as in the short-range case: 

/1 -iI A,k,r7/1 + I( A,k,r) 

- /1 + I( A,k,r)!i: .. -,/I -iI A,k,r) = 2ik. 
dr 

This equality is obtained by calculating the Wronskian of 
tP + (A,k,r) and /1 + I( A,k,r) once using Eq. (36) and once us
ing Eqs. (15), (24), (35), and (37) and by comparing the results. 
It indicates that, in analogy with the Coulomb case, the 
asymptotic behavior of the general long-range on-shell Jost 
solutions differs from the asymptotic behavior of the short
range Jost solutions only by an oscillating phase factor. 
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TABLE I. On-shell behavior of off-shell solutions and half- and off-shell 
lost functions for long-range potentials. 

Function Transition off-shell---+on-shell 

¢± (A, k,p, r) ¢ ± (A, k, r) = lim R :;: I(k,p)¢± (A, k,p, r) 
fr-.. k 

'P (A, k, p, r) 'P (A, k, r) = lim 'P (A, k, p, r) 
Jr-k 

/i ± I(A, k, r) = lim R ~ I(k, p) /'- ± I(A, k, p, r) 
Jr-k 

F i ± I (A, p, q; k ) p#k:Fi±I(A,p, k) = limFi±I(A,p, q; k) 
q-k 

q#k:Fi±I(A,k,q)-1 = limR ~'(k,p) 
~_k 

X[Fi±I(A,p, q; k) - 1] 

Fi±I(A,p, k) Fi±I(A,k)= limR ~'(k,p)Fi±I(A,p,k) 
~k 

Fi±I(A, k,p) Fi±I(A, k) = lim [Fi±I(A, k,p) + R ± (k,p)-I] 
~k 

IV. AN EXAMPLE FROM THE THEORY OF COULOMB 
SCATTERING 

We have not found enough examples in the literature to 
illustrate all the obtained relations. One simple example can 
be given in the case when the asymptotic part of the interac
tion is dominated by the Coulomb potential. As we have 
seen, the investigated singularities are independent of the 
short-range part of the interaction and, therefore, we can 
limit ourselves to the scattering by the pure Coulomb poten
tial 

Vir) = Velr) = 2k y/r. (46) 

In this case, an analytic formula for the half-shell Jost func
tionFI + 1(1 + !,p,k HI = 0,1,2, ... ) can be found in Ref. 20. The 
normalization of the half-shell Jost functions of Ref. 20 is 
such that [cf. Eq. (4) of Ref. 20 and Eqs. (21), (35), and (37)] 

/c.I(k,p) - 1 = (p/k)' [F~+ l(l + !,p,k) - 1], 
where /c.I(k,p) stands for the half-shell Jost function of Ref. 
20 andF~+ '(! + !,p,k) is the half-shell Jost function (21) cor
responding to the Coulomb potential (46). Note that 
zi- 'h 1+ I(z) = h +(l +! ,z), where h 1+ I(z) is the spherical 
Hankel function of Ref. 20. The factor (p/k)', equal to unity 
if p---+k, is, however, unimportant and the Jost function 
/c.I(k,p) has to satisfy Eq. (44) with [see Eqs. (32) and (34)] 

Rc_ (k,p) = r(l + iyj[ - i(p2 - k 2 + iO)/4k 2] - iy. 
(47) 

Indeed, this can easily be verified. The analytic expression 
obtained in Ref. 20 [Eq. (10)] is 

(
l+iy)-I(l-iy)-I[ (p2) 

/c.,(k,p) = 1 + I I -..r;i', 0; T 

+(.!!....)'( p+k. )iYPI_iY,iYI(p2+k2)], (48) 
k p - k + 10 2pk 

where PIa/PI denotes the Jacobi polynomials 17 and ..r;i',( x,y) 
is a polynomial with real coefficients of I th degree in both 
variables such that [Eq. (9) of Ref. 20] 
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(49) 

Inserting Eq. (49) into Eq. (48) taken for p---+k and using 

PI - iy,iYI(l) = C ~ iY). 

we get 

( 
2k )iY(1 + iY) - 1 

/c,,(k,p) ~ p _ k + iO I ' p---+k. 

If we renormalize this relation according to Eq. (44) using 
the renormalization factor (47) we obtain 

limR -~(k.p)'/' (k.p)=e 1T12 r(/+l)/'c,,(k l , 
c , '/-C.l ' r (I 1 .) r< 

p--->k + + Iy 

which is the correct Coulomb on-shell Jost function. 

V. CONCLUSIONS 

We have found the on-shell singularities of the off-shell 
Jost solutions and off- and half-shell Jost functions for cen
trallong-range potentials. We have shown that all the singu
larities are expressed by the renormalization factor for the 
incoming wave function and by its complex conjugate. The 
results are assembled in Table I. 

For Coulomb interaction, the found expressions repro
duce the already known results. In particular, the singulari
ties of the half-shell Jost functions FI ± I( A,k,p) show that the 
long-range half-shell scattering amplitude always contains a 
singular term independent of the angular momentum. 

The found relations can serve to determine the on-shell 
singularities of other quantities used in the scattering theory, 
such as the standing wave solution and the matrix elements 
of the reaction operator. 12 
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We show the identity of the Eisenbud-Wigner time delay and that of Lavine for potentials 
V = VI + V2, VI-1IIxl l +E, xVVI-1IIxl l +E, V2-1IIxl2+€ for X-oo. Finally we show the 
additivity of time delay for the same class of potentials. 

PACS numbers: 03.80. + r 

I. INTRODUCTION 

In a recent paper, I we discussed the connection between 
the Eisenbud-Wigner time delay, the time delay of Lavine, 
and expectation values of the dilation operator. Since the 
ideas behind these connections follow completely classical 
considerations, all relations find their counterpart in classi
cal scattering theory.2 In classical theory, the basic property 
is the convergence of x(t) - pIt )t, which corresponds to the 
fact that xV Vand V have to be integrable in time or xV Vand 
V have to decrease faster than 1IIxi l + €. 

In Ref. 1, domain problems are ignored. Thus the re
sults could not be accepted to be rigorous. In the mean time, 
other results on the connection of the different definitions of 
time delay were obtained.3

-
5 But the assumptions on the po

tential had to be stronger than for the classical problem. As is 
shown in Ref. 3, the Eisenbud-Wigner time delay 
S - I (A )[ dS (A )/ dA ] exists6 if either Vand x V V decrease fas
ter than 1IIxi l +E or if V decreases faster than 1IIxl2 +E, 
whereas for the other definitions, stronger decrease proper
ties on V are necessary. It seems worthwhile to improve the 
results so that equality holds in all cases when the Eisenbud
Wigner time delay is defined. Thus we learn that scattering is 
essentially to be understood in classical terms. Evolution of 
expectation values of operators behave essentially in the 
same way. Of course in the proof, we have to take into ac
count the noncommutativity, but as a matter of fact, it only 
improves the limit behavior because, due to the uncertainty 
principle, local ft.uctuations are less important in quantum 
than in classical theory and, therefore, conditions on xV V 
can be replaced by conditions on decrease properties of V. 

Finally, we want to mention the definition of time delay 
given by Jauch et al.,7.s namely, 

T=;~ TR =limL+ooOOdt(IIPRe- iHt 

xfl_(,6 W -IIPRe-iHot(,6 W), 
with P R the projection operator on the ball with radius R. As 
shown in Ref. 3 it coincides with the Eisenbud-Wigner time 
delay if V decreases at infinity as fast as 1IIxl 4 + €. For radial 
symmetric potentials, the result can be improved up to 11 
Ixl 2 + € (Ref. 5) due to our better knowledge of the general
ized eigenfunctions. We have not been able to show that 
equality also holds in the above cases and, in fact, we believe 
that really the 1IIxl 2 + € could be the relevant border line 
since diffusion effects might become important. 

II. THE EISENBUD-WIGNER TIME DELAY AND THE 
DILATION OPERATOR 

The Eisenbud-Wigner time delay is defined by the de
composition in the spectral representation of Ho to be6 

T = is (A )* dS (A ) . 
dA 

Evidently it commutes with Ho. It is well defined if 
V = VI + V2 , where VI and V2 are Ho-relatively bounded 
and VI decreases as 1I1x12+E and V2 andxVV2 as 1IIxi l +€ 
for Ix 1-00. This is shown in Ref. 3 for VI or V2 but the 
generalization for the sum is rather obvious. 

Using the representation of the dilation operator in the 
spectral representation of H o, it is also shown there that 

THo= -~*[D,S]. 

In Ref. 1 we did not define the time delay as an operator 
acting on the incoming wave function, but according to the 
definition in classical scattering theory as form T defined on 
the actual wave function at t = 0, namely, with (,6ElJr ac (H ) 

«(,6 IHT I (,6 ) = lim «(,6leiHte - iHotDeiHote - iHt 
t~oo 

- e - iHteiHotDe - iHoteiHt 1(,6 ). 

Under the above assumptions on V, the limit exists for the 
dense class of (,6 = g(H)( 1I(D + i))tP withgEC 6 ((0,00 )lup (H)) 
as bounded form and thus corresponds to the operator 

HT=fl_THofl~ 

according to the following results. 
Lemma 1: Let V and xV V be relatively bounded with 

respect to H. Let tP = g(H)(1I(D + i))l,6 withgEC 6. 
Then eiHtt/IEPfl(D) V t. 

Similar results can be obtained for D k with the assump
tion that gEC ~ and [D, vj1 is relatively bounded for alII <k. 9 

[D, vj1 = [D [D, V](l- I)]. 
Lemma 2: 

eiHtg(Ho)(1I(D + i))l,6EPfl(D). 

This is shown in Ref. 10. For completeness we state the fol
lowing. 

Lemma 3: Let V decrease faster than 1/ Ix II + € for 
Ixl-oo. Then 

«(,6 1(1/(D + z))g(Ho)eiHtDe - iHt 

xg(Ho)(1I(D + i))l(,6 ) < 00 V t, 
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(f/J I (l/(D + i))g(Ho)eiHleiHoIDe ~ iH1e ~ iHol 

xg(H)(l/(D + i)lIf/J) < 00 V t. 

Thus the weaker assumption on Vonly allows statements for 
the form. 

Proof The expression equals, e.g., 

(f/J I(l/(D + i))g(Ho)Dg(Ho)(l/(D + i))If/J) 

- fdt '(f/J (l/(D + i))g(Ho)eiH(t~ t'l 

(2Ho - i[D,V ])e~ H(t~ t'lg(Ho)(l/(D + i))If/J). 
Since p and x· V are relatively bounded, the expression is 
bounded. We have not been able to prove that eiHte ~ iHot 
DeiHote ~ iHt is bounded uniformly in t as a form on an appro
priate domain under this weak assumption on V. Thus we 
have to return to the stronger conditions on V. 

Lemma 4: Let VI and xV VI decrease faster than l/ 
Ixl l 

H for Ixl--+oo, and V2 faster than l/lxl2 + E. Then, 

Dil (1/(D + i)) 
is a bounded operator. 

Proof We have to estimate [D,il]. We use stationary 
formalism for the wave operator il which is well defined due 
to the properties of the resolvent as bounded operator 
between weighted :/2 spaces and the equality I I 

8 (H _ E) = _1_( 1 _ 1 ). 
o 21Ti H - E - iO H - E + iO 

i (00 dE lD, 1 . V8(Ho - E)] Jo H -E-/O 

= rOOdE~( 1 
Jo da e2uHO + VIa) - E - iO 

X V(a)8(e2UHo - E)) I u= I 

= (''' dEe2U(~ e ~ 2u 
Jo da Ho+e~2uV(a)-E-iO 

X V(a)e~ 2U8(Ho - E)) la ~ I 

= (OOdE( 1 (2V-i[D,V]) 
Jo Ho + V - E - iO 

1 
X V- V 

Ho+ V-E-iO Ho+ V-E-iO 

X(4V - i[D,v]))8(Ho - E). 

We have formally used that V (a) is well defined and differen
tiable, but the last equality can be shown without this as
sumption. Now either xV VI or x- V2 decrease faster than 
l/Ix II + E and therefore control the resolvent, respectively, 
the 8-function, by standard arguments. 11.12 

Lemma 5: 

lim eiHte ~ iHotDeiHote ~ iHtPac = il + Dil "'.- , 
t~ ± 00 - -

Proof By the same arguments as before, Dil * (l/ 
(D + ill is a bounded operator. The limit is defined for 
il ± g(Ho)Dg(Ho)il ~ on a domain where the operator is es-

988 J. Math. Phys .. Vol. 25. No.4. April 1984 

sentially self-adjoint and, finally, we can use the fact that 
lim g(Ho)Dg(Ho) = D in the strong resolvent sense. 
g~1 

III. THE TIME DELAY OF LAVINE 

The time delay is defined by Lavine l3 to be 

(f/J IH71f/J) = L+oooo dt (f/J leiHt (2V +xVV)e~iHtlf/J)· 
Its connection with dilation can be seen by 

= eiHt (D _ 2tHo)e ~ iHt 

= fdt' eiH(t~ t'I(2H - 2V _ xVV)eiH(t~ t'l 

+ D _ 2teiHtHoe ~ iHt 

= D + 2teiHtVe ~ iHt + iteiHt ' 

X(2V - i[D,v])e~iHI' dt'. 

Thus we have to show that lim t II Ve ~ iHtf/J II = 0, and there-
t~oo 

fore to consider the decrease properties of II Ve ~ iHtf/J II. 
Lemma 6: Let V (x) be a dilation analytic operator. I I 

Then with gEe 0' , 

11(l/(1 + x 2 ))1</2e ~ iHtg(H )(l/(D Z + 1)1<12)11 <cl< It I ~I< H. 

Remark: The above result corresponds essentially to 
the fact that x/ t - p--+O in the strong resolvent sense, though 
this convergence does not rigorously imply the above behav
ior. To obtain a uniform estimate in t we have to ensure that 
we start with a wave function at t = 0 that is sufficiently 
concentrated so that, for large t, the scattering process is 
essentially finished. In Refs. 9 and 13, similar results can be 
found, except that the restriction on the wave function was 
different (EP + (D )$} so that the result was not uniform for 
positive and negative t. We willjust copy their techniques. In 
Ref. 3, a somewhat stronger result for Ho was obtained, espe
cially without the c, but it is harder to generalize it for dila
tion analytic potentials. 

Proof We use the fact that 

e~iHt (H) 1 
-(D-Z +-I-t-12-e g (D 2 + 1 )m/2 

= n! J+oodEeiEt 1 
21Ti(it )" ~ 00 (D 2 + 1 )m12 

1 (H) 1 fi t'>-O 
X (H _ E ± iO)" + I

g 
(D 2 + 1 )m/2 or '- . 

Now we consider the analytic operator valued function 

F(a) _ 1 1 1 
- (D2+ l)ml2 (H(a)-E-iO)n+1 (D2+ l)m12' 

and obtain 

II dF(a;a+ ia) II 

= 211 (D 2 : 1 )m12 (H (a) _ ~ _ iOt + I (D 2 ~ 1 )mI211· 
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Now we proceed as in Refs. 12 and 13, and conclude from 
their results that 

II (D2 ~ Itl2 (H _; _ io)m' (D2 ~ l)ml211 <e(m,m') 

for m' < m, m' m integer and, therefore, 

II 1 - iHt (H) 1 II 
(D 2 + 1 t 12 e g (D 2 + 1 t /2 

(
1 )m - I - < 

<e(m,E) t . 
As in Refs. 9 and 14, we can interpolate with respect to m, 
whereforRe m = 0, we have the bound 1 andforRe (m + k) 
the bound (1/t)m + k - I - <. Therefore with m = OXk / 

(m + k) + (m/(m + k ))(m + k), 

G(m)II<IIG(m + k)llm/lm+k) 

= e(m + k)(1/tt lm + k- I -<)/lm+k), 

and for large enough k, we obtain 

II (D 2 ~ l)ml2e - iHtg(H) (D 2 ~ l)ml211 <C(m,E{ + r -< 

or, since p is dominated by H and therefore (1/( 1 + x2)m12) 
g(H)(D 2 + l)ml2 bounded (see Ref. 9), 

II 
1 . 1 II ( 1 )m - < 

(1 + x2t 12e - IHtg(H) (D 2 + 1 t12 <e(m,E) t . 
Thus for dilation analytic potentials that decrease as 1/ 
lxii+<, 

lim t lIVe - iHtg(H) 1 II = 0 
t-oo (D2 + 1)112+< 

and, therefore, the different definitions of time delay coin
cide. To find the corresponding estimate for other potentials 
we use 

and, thus, we need the following lemma. 
Lemma 7: Let Vand xV V decrease faster than 1/ 

Ixl l + <, or V decrease faster than 1/lxl 2 + <, Then for ° < E, 

ID II + 0J1g(Ho)1/(D 2 + 1)11 +6)12, 

ID II Hn *g(H)1/(D2 + 1)(1 +6)12 

are bounded operators. 
Remark: To start with, the expressions exist as densely 

defined quadratic forms. Since they turn out to be bounded 
on their domains, they correspond to bounded operators. 

Proof We concentrate on the first operator, the calcula
tion works as well for the other one, Using the methods of the 
proof of Lemma 4, the expression differs only by bounded 
operators from 

[DO,[D,n 1 ]g(Ho) (D2 + !)(I +0)/2 

= -i[DO,J 1 {(2V-i[D,V]) 1 V 
H-E-ill H-E-ill 

-4V+i[D,V]}0(Ho-E)]g(Ho) 1 , 
(D 2 + 1)(1 + 15)/2 
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where D 15: = sgn DID 1
0. 

Now we consider the operator-valued function analytic 
in r for 0 < Re r < 1: 

_ i[D yfdE 1 . {(2 Vii + y)l(1 + 0) 

H-E-IO 

-(i[D,Vj)lI+Y)/II+I5)) 1 VII+y)/(I+O) 
H-E-ill 

_ 4V(1 +y)/(1 +15) + (i[D,V])(1 +y)ll +15}O(Ho - E)l 

if Vand i[D, V] decrease faster than 1/lx II +< (again WY 
: = sgn WI WIY), or 

_ i[D y,fdE 1 {(2 V(I + y)/11 + 15) 

H-E-ill 
-i[D,VII+y)/I+I5)]) 1 V(I+y)/II+I5) 

H-E-iO 

_ 4VI I +y)/(1 +0) + i[D,VI I +y)/11 +I5)]}o(Ho - E)l 

if V decreases faster than 1/lxl2 + <. 

In both cases we have an expression 

[DY,A(r)], 

where A (r) are bounded operators. We now have to investi
gate the boundaries of the strip, i.e., Re r = 0 and Re r = 1. 
In the first case, the commutator [sgn DID Ii Imy,A (r)] is 
bounded since it involves only bounded operators (we take ° < E). On the other side for Re r = I we have, besides the 
bounded operator, ID lilm

y terms of the type 

fdE 1 
H-E-iO 

X [D,2 V 2I(1 + 15) - (i[D, V ])21(1 + 151]o(Ho - E) 

or 

fdE H _ ~ _ iO[D,[D,V2I(I HI] ]o(Ho - E). 

They are of the form 

fdE 1 . pWo(Ho - E) 
H-E-IO 

or, in the worst case, 

where W decreases faster than 1/lxl l + < - 0 and therefore, by 
standard arguments, the operator is well defined and bound
ed (Ref. 11; XIII, 8). 

For the commutator with the remaining terms we study 

df 1 - dE Vo(e2UH -E) 
da e2uHo + V _ E _ iO 0 , 

and this is bounded as we have seen already in Lemma 4. 
Thus by interpolation, [D y,A (r)] is bounded for all r in the 
strip and, therefore, especially [D 15 ,A (0)] which coincides 
with [D 15 [D,n n. 

We finally obtain 
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II (D2 + ~)(I +W2e-iHtg(H)tP II 
<; II 1 ng(H )1/2(D 2 + 1)(1 + 6)1211 

(D 2 + 1)( I + 6)12 0 

X II 1 1/2(H) 
(D 2 + 1)(1 + 6)/2 g 0 

Xe-iHo'n*tP II<;ct- I - 6• 

By the same argument, we have that 1I(x2 + 1 )m12 

g(H )(D 2 + 1 t/2 is bounded9 and thus for all tP in H, there 
exists a c such that 

II 1 e - iHt (H) 1 ,/,. II ~ct - I - 6 
(1 +X2)(1 +E)12 g (D2 + 1)(1 + 6)/2 if '" . 

Therefore we can state our final theorem. 
Theorem: Assume that V = VI + V2, VI and xV VI rela

tively bounded and decreasing faster than Vlxl l + E, V2 rela
tively bounded and decreasing faster than 1I1xl2 + E. Then, 

(1) HoS-I[D,S] exists, 
(2) lim eiHte - iHotDeiHote - iHtp = D exists in the 

ac ± 
strong resolvent sense, 

(3)!LHoS-I[D,S]n*- =D+ -D_ =!dteiHt 

(2V + xVV)e- iHt = Hr. 

So far, the result seems to be optimal. Generalization for the 
Coulomb potential with modified Moeller operators are ob
vious. 5 Our result improves those of Ref. 5 insofar as we are 
not restricted to the spherical symmetric potential. 

IV. ADDITIVITY OF TIME DELAY AND PHASE SHIFT 

The additivity of the phase shift for different potentials 
is a well-known phenomenon if one works with Jost func
tions. 16 If the potentials are not spherically symmetric, the 
phase shift has to be regarded as an operator acting in differ
ent spaces (constant energy for different Hamiltonians) and 
therefore additivity does not make sense a priori. Additivity 
of time delay as expectation values with certain wave func
tions can be handled more easily: We observe, with Sik(A) 
the scattering matrix between the Hamiltonian Hi and H k in 
the spectral representation of H k , 

(tPOin liAS 20 1(,,1, )~2o(A )ltPoin) 
dA 

= (In 2tDn 2t * - n 20 Dn io *ltP) 

= (tP In 21 n ItDn It *n 21" * 

- n 21 n 10 Dn 10 * n 21*1 tP ) 

+ (tP In 21 n ioDn 10 *n 21* 

- n 21 n 10 Dn 10 * n 21*1 tP ) 

= (tPO,in ID - S 10 1DSIO ItPO,in) 

+ (tP tn In 10Dn 10 * 
- S 21 In 10Dn 10 *S21ItPl.in)· 

Now S21 is commuting with HI with the decomposition 
S21(A) in the spectral representation of HI' Therefore n 10 * 
S21n 10 has the same decomposition in the spectral represen
tation of Ho. We denote the corresponding operator with 
S2M): 
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(tPO,in I - iAS 10 1(,,1, ) d~ SlOtA )ltPO.in) 

+ (tPo,in I - iAS 211(,,1, ) ~ 5'21(,,1, )ltPo,in) 

= (¢lO,in I - iAS 10 I(A ) ~ SlOtA )ltPO,in) 

+ (tPl,in I - iAS 211(,,1,) ~ S21(A )ltPl,in)' 

If we assume that the potentials are spherically symmetric, 
this corresponds to 

d820 (/,k) d821 (/,k) d8 1O(/,k) 
dk = dk + dk . 

The additivity of the phase shift follows if we can show that 
the time delay converges faster than E - I - 6 and is thus 
integrable at infinity. But this follows from estimating the 
time delay given by Lavine's formula (Theorem 3). It is 
known that 

III + Ixl(l + E)l2 Ho - E - iO 1 + IX~(I + E)/211 
1 1 

<- for ->8>0 
E6 2 

in one dimension, 17 

Il lx l -(I+E)/2 1 Ixl-(I+E)/211<c_1_ 
Ho-E-iO EI-E 

in other dimensions l8 and scaling arguments. Therefore V 
(1 + IV 11/2( V(H 0 - E - iO)) V 1/2) is uniformly bounded for 
these E and therefore 

II VI!2 1 . 1V11/211 <c~. 
H-E-IO E 

It follows that I rl < c( VEl + 6). 

8(/,k) = - (00 dk' r(/,k) = + i (00 S 1- l(k )~S/(k )dk, 
Jk Jk dk 

with lim SI (k ) = 1. 
k~oo 
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We find the total effective gravitational mass which acts on a particle moving in the Kerr
Newman metric. We also identify the contribution to that mass by the electric field energy which 
is stored in any given portion of the space surrounding the metric source. 

PACS numbers: 04.20.Cv, 04.20.Me 

I. INTRODUCTION 

The repulsive nature of timelike singularities is a gen
eral relativistic effect which has no Newtonian analog. The 
physical understanding of this effect, which becomes par
ticularly evident when one studies the classical motion, re
sides in the correct identification of the total effective gravi
tational mass which acts on the particle paths. 

This goal was attained in the Reissner-Nordstrom met
ric, 1,2 where it was found that a test particle, a coordinate 
distance R apart from the metric source of mass M and 
charge Q, experiences the gravitational field of a varying 
mass, i.e., 

(1 ) 

As R decreases, M T also decreases because the electric-field 
energy inside a sphere of radius R decreases, 

At radii less than R = Q 2/ M, the particle experiences a 
negative gravitating mass which will act repulsively, In this 
paper we generalize (Sec. II) Eq, (1) to the Kerr-Newman 
metric; we also identify in Sec. III the amount of the electric
field energy which is stored in any given source-free portion 
of the space-time and which contributes gravitationally to 
the total effective mass. 

II. THE TOTAL EFFECTIVE MASS 

In a space-time endowed with symmetries, the conser
vation law of general relativity, i.e" 

T!J=O (2) 

yields conserved quantities. If S i is a Killing vector, then 
Komar's conserved quantity can be written in the coordi
nate-free form3-4 

161Ti = r *ds, Jal: (3) 

where *ds means the dual to the two-form ds and S is the 
Killing one-form. In (3) the integration is extended over a 
spacelike surface a ~ of the background metric, The use of 
Eq, (3) leads to correct answers; in the Kerr metric, for exam
ple, if 5 is the axisymmetric Killing one-form, Eq. (3) yields 
the angular momentum of the metric source. 3 In our case we 
shall consider 5 as the stationary Killing one-form over a 
Kerr-Newmann background metric. 

In Boyer and Lindquist coordinates, this reads 

ds2 = _ ( iJ.A~ )dt 2 + ( A S~2 () )[d¢ + ndt F 

+ ( ~ )dr + ~d()2, (4) 

where 

n = (a/A )(Q 2 - 2Mr)=(a/ A ) p, 

~ = r + a2 cos2 
(), 

iJ. = r + a2 + Q 2 - 2Mr, 

A = (r + a2)~ - a2(Q 2 - 2Mr)sin2 (), 

(5) 

Let us now introduce the orthonormal frame of one
forms: 

fl6 = - (iJ. ~/ A )1/2 dt, 

fli = (~/ iJ. )1/2 dr, 

fl2 = ~ 1/2 d(), 

fl3 = (A sin2 
() /~)1/2 (d¢ + n dt); 

(6) 

in terms of these, the time-Killing one-form S = giOdxi reads 

f: = ( iJ. ~ ) 1/2 (). + a sin () (Q 2 _ 2Mr)()' . (7) 
~ A _0 (~ )1/2 _3 

Differentiation of (7) yields, after some algebra 

ds = ftli Afl6 + gfl2Afl6 + hfli Afl3 + Kfl2Afl3; (8) 

here we have 

]' = - (2A I 12/~3)(M ~ + pr)( 1 + an sin2 
() ), (9) 

g = an (A 3/~6iJ. )1/2 sin 2() [1 + ( r: a
2

)n], (to) 

h = - (iJ./A )1/2(2a/~2)(M ~ + pr) sin (), (11) 

K = 2A 1/2n cos () (r + a2). 
~2 

The dual of (8) reads 

(12) 

*ds = - ftl2Afl3 + gfli Afl3 + hfl2Afl6 - KfliAfl6, 
(13) 

where we used the convention (0, 1,2,3) = + 1. Finally ex
pressing (13) in terms of the coordinates, we have 
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*ds = [ - fA 1/211 sin 8 - ii l:(.d /A )1/2] d8 A dt 

+ [g(A /.d )1/211 sin 8 + k l:(l/A 1/2)] dr A dt 

- fA 1/2 sin 8 d8 A d,p 

+ g(A /.d )1/2 sin 8 dr A d,p. (14) 

To perform the integration in (3), let us choose a surface 
r = const such that the time coordinate on it satisfies 

dt = - got/> d,p. 
goo 

(15) 

In this way, infinitesimally close points are simultaneous 
events; this is not true for points far apart because (15) is not 
integrable. 

After one-loop integration over,p, we end up at an event 
which is different from that we started from; in order to have 
an integration over a surface of simultaneous events, we need 
to subtract the contribution to the integral given by the time 
difference between the initial and final events. That differ
ence amounts exactly to the one-loop integral over,p, 5 so the 
integral reduces to 

L:r. *ds = - f ffA 1/2 sin 8 d8 d,p. (16) 

From (9) and (5), Eq. (16) yields 

Q 2 Q2(r + a2) a 
41 = 2M - - - arctan - . (17) 

r ar r 
Here we identify the quantity 21 as the total effective gravita
tional mass which a particle experiences while approaching 
the Kerr-Newman source. 

When Q = 0, we have 2I = M, that is the total mass of 
the metric source; when a = 0 we have 

(18) 

which is the well-known result in the Reissner-Nordstr6m 
metric. 1.2 

III. THE GRAVITATIONAL MASS OF THE ELECTRIC 
FIELD 

The negative contribution to the total effective gravita
tional mass by the source charge, explains why at a suffi-

,{) 
\ 
\ 
\ 

/ 
/ 

n-{)/ 
/ 

/ 

{)=n/2 

FIG. 1. The integration in (3) is performed over a closed toruslike surface 
which excludes the ring singularity. 

ciently close distance from the metric source a particle ex
periences a repulsive field. Worth mentioning is that the 
repulsive gravitational effects in the Kerr-Newman metric 
are not entirely due to the charge but also to the rotational 
properties of the metric. The negative contributions to the 
effective mass by the rotation, however, do not appear expli
citly in (17) because that expression was obtained by an inte
gration over a closed surface which surrounds the source and 
is entirely confined to the r > 0 sheet of the metric. The repul
sive rotational effects, we believe, arise from the net asymme
try in the source properties extending from the r> 0 to r < 0 
sheet of the metric.6 

Here we confine our attention to the space localization 
of the effective gravitational mass due to the electric field 
which permeates all the space. Let us consider a closed torus
like surface bounded by the surfaces 8 = const and 1T - 8, 
r = const and r = E-O which excludes the metric source 
(i.e., the ring singularity) as is shown in Fig. 1. The integra
tion in Eq. (3) will now be extended over this surface and will 
provide the total effective gravitating mass of the energy 
stored there. The integral in (3), with (17), decomposes as 
tollowS: 

L1: *ds = - 21T[ L
1T

- JA 1/2 sin 8 d8 L~const - 21T[ fl- fA 1/2 sin 8 d8 L= E 

+ 21T[ rg( ~ )1/2 sin 8 dr] + 21T[ rg( ~ )112 sin 8 dr] . 
JE .d ()"e1T/2 J.d 1T- () 

(19) 

From (9) and (10) we readily, after some algebra and in the limit of E-o, have 

41 '(r, 8) = ~ [1 + __ r_ arctan( __ r_ ) sin2 8 + ( r ~ a2 
) ( a cos 8 ) arctan ( a cos 8 ); 

rcos8 acos8 acos8 a r r 

r>O, 8 =l1T/2. (20) 

As expected, it vanishes when Q = 0 and yields the charge term in the total effective mass in (17) when 8 = O. 

IV. CONCLUSION 

The behavior of test particles in the Kerr-Newman 
space-time of being repelled by the gravity source under suit
able conditions it due to the negative contribution to the total 

effective gravitational mass by the source rotation and 
charge. The effects of the latter is here derived explicitly in 
an expression [Eq. (17)] which generalizes a similar result 
obtained for the Reissner-Nordstr6m space-time. We also 
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derive [Eq. (20)] the gravitational mass of the electric field 
energy which is stored in any given portion of the space 
around the metric source. 
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Rotating, shear-free general-relativistic perfect fluids are investigated. It is first shown that, if the 
fluid pressure, p, and energy density, p.., are related by a barotropic equation of state p = p( p..) 
satisfyingp.. + p=/O, and if the magnetic part of the Weyl tensor (with respect to the fluid flow) 
vanishes, then the fluid's volume expansion is zero. The class of all such fluids is subsequently 
characterized. Further analysis of the solutions shows that, in general, the space-times may be 
regarded as being locally stationary and axisymmetric (they admit a two-dimensional Abelian 
isometry group with timelike orbits, which is in fact orthogonally transitive), although various 
specializations can occur, with the "most special" case being the well-known G6del model, which 
is space-time homogeneous (it admits a five-dimensional isometry group acting multiply 
transitively on the space-time). All solutions are of Petrov type D. The fact that there are any 
solutions in the class at all means that a theorem appearing in the literature is invalid, and the 
existence of some special solutions in which the fluid's vorticity vector is orthogonal to the 
acceleration reveals the incompleteness of a previous study of a class of space-times, in which 
there are Killing vectors parallel to the fluid four-velocity and to the vorticity vector. 

PACS numbers: 04.20.Cv, 02.40. + m 

1. INTRODUCTION 

Shear-free perfect fluids in general relativity have been 
the object of much study in recent years. In particular, it 
seems likely that when a shear-free fluid satisfies a barotro
pic equation of state p = p(J.t), either the fluid's expansion 
scalar or the fluid's vorticity must vanish. This has been 
shown indeed to be the case in a wide variety of special cir
cumstances (see, e.g., the references cited by White and Col
lins)), although as far as I am aware there is no proof avail
able that pertains to the general case. The object of the 
present article is to show that this result holds in yet another 
special case, thus providing further evidence that it might be 
more universally valid. 

The additional requirement that will be imposed relates 
to the "magnetic" part2 

Hub ofthe Weyl tensor, defined by 

H ·-1 ghC cd 
ub' - 21luc ghbd U U , 

where u is the unit fluid flow vector. I shall be investigating 
shear-free fluids that obey an equation of state p = p(J.t), and 
for which the tensor Hub is zero. After proving that if the 
shear (u) is zero, either the expansion scalar (0 ) or the vorti
city (cu) must vanish, I shall then consider the various cases 
that naturally arise, viz.,cu=O=/O,cu=O =OandO =O=/cu. If 
cu-O in any shear-free fluid, then it follows immediately2 

that Hub =0; thus in the two cases where cu-O, the require
ment that Hub vanish represents no further restriction, and 
so the situation is as analyzed in a recent work.3 On the other 
hand, the case 0 ==O=/cu with Hub =0 does involve the exami
nation of a number of constraints that arise. In the present 
article, I shall examine the compatibility of these con
straints, and I shall show that a self-consistent system of 
equation results, thereby determining the existence of a class 
of rotating shear-free perfect fluids in which Hub =0, the 
most familiar member of this class being the GOdel4 solution 
(cf. Ref. 2). This result contradicts the theorem of Glass,S 
who claimed that any shear-free general-relativistic perfect 

fluid (irrespective of an equation of state) is irrotational if 
and only if Hub =0. 

The plan of this article is as follows. In Sec. 2 the 
theorem is proved which shows that for a shear-free general
relativistic perfect fluid that obeys an equation of state 
p = p(J.t) satisfyingp + rIO, and for which Hub =0, either 
the expansion scalar or the vorticity must vanish. In Sec. 3, 
the class of all rotating solutions is examined. Particular at
tention is paid to the admissible isometry groups and to the 
allowed Petrov types, in the manner of the investigation by 
Collins and White. 3 Throughout, I assume a familiarity with 
the orthonormal tetrad formalism (see, e.g., the article by 
MacCallum,6 whose conventions are closely followed). I 
shall choose a tetrad so that eo is aligned along the fluid flow 
vector, u, and with 00, being nonzero, pointing along e), so 
that 00 = (cu,O,O). Further, it follows from Proposition 2.1 of 
Ref. 1 that in such a tetrad, f12 = f13 = 0, and that, without 
loss of generality, cu + f1) = O. Thus 00 + n = 0 in the cho
sen frame. One small notational departure occurs: I shall 
relabel those commutation functions with spatial indices in 
the manner given by White and Collins,) viz., 

t' p;. = €p;.vnva + {ja ;.ap - {ja pa;.,naP = n(aP)' 

where 

!(d3 +A3) 
1723 + {j 

- 1722 

and aa = ( - !0,!(d2 - A2),!(d3 - A3))' At times, it will also 
be convenient to refer to the quantities 
022: = 1722 + ~0,033: = - 1722 + !O and 023: = 1723 , As ex
plained in Ref. 1, the new quantities d A , n, 0, 17 AD, and 0 AD 

(A,B = 2,3) are closely related to the "kinematic" quantities 
associated with the e) congruence, and by using them as 
basic variables, the geometrical features of the problem are 
brought to the fore. The Jacobi identities, Einstein field 
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equations, Bianchi identities, and commutation relations are 
written out in the Appendix, for the present tetrad, and in 
the revised notation. The tetrad components of H ab , special
ized to the present situation, are also given. These may be 
obtained from Ref. 2 or from the explicit tetrad expressions 
in Ref. 7. 

2. THE RESULT Hab -0, v==O:::xuB-O 

In the case where the fluid flows along geodesics, it au
tomatically follows (even without an equation of state) that 
either the vorticity vanishes or the pressure p is constant, and 
that, if the shear is zero, so also must be either the expansion 
scalar or the vorticity. 1,8 This result holds irrespective of 
whether or not Hab vanishes. In this section, it will therefore 
be assumed that the fluid's acceleration u is nonzero, In this 
case, the equation of state p = p(P) must clearly satisfy 
p'(P) =I-° by virtue of the Bianchi identities (A26), It will also 
be assumed that the equation of state satisfies the condition 
f-l + p =I- 0, which is physically highly plausible, 

Suppose that the vorticity ro is nonzero, I shall show 
that the expansion scalar B, is then necessarily zero, This can 
be readily demonstrated by reference to the full Bianchi 
identities, z expressed in terms of Eab , the "electric" part of 
the Weyl tensor, together with H ab , Thus it follows from Eq, 
(4,21c) of Ref. 2, viz., 

h I Has h d + nlbpqu U dE - 3E' of = (" +p)u/ 
a ;d s "' b P qd s If'" ' 

that if U ab Hab 0, then ro is an eigenvector of E ab , with 
eigenvalue - j(P + pl. IfEq, (4,21d) of Ref, 2, viz" 

h mh 'Eae + h (mnl1rsdu Ha 
a ca" r s;d 

- 2H (tnmlbpqu U + h m'ifbE 
q ./ b P ab 

+ BEmt _ 3Eslmu' Is _ Eslmw'ls = _!(P + p)ulm , 

is specialized to the present case, in which Uab -Hab 0, and 
to the present tetrad, in which wa = w{j f, it follows by con
sidering the (11) component that 

JoEl I + eEII = 0, (2.1) 

where use is made of the fact that EI2 = En = ° in the cho
sen frame. Now if w=l-O, it follows that Ell = - j(P + p), 
and so (2.1) together with the Bianchi identity (A25) implies 
that Jop = 0. However, since p'( f-l)=l-O, this requires that 
Jo f-l = 0, in which case, again by (A25), it follows that e =0. 
This therefore proves the following. 

Theorem: Consider a shear-free perfect fluid in general 
relativity, with an equation of state p = p(P) satisfying 
f-l + p =I- 0. Suppose that the magnetic part of the Weyl ten-

H I ghC e d' Th' h h fl 'd' sor, ab: = 217ae ghbdU U 1S zero. en e1t er t e Ul s 
expansion scalar or the fluid's vorticity must vanish. 

3. ROTATING SOLUTIONS WITH Hab-O 

In this section, the existence and properties of rotating, 
shear-free perfect fluid solutions of Einstein's field equations 
having Hab -0 will be established. Since ro=l-O, the theorem 
of Sec. 2 requires that the expansion scalar e must vanish. 
This means that JoY = ° for all commutation functions y, 
and thatJcJL = Oby (A25). It also implies thatJop = 0, since 
ifU=l-O, thenp'(p)=1-0 and the result follows immediately, 
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whereas if U=O, then as observed in Sec. 2, p is identically 
constant. 

The first step is to show that the vortex lines are geodes
ics. Since e =0, this amounts to proving that dz = d3 = 0. By 
the (Oa) field Eqs. (AI7) and (AI8), 

Jzw = w(dz - 2u2 ) and J3w = w(d) - 2u 3 ), (3.1) 

whereas from the conditions Hab ° [see Eqs. (A39) and 
(A40)], 

Jzw = - w(d2 + 2uz) and J3w = - w(d3 + 2u3 ). (3.2) 

Upon comparing (3.1) and (3.2) and applying the fact that 
w =I- 0, it follows immediately that 

(3.3) 

It will be useful to note that n = 0, as is apparent from 
the (01) field Eq. (AI6). This means that the vortex lines are 
hypersurface orthogonal (cf. the analogous results in Ref. 1). 
It will also be useful to observe that frequently equations can 
be checked against each other, and that some calculation can 
be avoided, by invoking a rotation eZ-+e3, e3-+ - ez, in the 
manner of White and Collins. I Thus Eqs. (3.1) are interrelat
ed, as are (3.2). 

I shall now investigate the equations for the propaga
tion of the quantities ua. If the [e l ,e2] commutator (A 30) is 
applied tow, and Eqs. (3.1), (AI), (A37), and (A38) employed, 
there results 

- 2 JIUZ + J2UI - 2u l uz + 2ull = 0, (3.4a) 

and similarly 
A 

- 2 Jlu} + J3UI - 2u lu3 - 2u2fl = 0, (3.4b) 

which follows either by applying the [e3,e l ] commutator 
(A32) to w, or by invoking the rotation eZ-+e3, e3-+ - e2, as 
described above, Now since EI2 = 0, we have2

•
8 

J I U2 + JZu l + UI U2 - ull = 0, 

and similarly 
A 

(3.5a) 

J IU3 + J3Uj + Uj U3 + u2fl = 0. (3.5b) 

For compatibility ofEqs. (3.4) and (3.5), we therefore obtain 

(3.6) 

and Eqs. (3.4) and (3.5) are modified accordingly. 
It is now convenient to specialize the tetrad further. 

Since there is still the freedom to rotate the tetrad about the 
e j direction at anyone point on each fluid flow line, u3 may 
be set zero initially, and then propagation of u3 along eo 
requires that u3 = ° everywhere, by Eq. (A33). The tetrad is 
now completely specified, unless of course u2 is also zero, in 
which case the fluid's vorticity and acceleration are parallel 
(cf. Refs. 1 and 3). 

In such a frame, Eqs. (3.5b) and (3.6) imply that 

ui} =0, (3.7) 

and the discussion now divides into two cases, depending on 
whether or nor u2 vanishes. 

Case 1: u2 =1-0. By (3.7), n = 0. We also have 

J 3U2 = A3 = 0, (3.8) 

since by (3.3), (A24), and (A38), J3U2 = U03' yet from (A35), 
J3U2 = - U03' and using the fact that u2 =1-0, (3.8) results. 
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Eqs. (3.3), (A37), and (A38) simplify the (11) field Eq. 
(A 19), to yield 

alu l = - UI
2 - i(Jt - p) -1A , 

which is compatible with (3.6) if and only if 

p'(Jt) = 1, (3.9) 

by virtue of the commutation relation (A30) and the assump
tion that u2(Jt + p)#O. 

The difference between Eqs. (A20) and (A21) gives, 
upon using (3.3), (A37), and (A38), 

a2U2 = - u/ + u~z' (3.10) 

By Eq. (3.8), it follows thata3uz = 0, and moreover, applying 
the [eZ,e3] commutator (A31) to uz, a3aZUZ = 0, where again 
use is made of (3.8). Now differentiating (3.10) along e3 and 
recalling that u2 #0, it is seen that ay42 = O. These results, 
together with (3.2), (3.3), (3.6), and (3.8), show that a3y = 0 
for all commutation functions y. In addition, 
a3 P = a3 J.1 = Oby (3.9) and (A26). The remaining equations 
can be simplified to provide propagation equations in the e l 
and ez directions for the commutation functions (u H uz, cu, 
and A z) and for the fluid quantities J.1 and p. These are 

az6J = - 2cuuz, azu I = 0, 

alu z = - UjU2, ajA z = - ujA z, 
(3.11) 

azuz = - U2
2 + u~z, a~2 = 4UJz + u~z - (Jt + p) -A22, 

alP = - (Jt + p)u l, 

and 

a2 P = - (Jt + p)u2 , 

together with the algebraic constraints 

CU
z + u/ + U~2 = 1(Jt + 2p -A) 

and 

p'(Jt) = 1. 

(3.12) 

It may be readily verified that Eqs. (3.11) are consistent, by 
virtue of the [e l,e21 commutator (A30), and that Eq. (3.12) is 
propagated along el and ez without generating further con
straints. 

It has therefore been demonstrated that a class of rotat
ing shear-free perfect solutions exists, in which Hab =0. 
Some properties of this class will now be studied. 

It is clear that the solutions possess a Gz isometry 
group, whose orbits are timelike two-surfaces orthogonal to 
both 0 and w. By the commutators (A29) and (A30), it is 
apparent that this group is Abelian and orthogonally transi
tive. In general, this is the maximal isometry group. The only 
exceptional case that can arise occurs when u I = 0 and 
p = J.1 + 2A. This is evident from Eqs. (3.11), since if k is a 
Killing vector, kIp) = k(cu) = 0, which requires that either 
k = 0, or that u I = 0, and then k2 = O. The requirement that 
u I = 0 be preserved along e l is obtained from (3.11), and 
yields p = J.1 + 2A, which is consistent with (3.9). The com
mutation relations (A27), (A30), and (A32) show that e l now 
commutes with all basis vectors, and since, for a geometri
cally invariantly defined frame, Killing's equations are equi
valent to the equations [k,ea ] = 0 for a Killing vector k (cf. 
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Ref. 8), it follows that e l is a third Killing vector. In this case, 
there is a G3 isometry group of Bianchi Type I acting transi
tively on timelike hypersurfaces orthogonal to the fluid's ac
celeration vector. Since in this special case there is a Killing 
vector parallel to the vorticity vector, the solutions fall into 
the class of models investigated by Krasinski.9

•
10 However, 

while the present solutions share some common features 
with Krasinski's acceleration models, such as the facts that 
the acceleration vector is orthogonal to the vorticity vector, 
and that that is an Abelian isometry group acting transitive
lyon timelike hypersurfaces orthogonal to the acceleration 
vector, it is important to recognize that they are not recover
able from Krasinski's class, and that therefore, contrary to 
his claims, Krasinski does not determine all "flow-station
ary" (i.e., rigidly rotating) "vortex-homogeneous" solutions 
for a perfect fluid satisfying an equation of state. This can be 
demonstrated by using the relationship p = J.1 + 2A in Eqs. 
(1.10), (1.12), and (5.13) of Ref. 9, from which it follows, in 
Krasinski's notation, that pH, 2 = p,zH, a possibility that 
Krasinski dismisses after his Eq. (5.1). Thus, accepting the 
form of Krasinski's solution, and imposing the equation of 
state appropriate to the present special solution, results in a 
contradiction. In fact, the reason for this is that Krasinski 
considers only a very special subset of solutions, which, in 
the present notation, may be described by the requirement 
that CU

Z be proportional to J.1 + p. The fact that the present 
solutions are incompatible with those of Krasinski simply 
means that in Krasinski's solutions Hab #0. 

The solutions in Case I are all of Petrov type D, as fol
lows from a consideration of the eigenvalues of Eab • The 
chosen frame is an eigenframe of E ab , and E22 = E 33, by 
(3.11). The possibility that all eigenvalues are equal is ruled 
out by recalling that Eab is trace-free, and that then 
J.1 + p = O. This is in agreement with the result quoted by 
Ellisz and attributed to Triimper, that the only conformally 
flat perfect fluid solutions in which there is an equation of 
state are the spatially homogeneous Friedmann-Robertson
Walker models (in which w = 0). Wainwrighe l has pro
vided a classification scheme for Petrov type D perfect 
fluids, in terms of which the solutions in the present case are 
of Class IC, and the fluid's acceleration vector does not lie in 
the two-space defined by the principal null directions of the 
Weyl tensor. 

Case 2: Uz = O. In this case, the fluid acceleration and 
vorticity are parallel (and the acceleration is possibly zero). 
Thus the result of Collins and White3 can be employed. Since 
Eqs. (3.3), (A37), and (A38) show that aAB = 0 and that 
dA = 0, the solutions are locally rotationally symmetric,8.lz 
by Proposition 2.4 of Ref. 3. Now the tetrad is not fixed 
uniquely; also a7): = a3y = 0 for all commutation functions 
y, save possibly fl, A2 andA 3, and a2 P = a2J.1 = O. The solu
tions in general belong to type IIIAGii of Collins and 
White,3 but in the special case when 0=0, they belong to 
type IIIGGii. It remains to impose the requirement that 
Hab _0. OfEqs. (A37)-(A40), the only nontrivial restriction 
is 

(3.13) 

and this must be preserved by the propagation equations 
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and 

a/J= -102+2w2+UI8-(,u+p), (3.15) 

which are obtained from Eqs. (AI5) and (AI9). Suppose first 
that U 1 ¥O. Then preservation of (3.13) gives rise to the con
straint 

3(oi + U12) =f-l + 2p -A, 

which itself must be propagated, to yield 
p'(,u) = 1, 

(3.16) 

(3.17) 

where use has been made of(3.15), (AI), (A26), and (A37). 
With Eqs. (3.13), (3.16), and (3.17) in place, it is clear that a 
class of solutions exists with the properties claimed. 

Now suppose that U 1 = O. Equations (3.14) and (3.15) 
provide algebraic relationships equivalent to 

f-l = {j)2 - A and p = (j)2 + A. 

By (AI), (j) is constant, and hence so also aref-l andp. This is 
the G6del solution, generalized to include pressure. 

The solutions in which U 1 ¥ 0 are of Class Id in the ter
minology of Stewart and Ellis, 12 and admit a G 4 isometry 
group acting multiply transitively on timelike hypersurfaces 
orthogonal to 0) (and to u). The solutions in which U I = 0 
admit a G5 isometry group acting multiply transitively on 
space·-time, and belong to Case la of Stewart and Ellis, 12 and 
to Case la of Ellis8 if the fluid is interpreted as dust (p = 0). 

Since all of the models in Case 2 are locally rotationally 
symmetric, they belong to Petrov type D. The specialization 
to type 0 is forbidden, because in order to be conformally 
flat, the solutions would have to be Friedmann-Robertson
Walker,2 and hence irrotational. The solutions are of Class 
la in the classification scheme of Wainwright, II and the 
fluid's acceleration vector lies in the two-space spanned by 
the principal null directions. 

4. DISCUSSION 

In this article, a characterization has been given of all 
rotating, shear-free perfect fluid solutions of Einstein's field 

. . h' h H I ghC cd' d . equatlOns In w 1C ab: = 'J.1/ac ghbdU U 1S zero, an In 

which there is an equation of state p = p(,u) such that 
f-l + p¥O. The results contradict those of Glass,5 who 
claimed that there were no such solutions. It appears that the 
source of Glass' error lies in the conclusion that his Eq. (11) is 
valid for solutions of Petrov type I and D. 

As we have seen in Sec. 3, in the most general solutions, 
u and 0) are not parallel, and there is a G2 isometry group 
whose orbits are timelike two-surfaces orthogonal to both u 
and 0). It is of interest to note that while in certain circum
stances (u orthogonal to O);p = f-l + 2A ), there is a third Kill
ing vector e l , in all cases (irrespective of the relative orienta
tion of u and 0)), there is a conformal Killing vector parallel 
to e l . For suppose that Mis a nontrivial solution oftheequa
tions aiM = Mu l , aaM = 0 (a = 0,2,3). This set of equa
tions is consistent, by virtue of (3.6) and the commutation 
relations (A27)-(A32). Then k: = Mel is a conformal Killing 
vector, since!f ij = 2k(j;]) = 2¢>gij' where ¢> = Mu l • The 
vector k is a homothetic vector if and only if ¢> = Mu 1 is 
constant, which is satisfied if and only if alul + u/ = 0, Le., 
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ifand only ifp = f-l + 2A, as follows from Eqs. (3.11), (3.14), 
and (3.16). The vector k is a Killing vector if and only if 
¢> = 0, i.e., if and only if u I = 0 (and then of course 
p = f-l + 2A ). Note that these results are in agreement with 
those of McIntosh, 13 who showed that if there is a proper 
homothetic vector orthogonal to the flow of a perfect fluid, 
then necessarily p = f-l [adjusted for the cosmological term, 
this condition would be the same as the present equation, 
viz., p = f-l + 2A; note also that, in McIntosh's notation, 
Fab: = k[a;b J = 0, and soJa: = (l/41T)F'b;b = 0]. In the spe
cial solutions where u and 0) are parallel, there is higher 
symmetry, since the space-times are locally rotationally 
symmetric; ifu is nonzero, there is a G4 isometry group act
ing multiply transitively on the timelike hypersurfaces or
thogonal to 0), while ifu vanishes, there is a G5 isometry 
group acting multiply transitively on space-time. A sum
mary of the possible symmetries of the various solutions is 
provided in Table I. All solutions in the entire class are of 
Petrov type D. 

We have remarked that in the general solutions the iso
metry group is Abelian and orthogonally transistive. As ob
served by Collins and White3

, such space-times may be re
garded locally as stationary axisymmetric solutions of 
Einstein's field equations. However, while we can select a 
spacelike Killing vector field and identify points along the 
trajectories (cf. Ref. 14), thus making the space-time axisym
metric, in general there will not be a rotation axis on which 
the Killing vector field vanishes, and, even if there is, the 
space-time will not necessarily be regular on the axis (cf. the 
conical singularities constructed from Minkowski space
time by Ellis and Schmide5). Provided that the equation of 
state is analytic, the solutions presently being considered are 

TABLE I. The allowed symmetries of the class of solutions considered in 
this article. Here M is a nontrivial solution of the equations aIM = Mil" 
aaM = 0 (a = 0, 2, 3). The most general space-times are given in the first 
row. Specialization occurs in two directions: directly downwards indicates a 
transition to the corresponding case when ii, = 0 (making Ii and ro parallel), 
whereas diagonally downwards indicates a specialization of the conformal 
Killing vector Me" either to a homothetic vector (column 2) or to a Killing 
vector (column 3). The entry "G, on Tn" means that the solutions admit an 
r-parameter isometry group whose orbits are timelike and of dimension n 
(and in the final row, "T." is the entire space-time; this corresponds to the 
GOOel solution). When r> n, the solutions are locally rotationally symmet
ric. 

Me, is a conformal Me, is a homothetic Me, is a Killing 
Killing vector vector vector 

G, on T, 
'-... 

.......... G, on T, 
a,iI, + ilt' = O¢:> 

P=f1+ 2A '-... 

........ G, on T3 
iI,=O;p=f1+ 2A 

G.on T, ......... 

..... G. on T3 
a,iI, + ii,' = O¢:> 

p=f1+ 2A , 
~ G,on T. 
ii, =O;p=f1+2A 
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analytic. 16 Hence, having determined locally that there is an 
orthogonally transitive Abelian Gz isometry group with 
timelike orbits, such a space-time must (provided that the 
equation of state is analytic) be extended analytically, so that 
in principle one could determine uniquely whether the initial 
region is locally part of a space-time that contains a regular 
rotation axis, and so is stationary and axisymmetric in the 
conventional sense. In the case where uz#O and ul = 0, the 
solutions admit an Abelian G3 isometry group, and so may 
be regarded locally as stationary cylindrically symmetric 
space-times, although again not necessarily in the conven
tional sense. 

As already observed, in any non rotating shear-free per
fect fluid, Hab is necessarily zero. Thus the class of all shear
free perfect fluid solutions of Einstein's field equations, in 
which there is an equation of state p = pl,p,) satisfying 
J-l + P # 0, is given by (a) the rotating solutions that have been 
discussed herein, and (b) the nonrotating solutions, details of 
which can be found in Ref. 3. 

Note added in proof Dr. A. Krasinski has kindly in
formed me that his results9

. \0 considered herein were com
pleted by him in a subsequent article. 
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APPENDIX 

A. Jacobi identities 

alw = w(u l - B), 

atn + aZd3 - a3dz = jOw - nB + d~3 - dy4z, 

a lA3 + aZB23 - a3Bz2 + ali + d3Bzz + A3B33 

- (d2 - A2)Bz3 - (dz - Az)a = 0, 

atA z + a3B23 - a2B33 - a3a + d2B33 + A2B22 

- (d3 - A3)Bz3 + (d3 - A3)a = 0, 

arPJ = (p' - j)wO, 

aoB = jatO + jO (2u l - B), 

aO(d2 - A 2) + ja20 + jO (2uz + d2 - A 2 ), 

aO(d3 - A 3 ) + ja30 + jO (2u 3 + d3 - A 3 ), 

aon + jnO = 0, 

aO(d2 + A2) + j(d2 + A2)0 = 0, 

aO(d3 + A3) + j(d3 + A3)0 = 0, 

aj}+jao=o, 

aOB23 + jB230 = 0, 

aO(B22 - ( 33 ) + j(B22 - (33)0 = 0, 

(AI) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(AlO) 

(All) 

(AI2) 

(A13) 

(A14) 

where a prime (') denotes differentiation with respect to J-l. 

B. Field equations 

(00) aoo + j02 - 2UJ2 - alU I - a2U2 - a3U3 

- (u/ + u/ + u/) - ui) + u2(d2 -A2) 
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+ u3(d3 -A3) +!I,p, + 3p - 2A) = 0, 

(01) jalO - nw = 0, 

(AI5) 

(AI6) 

(02) jazO + a3w + w( - d3 + 2u3 ) = 0, 

(03) ja30 - a2w + w(d2 - 2u2) = 0, 

(AI7) 

(AI8) 
~ ~z ~2 ~2 2 

(11) alO - a2d2 - a3d3 + 022 + 033 + 2023 + d2 

+ d/ - d~2 - dy43 - ~n2 = jaoO - alU I - UI
2 

- !I,p, - p) - A + jO 2 + u2d2 + u3d3 , (AI9) 

(22)a I B22 - a2d2 + a~2 + ay43 + B2/ + BzzB33 - dy43 
2 2 2 A A. 2 A ,.. 

+ A2 + A3 + d2 - 2023fl +!n - n(fl - 023 ) 

= - u I B22 -!I,p, - p) - A + j02 - a2U2 - U2
2 

+ jaoO + 2UJz - Uy43' (A20) 
~ ~ 2 ~ ~ 

(33) a l033 - a3d3 + a~2 + ay43 + 033 + OZZ033 - d~2 

+A22 +A32 + d3
2 + 2B23a + !n2 - n(a + ( 23 ) 

= - u I B33 -!I,p, - p) -A + j02 - a3U3 - u/ 

+ jaoO + 2UJ2 - U~z' (A21) 

(12) a lA2 + a2B33 - a3B23 - a3a - d3B23 - 3A3B23 

(13) 

+ (d3 - A3)a + d2B33 + 2A2B33 - AzB22 + a3n 

- 2nd3 = - azul - d2UI - a lU2 - 2u luz + u2B2Z 

a lA3 + a3B22 - a2B23 + a2a - d2B23 - 3A2B23 

- (d2 - Az)a + d3B22 + 2A3B22 - A3B33 - a2n 

(A22) 

+ 2ndz = - a3UI - d3u I - a lU3 - 2U I U3 + U3B33 

+ nU2 - u2(a - (23 ), (A23) 

(23) 2alB23 - a2d3 - a3d2 + 2BBz3 + 2a (BZ2 - ( 33 ) 

+ 2dzd3 + d~3 + dy42 - n(B22 - ( 33 ) = - 2u l B23 

C. Contracted Bianchi identities 

aoJ-l + (J-l + p)O = 0, 

aa p + I,p, + p)Ua = 0. 

D. Commutation relations 

[eo,e l l = 

[eo,e21 = 

uleO - jOel' 
u2eO 

(A24) 

(A25) 

(A26) 

(A27) 

(A28) 

[eo,e3 1 = u3eO - jOe3,(A29) 

[e l,e21 = - d2el - B22e2 + (a - (23)e3,(A30) 

[ez,e3 1 = - 2UJeo + ne l +A 3e2 -Aze3,(A31) 

[e3,el l = d3el + (a + (23)e2 + B33e3,(A32) 

E. Commutation relations applied to F 

aoUa -p'aaO+ [(p"/p')I,p,+p)-p'+j]uaO=O, 
(A33) 

a lU2 - a2Ul = - dZu l - BZZu2 + (a - ( 23 )U3, (A34) 

aZU3 - a3UZ = - 2UJp'O + nUl + A3u2 - AZu3, 

a3Ul - a l U3 = d3u l + (a + (23 )UZ + B33U3, 

C. B. Collins 
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where a prime (') denotes differentiation with respect to 1''' 

F. The components of Hab 

HII = w(2u I - 0); 

H22 = - W033 - alw; H33 = - W022 - alw; 

H12 = wU2 + !a2w + ~d2W; H13 = wU3 + ~a3W + !d3w; 

and 

H 23 = W023' 

Hence (assuming that w#O), Hab = 0 if and only if 

ul = 022 = 033( = ~O), 
023 = 0, 

a2w = - w(d2 + 2u2), 

and 

'A. J. White and C. B. Collins, J. Math. Phys. 25, 332 (1984). 
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As is well known, the Einstein tensor G=G is constructed from Riemann and the metric so that it 
is symmetric, divergence-free, linear in Riemann, second rank, and vanishes when space-time is 
flat. In this paper the condition oflinearity in Riemann is extended to bilinearity and trilinearity in 

Riemann and the resulting tensors G and G. respectively, are found by a direct calculation. These 
are then compared with parts of the general tensor expression derived by Lovelock (who started 
with a different set of assumptions) and shown to be equal to it to within an arbitrary 

multiplicative constant. From this comparison it follows that G and G both vanish in the case 
where the dimension of the space is 4 (as occurs in the usual space-time). 

PACS numbers: 04.20.Cv 

1. INTRODUCTION (e) G is linear in Riemann. (1.5) 
In gravitation theory the Einstein field equations 

G = 81TT (in geometrized units) are usually derived by con
structing all tensors G having the same mathematical prop
erties as the energy-momentum tensor T, and built solely 
from the geometry of space-time. 1 Thus one seeks all G such 
that 

To within a multiplicative constant one arrives at the 
well-known expression for G, i.e., 

(a) G vanishes when space-time is flat; (Ll) 

(b) G is constructed from Riemann and the metric and 
nothing else; (1.2) 

[3) 

(c) G has automatically vanishing divergence, i.e., 

V·G=O; 

(d) G is symmetric and of second rank,2 i. e., 

GafJ = GfJa ; 

(1.3) 

(1.4) 

[11 

GafJ=G = RafJ - ~afJR. (1.6) 
afJ 

It will be shown by a simple calculation that by chang
ing condition (1.5) to bilinearity in Riemann one gets, to 
within a multiplicative constant, 

[21 

G c; = R R c; + R ~~R ~p - 2R:R ~ - 2R ~R;CP 

_ lR 28 a _ lR l1Y R I'V 8a + R I'R v 8a (1. 7) 
4 (3 4 I'V '1Y fJ v I' fJ' 

Similarly, for trilinearity in Riemann, one gets, again to 
within a multiplicative constant, the following rather longer 
expression: 

G a = R 2 R a _ 4R 6 R ya _ 4RR y R a + 8R 6 R l1Y R va + 2R I'V R ..t6 R ya + 8R I'Y R v..t R 6a _ 8R 6 R va R '1Y fJ fJ Y 6fJ fJ Y 'I 6v yfJ yfJ I'v..t6 vfJ 1'6 y..t 'I 6y vfJ 

It is now straightforward, though tedious, to show the 

relationships of Gc; and Gc; to parts of Lovelock's general 

tensor expression. 3 They are 
[2) 

(1.9) 

[3) 

G p = - -AD p~,'~~~::::6R ;11~22R ;~: R ;:;:66, (LlO) 

where 

(1.8) 

(1.11) 

Note that to establish (1.10) by a direct calculation using 
(1.11) would involve the simplification and collection of 
7! = 5,040 terms, with some reduction in effort exploiting 
the symmetries of Riemann. 
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2. DERIVATION OF EQUATION (1.7) 

The first step in the construction of (1.7) is to find all 
symmetric bilinear products of Riemann. To do this the fol
lowing scheme is used. We introduce the notation in which 

.f.l A v 

will signify that there are J-l contractions on the first Rie
mann, A cross summations between first and second Rie
mann, and v contractions on the second Riemann. Thus, e.g., 

2 0 1 will represent R ,"v R ya ___ • ,"v y{3 

Now, it should be noted that, quite obviously, the total num
ber of summations (which includes contractions) equals 3 if 
no o'P term is present and that it equals 4 otherwise. So, we 
have the following list of all the possibilities [to save writing, 
in the following, the phrase "will represent" will be replaced 
by a single arrow, viz. (~)]: 

20 I 

'---"~R R'P, 

202 

I 2 I 

I I I 

~R~ R~, (2.1) 

I 20 

'~R~R~~, 

030 

~RZ~R~p, 

040 

• ~ R Z~R ~~o 'P. 

The symmetry in a and (J in the terms is easily shown 
when these are written in covariant notation, e.g., 

RRa{3 = RR{3a' etc. 

" Clearly, G must be a linear combination of the terms in 

(2.1), i.e., 

[21 

G':p =aRR':p +bR20'P +cR~R~0'P 

+dR;R~ +eR~R~~ 

+fR 71aR ,"v + gR 71Y R ,"V 0 a 
,"v 71{3 ,"v 71Y {3' 

(2.2) 

Then, to find an expression for b, c, d, e,/, and g in terms 
! 

for the case where the numbers add up to 5, 

[1,I,l,l,l,Ol~ 1 D. 0 or 1 D. I, 

0 

2 

[1,1,1,2,O,Ol~ 0 D. 0 or 2 D. 0 or 2 D. 
0 0 

2 2 

[ 1,2,2,O,O,Ol~ 0 D. 0 or 0 D. 0 or 2 D. 
2 0 0 2 0 2 
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0 

0 

0 

of a in Eq. (2.2), the condition Ga 
= 0 is imposed. This 

{3;a 
gives, on using the Bianchi identities and the symmetry of 
Riemann, 
[21a 

G 
{3;a 

= (~a + 2b )RR;{3 + (a + ~d)R 'PRj3 + (d - e)R ~R p;a 

+ (e + 2c)R ~R ~;{3 + (e + 2J)R ~pR ~a 

+ (f + 4g)R Z~R ~P;a = O. (2.3) 

For this identity to hold the individual coefficients must van
ish, i.e., 

a+4b=2a+d=2d-2e 

= e + 2c = e + 2/=J + 4g = O. (2.4) 

This gives 

a= -4b=c= -d/2= -e/2=J= -4g. (2.5) 

On substituting (2.5) into (2.2) and setting a = 1 (as an 

expression for G':p is needed up to a multiplicative constant 

only), the required equation (1.7) is obtained. 

3. DERIVATION OF EQUATION (1.8) 

The construction of (1. 8) is more complicated because 
symmetric trilinear products of Riemann are required. A 
similar scheme to that used in the previous section will be 
employed. We introduce the notation 

J-l 

v D. 1]~ 

A 0 r 
to mean there are J-l contractions on the first Riemann, v 
cross summations between the first and second Riemann, A 
contractions on the second Riemann, 0 cross summations 
between the second and third Riemann, r contractions on 
the third Riemann, and 1] cross summations between the first 
and third Riemann. Thus, e.g., 

2 

o D. o~RR~R~op. 
1 2 1 

To be sure that all possible combinations are found, it is 
sufficient to note that the sum of the numbers around the 
triangle must add up to either 5 or 6, with no individual 
number being greater than 4. So, writing out the set of such 
numbers will give all the possible combinations. They are, 

0 

or 2 D. I, 

0 

0 

or 2 D. 2, 

0 0 
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{1,1,3,0,0,OJ~ 0 L 
0 3 0 

2 

{2,3,0,0,0,0 J ~ 0 L 0, 

0 3 0 

{4,1,0,0,0,OJ~0 L o· 
040 

0 

or L 3, 

0 0 

Similarly, for the case where the numbers add up to 6 we 
have 

{1,1,1,1,1,1 J~ I L I, 

{1,1,1,1,2,OJ~ L No combination possible, 

2 

11,1,2,2,0,OJ~0 L 0 
2 

2 

{ 2,2,2,0,0,0 J ~ 0 L 0 
2 0 2 

11,1,1,3,0,OJ~ I L I, 

030 

or 

or 

0 

2 L 2, 

I 0 

0 

2 L 2, 

0 2 0 

13,3,0,0,0,0 J~ L No combination possible, 

11,2,3,0,0,OJ~ L No combination possible, 

2 

12,4,0,0,0,0 J ~ 0 L o· 
040 

It is then quite straightforward to write out the corre
sponding trilinear products of Riemann, except in the fol
lowing five cases in each of which there are two distinct pos
sible products corresponding to one diagram: 

(i) 

(ii) 

(iii) 

1003 

0 { R '" R "" R " 6 " '1Y J1-V AU {3 

2 L 2~ or 

0 2 J1-V '1A yu U o R '1yR J1-U R VAt> {3' 

{ R'R~R" '1 I!y v{3 

L I~ or 

0 2 o R'1Rl!uRvy I! vy '1{3' 

0 { R'"R" R '" y{3 J1-V AI! 

2 6 2~ or 

0 J1-y VA I!u o R v{3R J1-I!R YA' 
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(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(iv) L ~{RZR~~R~~ +R~R~~R~p, (3.7) 
030 

(v) 0 L 2~ {R ~R !'PR ~ + R;R ~~R %. (3.8) 
I I 0 

In Eqs. (3.1)-(3.6), inclusive, there are two possible tri
linear combinations for each triangle, and in (3.7) and (3.8) a 
symmetric combination of the trilinear products is formed. 

It is now straightforward to show that all the trilinear 
combinations are symmetric and then to proceed as in the 

bilinear case. One, therefore, forms the tensor Gp by taking a 

linear combination of all the trilinear products and then 
evaluates the coefficients by using the condition 

[3] 

G p;u = 0. 

This then yields just the result (1.8) determined to within a 
multiplicative constant. 

4. CONCLUSION 

It has been shown above by a direct calculation that the 
natural generalizations of the Einstein tensor G to bilinearity 
and trilinearity in Riemann agree to within an arbitrary mul
tiplicative constant with the second and third term, respec
tively, of the general tensor found by Lovelock (who used the 
assumption oflinearity inJ 2ga {3/Jxv JxV) and that it vanish
es in the usual space-time (for which n = 4). 
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I From this point on, the restriction that space-time is four-dimensional is 
not necessary, and it will be assumed that space-time has dimension n 
unless stated otherwise. 

2The following conventions have been adopted: 

(a) Gp==Ga(3' R ~:;==R "v,<6; 

(b) R ~ = r~.a - r" va./J + r" uaru vfJ - r" u{Jr':,,; 
(c) The Einstein summation convention will be used; 

(d) r~ = !g"Y(grfI.v + gyv./J - gvfJ.y); 

(e) A comma denotes partial differentiation, and a semicolon denotes 
covariant differentiation; 

(t) Greek indices run from I to n, unless otherwise specified; 

(g)R"v = Ra,.av; 

(h) G"v = R"v - ~"vR. 
3This general tensor has the form 

where ar and a are constants and 15 ~,':::~: is the generalized Kronecker delta. 

This expression can be found in the paper by D. Lovelock, J. Math. Phys. 
13,874 (1972). This excellent paper became known to the authors only after 
the results contained in this paper had been derived as part of a general 
investigation of the mathematical properties of the Einstein tensor. 
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We give a new proof that the Bondi momentum is time-like and future directed. This is done by 
extendin~ a theorem showing the existence of solutions of Witten's equation on a complete, 
asy~ptotlcally flat surface, to the case where the surface is asymptotically hyperbolic and spans a 
cut S of /+. By choosing appropriate boundary conditions the positivity of the Bondi energy is 
also shown for the case where the surface is no longer free of inner boundaries but is internally 
bounded by the union of a finite number of marginally trapped surfaces. This argument also 
applies to the case of asymptotically flat surfaces. 

PACS numbers: 04.20.Cv, 02.30. + g 

I. INTRODUCTION 

Recently, several authors l
--4 have considered the issue 

of extending Wittens proof of the the positivity of energy at 
spatial infinity5 to a proof in the case of null infinity, i.e., to 
establish the positivity of the Bondi mass. The general tech
nique is to use the same identity Witten uses for the spatial 
case,5 but on a space-like surface ~ which is asymptotically 
null and which meets null in!!nity in a cut S. The identity 
equates the Bondi energy at S, expressed as a limit of 2-
surface integrals on~, to a 3-surface integral over ~ which is 
manifestly positive provided solutions of the elliptic equa
tion considered in Ref. 5 exist. An existence theorem for this 
equation on an asymptotically null hypersurface would 
therefore be sufficient to prove positivity of the Bondi ener
gy. 

In the absence of such an existence theorem, earlier 
authors have instead completed the proof of positivity by 
considering either a different elliptic equation4 or a null rath
er than asymptotically null hypersurface for ~, 2 and proving 
existence of solutions for those cases. 

While the result itself is thus now established2
,4.6,7 it is 

still of interest to known whether precisely the same tech
nique can be used in both the spatial and null infinity cases. 
This is what we do here. That is, we provide an existence 
theorem for the equation considered in Ref. 5 but on an as
ymptotically null surface (in fact, on a surface of asymptoti
cally constant curvature). The proof of this theorem is close
ly related to an earlier existence proof for positivity at spatial 
infinity.s In fact, the proof in Ref. 8. contains an error, which 
we rectify here. We thus provide a unified treatment of the 
two cases: there is just one identity involved and one equa
tion to be solved. The difference is in the boundary condi
tions and the details of the proof. 

Witten's original argument and the subsequent exten
sions mentioned above require the existence of a space-like 
slice (i.e., a space-like surface without inner boundaries) of 
the space-time reaching infinity, and the validity of the 
dominant energy condition in such a slice. But we know 

-) Supported in part by the Aillen S. Andrew Foundation and by the NSF. 
bIS.E.R.C. Advanced Fellow. 

there are examples of space-times having regions causally 
disconnected from infinity. It could happen that the space
like slice ~ encountered singularities in such a region or that 
the dominant energy condition was violated in such a region. 
Even so, one would still hope to be able to prove positivity of 
the energy at infinity by considering the parts of ~ outside 
such regions. Thus we will consider the question of inner 
boundaries on~, in Sec. IV. More specifically we shall con
sider the case when the inner boundary of~, So, is given by 
the union of marginally (future or past) trapped 2-surfaces. 
We shall find a boundary condition at So which again leads 
to positivity of the Bondi energy. This boundary condition 
has also been found by Gibbons et al. 7 

II. POSITIVITY OF THE BONDI MASS AND EXISTENCE 
THEOREM 

Consider an everywhere space-like, asymptotically null 
slice ~ (a surface without boundary)9 of an asymptotically 
flat space-time (M, gab)' Let t a be its unit normal, S a topolo
gically S 2 hypersurface of~, and~ (S) the interior of S. Then 
for any smooth spinor field a A 

, the two-component version 
of Witten's identity5.10 is2,3 

r Fab [a ]dS ab = r (81TTab k at b - 2~A' DbaA D baA' 
Js J.I(S) 

- 4~A' DA'BaB DAB,aB' )d~, (2.1) 

where 

Fab = i(aA, VbaA - a B, VaaB) + complex conjugate, 

ka =aAaA, 

Db = hb cVc = (gb C - tbtC)Vc' 

and Tab is the energy momentum tensor of the matter con
tained in (M, gab)' 11 

As remarked by several authors, if a A is asymptotically 
constant, as defined in Ref. 12, and S recedes to infinity ap
proaching a cut S of f+, 13 the left-hand side in (2.1) tends to 
the component of the Bondi momentum at S in the direction 
of the asymptotic translation defined by k a • 1--4 On the right 
side, the first term is positive if the dominant energy condi
tion is imposed, and the second is automatically positive 
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since the metric of ~ is negative definite. The third term, 
however, is negative, so one equates it to zero. This requires, 

DAA,aA = O. (2.2) 

Then positivity of the Bondi energy at S is ensured if one 
can find asymptotically constant solutions of (2.2) on a sur-

A 

face ~ spanning S. 
We will prove existence of these solutions for any sur

face satisfying the following condition: 
Definition: An asymptotically null surface (~, hab ) is 

said to be asymptotically hyperbolic (AH) if there exists a 
hyperbolic metric Kab outside some compact set, and con
stant C I > 0 such that for any vector va, 

CI-IKab va Vb<hab va Vb<CIKab va Vb, (2.3) 

where hab is the induced metric on ~. 14 

Existence theorem: Let (~,hab) be an asymptotically hy
perbolic surface embedded in (M, gab)' an asymptotically flat 
space-time satisfying the dominant condition 15 on~, and aA 

any asymptotically constant 12 spinor field. Then there exists 
a unique spinor field a A 

, approaching aA asymptotically, 
and satisfying 

(2.2) 

Proof Following Ref. 8 we define the Hilbert space H as 
the completion of the space C ~ (smooth and compactly sup
ported) spinor fields aA on ~ in the norm 

(I/aAIIH)2= L~A'DBA,aBDAB'US' d~, (2.4) 

We then have a key lemma. 
Generalized Hardy lemma: There exists a constant 

C> 0 such that for any spinor field aA EC ~ , 

!llaAIIH)2»cL~A'~(7A' d~, (2.5) 

We prove this in the next section. 16 From this inequality it 
follows that the elements of H are measurable fields and that, 
if a-! is a C ~ Cauchy sequence converging in H to aA , then 
D AA' a-! weakly converges to the distributional derivative 
DAA , aA of aA . Thus the integral (2.4) makes sense for any 
element of H, not just the C ~ ones, and gives the norm. 

We now seek a solution of (2.2) of the form a A = aA 

+ (JA with (JA EN. This is accomplished by the Riesz repre
sentation theorem 17 as follows. We define a linear functional 
f(· )onHby 

(2.6) 

Since aA is an asymptotically constant spinor field, it follows 
from the results in Ref. 2 that 

(IIDAA,aA IIL,)2= L~A'DAB,aB'DBA,aB d~<oo. (2.7) 

So, using the Cauchy-Schwartz inequality for spinors l8 we 
have 

(2.8) 
Thusf( ) is a bounded linear functional on H and by the 
Riesz representation theorem in H, there exists one and only 
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one (JA EN with 

(2.9) 

Subtracting (2.6) from (2.9), restricting aA to be in C ~, and 
integrating by parts leads to 

for all aA EC ~. Thus we have shown that there exists a 
unique (JA such that a A = a A + (JA satisfies the weak form 
of equation 

(2.10) 

Standard theorems on elliptic equations 19 show that this a A 

is smooth and, therefore, satisfies this equation in its strong 
form, i.e., (2.10). 

It remains to be proved that a A also satisfies the first
order equation (2.2). Assume, for contradiction, that I B , 

: = DBB ,aB-=j=O; then from (2.10) we have a solutionIB , of 
(2,2), which isinL 2nC "'. But substituting it in Witten'siden
tity, (2.1), leads immediately to a contradiction. 20 

Finally, one must check that the growth rate of the (JA 
obtained is compatible with the limit of the surface integral 
in (2.1), being the Bondi energy. But, since the solution is 
unique it must coincide with the asymptotic solution found 
in Ref. 3 for (2.2), which is compatible with the above limit. 

III. PROOF OF THE GENERALIZED HARDY LEMMA21 

Let (M, gab) be an asymptotically flat space-time, let ~ 
be an everywhere space-like, complete, asymptotically hy
perbolic slice of (M, gab)' with unit normal ~ . Then, there 
exists a constant C> 0 such that for any spin or field a A EC ~ 
the following inequality holds: 

Proof We first prove the theorem for regions of ~ 
which, with respect to the metric Kab are cones22 (of arbi
trary solid angle). Then we extend the proof to all of~, using 
the fact that it can be covered by a finite number of cones. 

Besides (2.3), two other geometrical inequalities are 
needed: 

(i)If va is any null vector, and na any unit time-like 
vector, then 

rpVana» Va~»rp -I Vana, where rp = 2na~' 
(ii) If the above vector field na is chosen such that 

Kab Va r Vb nc = 0, then there exists a constant C' > Osuch 

that 2<rp<2C' ..fl+? = C'rpo. 
Let r be any cone on~, na a unit time-like vector field 

on r satisfying Kab Va rV b nc = 0, and a A any C ~ spinor 
field; then 
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>c "i K""(( - DarDbra,;aA ,n
AA 'j/4rtpo'li.Io 

+~foo!!...[ f raAiiA,nAA'dIJ]dr 
2 Jo dr JS2 

where in the first step we have used Witten's identity (2.1) 
and the dominant energy condition. In the subsequent steps 
all the three bounds given above, and the identity r- I

/
2 D a 

(acrl/2) = Daac + !acr-IDar, have been used. The differ
ential d.Io is the surface element corresponding to Kab 

[d.Io = (1 + r)-1/2r dr dIJ ]. The last two terms vanish, 
one because it is an exact differential, the other because of the 
way na has been chosen. Thus, using once more the above 
inequalities we conclude 

(3.1) 

To finish the proof we must extend the inequality (3.1) from 
the cone r to all of .I. Assume, for contradiction, that (3.1) 
with r =.I fails, then there exists a sequence of CO' spinor 
fields aA on.I such that 

n 

But since.I can be covered by a finite number of cones, there 
must exist at least one cone for which the right side of (3.1), 
for ~A , grows without limit as n goes to infinity, while the left 

side of (3.1) remains finite, leading to a contradiction. 
It has been realized that the proof of the generalized 

Sobolev lemma in Ref. 8 is incorrect. Nevertheless the main 
theorem of the paper still holds true since the generalized 
Hardy lemma, which is still true when the surface.I is 
asymptotically flat, serves the same purposes that were 
sought in the former lemma. To prove the generalized Hardy 
lemma on an asymptotically flat surface.I, just notice that in 
this case the bounds in (2.3) are still valid if Kab is taken to be 
a flat metric on .I, and that with na defined as above, then 
2<,tp<'C 'tpo = 2C I (which in fact requires 
gab,c -1/rl + E, E> 0). 

IV. INNER BOUNDARIES 

We now suppose that.I has an interior boundary So as 
well as the previously introduced exterior boundary S at in
finity. Then (2.1) acquires an inner surface term, and for any 
solution aA of Witten's equation, (2.2), we have 
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-2rA'DbaADbiiA' ]d.I. (4.1) 

Now, if aA tends to a constant spinor field £lA at infinity we 
conclude 

(4.2) 

where Pa is the Bondi momentum and k' is the asymptotic 
translation defined by aA 

• Thus, to prove positivity of mass 
in this case we require boundary conditions for the spinor 
field a A at the inner boundary So such that: 

(i) Solutions of Witten's equation exist satisfying them. 
(ii) The right-hand side of (4.2) is nonnegative. 

These two conditions are in some sense related: Indeed, 
spinor fields in C 0'(1') satisfying condition (ii) (nonnegati
vity) also satisfy inequality (2.5) (the generalized Hardy 
lemma), which is a key step in proving condition (i) (exis
tence). 

We now obtain such boundary conditions. The bound
ary integrals in (4.1) are conveniently expressed in the GHP 
formalism23 for two preferred null directions, in this case the 
ones picked out by So. Introduce a spinor dyad (OA' LA) in a 
neighborhoOd of So, such that 0 A LA = 1; ~ (]A' is tangent 
at poin~ <;>f So to the outgoing null geodesics orthogonal to So 
and LA LA is tangentto the ingoing ones. Then, the integrand 
(over So) in (4.1) is 

Fab(a)t [asb J = paoiio' - p'aliil' + iil'dao - iioda l 

(4.3) 

wheres is the unit normal toSoin.I, aOanda l are such that 
aA = aO~ + altA ,p, p' are, respectively, the convergences 
of the out- and ingoing null directions orthogonal to So, and 
d, d are the differential operators23 tangent to So. 

Examining expression (4.3) for Fab(a), it is clear that in 
general there is no boundary condition satisfying (i) and (ii) 
simultaneously. This is so because to have solutions of (2.2) 
one expects to have to give on So only "half' of a A 

, e.g., to 
give either the value of aO or of a I on So but not both. The 
other half would then be determined by the solution inside.I. 
But then there is no way offorcing the integrand (4.3) to be 
positive having only one of these. On the other hand, this 
must be so because otherwise one could prove positivity for 
almost anything! 

We now restrict attention to the case in which So is a 
marginally future trapped surface.24 This means that p = 0, 
i.e., that the outgoing null geodesics orthogonal to So are just 
failing to expand. In this case, a suitable boundary condition 
at So is a II SO = 0, a condition also found by Gibbons et af. in 
Ref. 7. It is easy to see that this boundary condition satisfies 
(ii); but it also satisfies (i), as follows from the following 
theorem. 

Existence theorem (with trapped surfaces): Let (M, gab) 

be an asymptotically flat space-time and (.I,hab ) an embed
ded, asymptotically hyperbolic surface such that: (i) the 
dominant energy condition 15 is satisfied in a neighborhood 
of .I, and (ii) the interior boundary of .I, So = a.I, is a future 
trapped 2-surface. Let £lA be any asymptotically constane2 

spinor field on.I which vanishes in a neighborhood of So. 
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Then, there exists a unique spinor field a A 
, which satisfies

D AA" aA = 0 and aliso = 0, and which approaches aA as
ymptotically. 

The proof of this theorem is very similar to the one in 
Sec. II, so we merely sketch it. First, one proves existence of 
solutions of the second-order Eq. (2.10) with boundary con
ditions aliso = O,A 1'lso=D 2

'Aa
A Iso = O. To do this, one 

chooses H = ! completion of spin or fields aA in C ({' (.I ) with 
0.1, D l'A aA in C ({'(.I); under the norm given by (2.4)). Pro
ceeding as before one shows the existence of rr EH such that 
a A = aA + {3A satisfies (2.10), Since aA was chosen to van
ish in a neighborhood of So, then one checks25 that {3A satis
fies the required boundary conditions. Second, one used the 
fact that So is a future trapped surface, and that A l'lso = 0 to 
cancel a boundary integral which in tum allows the applica
tion of the same argument as before to conclude that a A 

must also satisfy the first-order equation (2.2). 
The proof above can be immediately extended to the 

case of So being a marginally past trapped surface [by choos
ing as new boundary conditions aOlso = 0, A o'iso 

= D ~'aA Iso = 0], and even to the case of So being the union 
of several marginally trapped, past or future, surfaces. 

v. CONCLUSION 

We have proven an existence theorem of solutions of 
Witten's equation (and thus the positivity of total mass) for 
the case in which the space-like slice.I on which the equation 
is given is asymptotically null. This proof, together with that 
of Ref. 8 in the space-like case, provides a unified treatment 
for the two regimes. 

The proof requires nothing about the topology of.I and 
rather little about its geometry: it must only be asymptotical
ly hyperbolic and singularity-free. (These conditions suffice 
to guarantee that, among other things, .I can be covered by a 
finite number of suitable cones, as required in Sec. III.) Thus, 
for example, one can allow in.I a finite number of handles
or even throats connecting different asymptotic regions
and still establish nonnegativity of total mass. 

We have also proved (Sec. IV.) positivity of total mass 
for some black holes, using a generalization of the above 
theorem. In this generalization, we allow in .I an inner 
boundary consisting of a union of marginally-trapped sur
faces. Thus, the total mass of a black hole is positive if it 
shelters a marginally-trapped surface. Note that this result 
requires some (although limited) information about the inte
rior of the black hole. This requirement seems to be rather 
unphysical, since the interior of a black hole cannot be seen 
from the asymptotic region, where the total mass is manifest. 
It is at least possible there could exist a black hole without 
any marginally-trapped surface. Can one find a more general 
proof which also applies to such a black hole? One might try 
to generalize the above theorem, this time taking as the inner 
boundary of.I not a marginally trapped surface, but rather a 
cross section of the event horizon. Unfortunately it is unlike
ly that one could find a proof along these lines for the event 
horizon, as a global concept, does not have enough useful 
local properties. 

Let (M, gab) be an asymptotically flat space-time satis-
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fying the dominant energy condition. Let S be a cut of null 
infinity and let .I be a space-like slice spanning it. Then we 
know, from the theorem above, that the Bondi mass asso
ciated with this cut is nonnegative. We further know, by the 
Bondi flux formula (or, alternatively, by deforming the slice 
.I near infinity and again applying the theorem), that the 
Bondi mass associated with any cut to the past of.I is also 
nonnegative. Can we reach the same conclusion for cuts to 
the future of S? Singularities could develop in such a way 
that no slice could span some of these cuts, thus preventing 
the application of the above theorem. If, however, strong 
asymptotic predictability is assumed, then for any cut to the 
future of S there necessarily exists an everywhere regular and 
space-like slice spanning it. Now we can apply the theorem 
to such cuts. We thus establish nonnegativity of the Bondi 
mass for all times. 
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<liP' - 13 .'IIL"fl)IIDrp IIL'(fl) 

+ liP' - 13 JlIHllrp IlL'!") 

<CliP' -P:IIJi- O 
"00 

for some constant C. Since rp is arbitrary in So and 13; I So = 0 then 

13 'Is" = o. 
To show that D ~aB Iso = 0 consider the equation 

irA' [DA,BDBB,a-"']aA d~ = 0 

for all a-"'EC 0' (i )nH, which is just the statement that ~ is a weak solu
tion of (2.10). Integrating it twice by parts one obtains 

{ rA'(jA,DAB,DB'BaBd~+ {[a'DB,a-'" 
JI JSo 

+ + aOD 'B,(jB' - (jID~if - ffYD ~if]dSo = O. 
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The canonical formalism is applied to self-gravitating perfect fluids with particular emphasis on 
recovering the correct nonrelativistic limit also in (quasi-) Hamiltonian form. We use essentially 
Lagrangian coordinates by considering the fluid defined by a map from space-time into a three
dimensional material manifold which is equipped with a volume element representing physically 
the matter (baryon number) density. By eliminating the coordinate freedom in this material space 
the usual matter conservation and (relativistic) Euler equations are recovered in a (3 + 1)
dimensional formalism which makes it very easy to compare them to their nonrelativistic limits. 
By splitting the 3-metric and its canonical momenta into a conformal part and the determinant we 
arrive at a system of evolution and constraint equations for the gravitational field that also has a 
well-defined Newtonian limit provided the geometric version of the Newtonian theory is also cast 
into an analogous (3 + I)-dimensional form. Some of the evolution equations of the relativistic 
theory, however, become additional constraints in the limit which represents the freezing of the 
gravitational (or radiation) degrees offreedom. We then use this formalism to rederive the first
order post-Newtonian approximation and obtain the standard results in a flexible geometrical 
form since no gauge or coordinate conditions need be imposed in advance. 

PACS numbers: 04.20.Fy, 04.40. + c, 02.40. + m 

1. INTRODUCTION 

A great deal of effort has gone into the study of the 
Hamiltonian (canonical, symplectic) formulation of general 
relativity, mainly in the form of the so-called ADM formal
ism. I (For two recent surveys with different emphasis see 
Refs. 2 and 3.) This approach starts with a Lagrangian for 
the gravitational and possibly other fields and ends up, at 
least in the form of Fischer and Marsden,3 with a (somewhat 
implicitly defined) symplectic structure on the space of all 
true gravitational degrees of freedom which is some infinite
dimensional Banach manifold. Apart from the geometrical 
insight one gained into the structure of this classical field 
theory, which is meant to help in the understanding of its 
quantization, the formalism has proved useful for other ap
plications like the comparison of different classical field the
ories and for theoretical and numerical problems in the con
struction of solutions from initial data.3,2,4 

The main purpose of this paper is to use this well-devel
oped and elegant geometrical theory to study once again the 
Newtonian limit of general relativity. This subject has a long 
historr-8 and, at least in what concerns the slow-motion or 
post-Newtonian approximation to general relativity, is still 
not yet fully understood, in spite of being of considerable 
importance in astrophysics and cosmology. In most recent 
formu1ations9

-
13 divergencies show up sooner or later that 

01 Partially supported by the Natural Sciences and Engineering Research 
Council of Canada, Grant no. A8059. 

hi Permanent address. 

are not understood and removed to everybody's satisfaction. 
Ofless practical importance, though an aesthetical defect, is 
the fact that the post-Newtonian formalism considers the 
Newtonian theory as a first-order perturbation to Min
kowski space, while on the other hand, it is well known from 
the beginnings of relativity theory that classical mechanics 
and Lorentz invariance are not compatible. We will not, in 
this paper, consider the problem of divergencies in the high
er-order post-Newtonian approximations but describe the 
limiting process in a consistent fully geometric form in 
which such questions can at least be rigorously formulated. 
The Newtonian solutions are here taken as freely given and 
are not a first approximation to flat space. As usual they 
determine uniquely the first post-Newtonian approxima
tion. 

For this purpose it is necessary to describe the relativ
istic and Newtonian theory in the same language which 
must, because of the greater scope of general relativity, nec
essarily be the one of differential geometry. We use the 
slightly generalized geometric Newtonian theory of Refs. 14 
and 15 which, however, agrees exactly with the classical 
Newtonian theory if the usual asymptotic boundary condi
tions are imposed. As pointed out in Ref. 15 this theory has a 
few intriguing aspects if it is considered as a classical field 
theory in its own right. It can be regarded as a mildly nonlin
ear gauge theory somewhat resembling the Maxwell-Ein
stein theory. It is nonlinear enough to determine the equa
tions of motion of test particles,15 but it does not seem to 
admit a (four-dimensionally-covariant) Lagrangian formu
lation. Part of our motivation for this paper was also to better 
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understand this degenerate kind of canonical structure. We 
do find that this may be somewhat easier in terms of the 
ADM canonical formalism. 

Since the gravitational degrees of freedom are com
pletely frozen in the Newtonian limit one cannot gain much 
insight into the structure of this limiting process by consider
ing a pure gravitational field. On the other hand, the perfect 
fluid model is clearly one of the simplest theories that are of 
some interest and physically well understood also in the 
Newtonian case. (Electromagnetism has different Galilean 
limits which are all limited in scope I6

•
7

; for nonrelativistic 
quantum mechanics considered as a "Newtonian" classical 
field theory cf. Refs. 17 and 18.) We therefore couple the 
gravitational field to a barotropic perfect fluid source for 
which we first develop the canonical formalism. 

In fact, there are a variety of Lagrangian and Hamilton
ian formulations available in the literature for perfect fluids 
in general relativity. 19-25 Schutz22 obtained a Hamiltonian 
theory for relativistic perfect fluids based on his relativistic 
generalization of Seliger and Whitham's26 variational prin
ciple. It has been elaborated and reduced by Demaret and 
Moncrief5 while Moncrief4 also applied ADM techniques 
to Taub's20 variational principle. These authors, as well as 
others (Refs. 27-29 more recently for the nonrelativistic 
case), start with Euler's equations of motion and introduce 
velocity potentials, some of which they can choose to be 
quantities that are physically observable at least in special 
circumstances. This approach may be useful, for example, 
for basing variational techniques in a concrete, possible nu
merical, problem directly on a minimal number of variables 
that can be measured in specific situations. 

Since here our purpose is not so much a specific Hamil
tonian model for a concrete application in astrophysics, but 
rather the study of the symplectic structure of the field the
ory and its degenerate Newtonian limit we prefer the ap
proach that is based essentially on the description in Lagran
gian coordinates. It also has been around for a long time (see, 
for example, a text like Ref. 30) and has recently been studied 
again in the form of a standard classical field theory by Ki
jowski and Tulczyjew. 31 The fields are regarded as cross sec
tions of a trivial bundle over space-time M with as standard 
fiber a material or body manifold B which can be equipped 
with some geometrical structure incorporating intrinsic 
properties of the material. In this sense it is a much more 
general approach than those based on a specific set of field 
equations for which a variational formulation is constructed 
more or less ad hoc. (See, for example, Noll. 32) 

In the case of hydrodynamics it is sufficient to have a 
volume element given in terms of which the matter density p 
and the (conserved) flow vector j = pv on M are defined by 
the field x f----+ b (x) E B. If then (in the relativistic case) the (rest 
frame) mass-energy density f1 is chosen as the Lagrangian 
with the fields x f----+ b (x) as independent variables it turns out 
that the Euler-Lagrange equations for the b (x) correspond to 
the momentum balance equations that can also be obtained 
from covariance considerations. (Kijowski and Tulczyjew33 

have extended this approach to include thermodynamic var
iables.) 

The canonical analysis2 can be applied to this theory in 
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a quite straightforward way except for some technical diffi
culties in solving for the canonical momenta in terms of ve
locities that can only be explicitly obtained for the simplest 
equations of state. The resulting Hamilton equations contain 
more variables than are physically needed, but if the coordi
nate freedom in the material space is eliminated the relativis
tic versions of the conservation of matter and momentum 
equations (Euler equations) are obtained in a form which 
makes it very easy to compare them with the classical New
tonian equations. We carry out this program in Sec. 2, care
fully choosing the geometrical and physical quantities such 
that they have regular limits if c --+ 00. 

In Sec. 3 the geometric Newtonian theory is briefly 
summarized and then cast into a (3 + I)-dimensional form. 
Since no Lagrangian is known for this theory a strictly ca
nonical form cannot be constructed either, but it is very easy 
to introduce quantities that are analogous to the canonical 
variables of the relativistic theory. Especially when the 3-
metric of the time slices is split into a conformal part and its 
determinant (a technique well known to be effective also for 
the solution of the relativistic initial value problem4

), it is 
possible to formulate the relativistic and the Newtonian 
equations in a way such that the latter are manifestly the 
limit for c --+00 ofthe former. This can be achieved even 
without fixing the lapse and shift function although the 
Newtonian theory only takes on its classical form when suit
able gauge conditions are imposed. We make this explicit in 
Sec. 4, where we also attempt to interpret these results in the 
global symplectic framework of Fischer and Marsden.3 

In Sec. 5 we derive the first post-Newtonian approxima
tion systematically within our geometrical framework and 
recover all the standard features, but without somewhat 
vague appeals to the equivalence principle and without hav
ing to impose coordinate or gauge conditions in advance. 

Concerning the general mathematical level of this pa
per we believe that the formalism as presented here is suit
able for the most rigorous analysis of the occurring partial 
differential equations in the framework of asymptotically 
weighted Sobolev spaces (as reviewed, for example, in Ref. 
34). We have not attempted here, however, to spell out all the 
exact differentiability and asymptotic falloff properties of 
the quantities involved. Instead we assume, as is standard 
practice in work on post-Newtonian approximations, that 
the function spaces are such that the Laplacian and other 
homogeneous elliptic operators with constant coefficients all 
have inverses. 

When this work was essentially completed the authors 
became aware of a paper by Weinstein35 where the notion of 
a Poisson manifold is applied to the study of some symplectic 
manifolds in mechanics that change type when certain pa
rameters tend to limit values. It is likely that the situation 
encountered in Sec. 4 could also be better understood in 
terms of such (infinite-dimensional) Poisson structures. 

2. CANONICAL FORMALISM FOR RELATIVISTIC 
PERFECT FLUIDS 

The canonical Hamiltonian formalism for classical 
fields interacting with gravity has shown itself to be a practi-
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cal way of investigating the nature of a given classical field 
theory. We set up this formalism for barotropic relativistic 
perfect fluids mainly following the review,2 except for mak
ing the dependence on the velocity of light c explicit. We 
slightly depart from the usual definitions2.3 occasionally in 
order to have regular Newtonian limits for all basic geomet
ric and physical quantities. 

(3 + 1 )-dimensional formalism 

Space-time is foliated by spacelike hypersurfaces which 
we take to be the level surfaces ~t of a function t. We will 
always use frame fields en (and their duals en) adapted to 
these surfaces such that by the foliation condition eO = N dt 
for some function N. 36 Then the space-time metric is 

Y = - c2eO 
® eo + Dab ea ® e b, 

and its inverse 

(2.1) 

y-I = -c- 2eo ® eo + DSbea ®eb •
37 (2.2) 

These adapted frames are used to decompose space
time covariant objects into their spatially covariant parts. In 
particular (2.1) induces a metric 

Y = Yab dxa ® dxb and y- I = ybaa ® ab (2.3) 

on the space slices. This spatial metric is the dynamical field 
of Einstein gravity. In the canonical Hamiltonian formalism 
one passes from a description in terms of these spatial fields 
and their "velocities" to one in terms of these fields and their 
conjugate momenta. The field equations then split up into 
two types: Those which are constraints on the initial values 
of the fields and momenta and those which give the time 
derivatives for these quantities. These derivatives are fixed 
by 

(2.4) 

in terms of X = XSes (the "shift") along the spatial surface 
plus an amount N (the "lapse") along the normal leading to 
the "next" ~t surface. 

We describe a barotropic perfect fluid by maps 

/3:M f---+ B:x ---+ (b A (x)) (2.5) 

from the space-time M into a three-dimensional material 
space (or body manifold) B. On B there is given a volume 
element r = m d 3b which like the scalar density m on B has 
the physical dimension of mass. Then the pull back /3 *(r) of 
this volume element determines a conserved 4-vector (the 
matter-flow vector) j, given in coordinates by 

(2.6) 

where b ~ = aa b A and the tensor £a{3y{J is given in terms of 
the Lorentz frame en by £a{3y{J = eba elf e~ e~l. Assume that j 
is a future pointing timelike vector and define the matter 
density p by 

j=pv, 

where 

y(v,v) = - c2
• 

Equation (2.8) and 
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(2.7) 

(2.8) 

vab~ = 0 

characterize v. 

Hamiltonian form of the field equations 

(2.9) 

The field equations for the gravitational field and the 
fluid can be obtained from the Lagrangian density (with 
units of action) 

(2.10) 

whereu=c-'~ -det(Ya{3)' k= 161TG,GisNewton's 
gravitational constant, p, = p(c2 + €( p)) is the mass-energy 
density per volume, € the specific internal energy, andp is 
considered as a function of b A and b ~ . 

To pass to the canonical Hamiltonian form 5t' must be 
reexpressed in terms of three-dimension ally-covariant quan
tities and their time derivatives with respect to at. We have 

and 

R = R + (c-IKab)(c-IKab ) - (c-'K ~)2 

+ divergence terms, 

(2.11) 

(2.12) 

where the extrinsic curvature (second fundamental form) of 
~t is 

c-IKab : = - (2Nc)-I(Yab - £XYab) (Ref. 38) (2.13) 

r = at and £x denotes the Lie derivative in ~t). (See, e.g., 
Refs. I and 39, Chap. 21 or 2.) 

It is convenient to split v in the form 

v = vO(eo + v). (2.14) 

Then, by (2.6), 

(2.15) 

depends only on the configuration of the material on a sur
face ~t' while according to (2.9) the velocities appear via 

N-I(bA-£xbA)=b~= -b:vc = -b1vi
• 

(2.16) 

Therefore 

p =l(1 -lvI2/c2)'/2 = :lV. (2.17) 

Varying the Lagrangian (2.10) with respect to Yab and 
b A leads to the canonical momenta 

k-IC2~b:= ~L =k-lc2,.(ybK~_Kab) (2.18) 
aYab 

and 

-2 dp, V -2b -Ii -c ifP- AVi' 
dp 

(2.19) 

In order to find the Hamiltonian one must solve these 
equations for the velocities. This is easily done for Yab in 
terms of ~b and leads to Eqs. (2.31) below. To solve (2.19) for 
b A we first define 

..:1 AB: = b~ybb!. 

Then, from (2.19) we have 

IP I: = (..:1 ABpA PB)I/2 = C- 2
l' V- 2p dP,. 

dp 
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We will now assume that the in general transcendental equa
tion (2.21) is solved for I v I in terms of the scalar" - liP I by 

Ivl = ("t)-1(j°,IP I" -I)IP I, (2.22) 

so that 

hA - £x b A = ,,-W(j°)-1Ll ABPB (= - Nb1 vl 
(2.23) 

For the simplest case (dust) we have,u = pe2 and we can solve 
(2.21) explicitly: 

/ = [1 + IP 1
2(el'jO)-2l-I/2 (= V). (2.24) 

Now that we have the velocities in terms of the mo
menta we can recast the action in canonical Hamiltonian 
form 

k- Ie2 J dt J d 3x(1f'bYab +ke- 2PAhA 

- e2N:Jr' -X a
/ a ), 

where the super-Hamiltonian is 

:Jr' = :Jr'gr + :Jr'ft 

with 

and 

:Jr'ft =:Jr'ft (b A, b ~'Yab' PA ) 

= ke- 4(u,u + ,,-1IP 1
2/jO) 

(= ke- 4"p(e2 + E + /-1 V- llvI 2
)) 

(which becomes in the case of dust 

The supermomentum is 

(2.25) 

(2.26) 

(2.28) 

(2.29) 

/a = /~r + /~ = - 2Vr 1T~ + ke-2b~ PA. (2.30) 

The Hamiltonian equations of evolution are now found 
to be 

Yab - £XYab = ,.-W(21Tab -1T;Yab)' (2.31) 

hA _ £x b A = ,. -WI /jOLl ABPB = - Nb1 Vi, (2.32) 

e-Z(ir"b - £x 1f'b) 

= - ,.[N(R ab - !Ryb) - vavbN + V 2Ny b 1 
+ e- 2

" -IN [1f'b1T~ - 2tT: 1Tcb 

+ !yb (JT's1Trs - !(1T;f] 

+ !ke- 4N" [pyb + /-1 V -lpVaVb l, (2.33) 

pA _ £ p A = _ N a:Jr'ft + V (N a:Jr'ft ) 
x abA a abA 

a 

= e2
l' [ - NV/-lpm-laA m + Vi(NVj-lp (8j 

+e-2V-Vvj)b-I~)]. (2.34) 

In these equations the velocity variables Vi have been 
introduced on the right-hand side because the expressions 
then look simpler. But the Vi, V, p,J must be regarded as 
functions of PAvia Eqs. (2.19) and (2.21). The variation of 
:Jr'ft amounts to a very long, but straightforward, calculation 
in which/must be correctly treated as an only implicitly 
defined function. 
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In addition to the evolution equations (2.31 )-(2.34) one 
has the initial value constraints 

:Jr' = 0, /a = ° (2.35) 

corresponding to 2k -le4G~ - ~ = 0, and to 
2k -le4G~ - T~ = 0, respectively. Equation (2.33), on the 
other hand, corresponds to the remaining Einstein equations 

(2.36) 

Incidentally, the preservation of the constraints (2.35) 
corresponds to 

e4/(81TG )VA G~ - VA T~ = 0. (2.37) 

Coordinate freedom 
Equations (2.32) and (2.34) together represent the equa

tions of motion of the fluid (Euler'S equations). They look 
different from the standard form mainly because we label the 
fluid elements by arbitrary coordinates in a material space 
rather than in terms of space-time coordinates and veloc
ities. Because we have no constraints on our fluid variables 
we do not need the Dirac constraint formalism. The only 
constraints in our theory are the usual super-Hamiltonian 
and supermomentum constraints. We have, however, up to 
this point kept full flexibility in the choice oflapse and shift, 
space and material coordinates. 

As far as the freedom in material coordinates is con
cerned it is easy to see that for givenp and v on space-time the 
corresponding fields T*(J:M :3 x f--+ (b A (x), ,,-IPA (x)) 
E T * B are given up to a global diffeomorphism <P of B. One 

can instead consider the matter field as a cross section of a 
trivial bundle M X B as Kijowski and Tulczyjew31 do, but the 
<P cannot be a local (i.e., x-dependent) gauge transformation. 

Ifwe eliminate this coordinate freedom we recover the 
relativistic version of the Euler equations (i.e., the equations 
V A T~ = 0). First we rewrite (2.34) in the form 

PA - £x PA = "b -I~ [Vj(NV - Ij-Ipvjvi ) 

- NV -1- lpb ffvjb -I~ Vk 

+ p/-I vai<P + Nai p 

- !pNV-1- Lail vlz ], (2.38) 

where we have defined 

<P: = e2(N - 1) (2.39) 
and 

b~: = Vj b1 = aj b1- Fji b1 (2.40) 

and where we used that (2.22) implies 

j- IV=e- 2 d,u = I +e-2(E+.!!.....) (2.41) 
dp P 

(if we consider the isentropic case only where p = p2dE/dp), 
and that 

m-laA m = b -I~ Vi(pV-I)Vp-1 - b -I~ bff b -ljB' 
(2.42) 

Theeonservation ojm a tter equation Vaja = 0, becomes, 
in (3 + I)-dimensional form, 

(V-Ip)' - £x(V-lp) + Vi(NV-1pv') 

- NV-lpK; - 2N- IV- lp£X N = 0. (2.43) 
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With its help and (2.19), Eq. (2.38) can finally be written 
in the form 

p[U-1vJ - £XU-1Vi) + NVkVkU-1Vi ) +j-1ail/» 

+ Nvai P + 2pj-W- 1£x NVi = 0, (2.44) 

which are the relativistic Euler equations. 

Gauge conditions 

For specific applications one may wish to fix the lapse 
and shift function by suitable conditions. A good way to fix 
the lapse (especially for numerical integration) is the maxi
mal slicing condition (see York4) which requires the trace of 
the second fundamental form, or equivalently of 1r"b, to van
ish for all time slices. The trace of(2.33) and (2.35) imply that 
this condition takes the form 

:7: = ff,: = ° (2.45) 

and 

1: = V2l/> - 4trGNp - if -2N-rfj trij 

-! kc- 2N(p€ + 3p + 2pj-1 V- 1IvI 2
) = 0. (2.46) 

A natural way to fix the shift vector in hydrodynamics 
is to use comoving coordinates, i.e., to require that b A = ° (or 
equivalently that v = 0). This does simplify the equations, 
but the resulting system cannot normally be solved uniquely 
for X. A mathematically and for numerical calculations 
more satisfying method is York's4 minimal distortion condi
tion. It requires that the time dependence of the conformal 
metric yij [see (2.48) below] or, more precisely, the quantity 

J (Yjfif - 1I3d 3X = J (Yij - ~ Yij YSYrJ2" d 3X 

regarded as a functional of X be minimized. York shows 
that, independent ofthe source terms, this leads to the ellip
tic equation 

V'Vr Xi +! ViVr xr + R ir X r 

(2.47) 

for X which under suitable boundary conditions will have a 
unique solution. 

New variables 

We have been careful to write all equations in this sec
tion in a form which will facilitate taking the limit c - 00 

since the factors c have already been placed in suitable posi
tions. It will turn out, however, in the next section that not 
all of the evolution equations (2.33) will become constraints 
in the limit. Roughly speaking, the trace remains an evolu
tion equation. It is therefore simpler to take the limit if we 
introduce new variables, splitting the metric into a confor
mal part and its determinant. Of course, this approach is 
closely related to York's4 conformal method for treating the 
initial value problem. 

Choose therefore if and the tensor density of weight j, 

rb: = t,2/3y"b, (2.48) 

as gravitational configuration space variables, and as mo
menta the scalar 
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iT: = j if - I ff,: 

and the tensor density of weight !, 

iTab: = if -2/3(trab - ! ff,: Yab)' 

The action then becomes, instead of (2.25), 

k -IC
2 J dt J d 3x (iTab yab + iTif 

+ kC- 2PA b A - c2Nc'Jf" - X a /a) 

and leads to the evolution equations 

a, r b - £x r b = - 2if I/3N?b, 

a,if - £x if = - ~ if NiT, 

c-2if-1I3(a,iTab - £x iTab - 2t,-1I3N1T" iTrb ) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

= - N(Rab - j RYab) + C-
2(Va Vbl/> - jV2l/>Yab) 

+ ! kc- 4Nj-1 V-IP(VaVb -llvI2Yab)' (2.54) 

a,iT - £x iT = - j V 2l/> + N [j c2R + t' - 2I3iTrs ?S + ~ r 
+ kc- 2(p + jpj-I V- 1IvI 2

)), (2.55') 

together with (2.32) and (2.34), and to the constraints 

c'Jf" = - ifR + C- 2"(if -2/3iTrsiTrs - ~ r) 

+ kC- 4 if(,u + pV-1- l lvI 2
) = 0, (2.56) 

a-- 2 - 2/3vr- a - k -2j- 1V- 1 ° c/ a == - U 1Tra - tt- a 1T - C Vi == . 

(2.57) 

(Indices are still raised with y"b.) 
This is the new canonical form of the system of equa

tions. Ifwe add! c2 if -INc'Jf" to the right-hand side of Eq. 
(2.55') we obtain an evolution equation 

a,iT - £x iT 
- _ 4(V2l/> _ 4trGpN) + 4 Nif- 2/3?siT + 1 Nr - j j rs 4 

+! kc- 2Nfp€ + 3p + 2pV- 1j- 1IvI 2) (2.55) 

which is equivalent to (2.55') on the constraint set and has a 
regular limit for c - 00. 

3. THE GEOMETRIC NEWTONIAN THEORY 

Classical hydrodynamics 

In its classical form a gravitating barotropic perfect flu
id is described by the system of equations 

a, p + ai(pVi) = 0, 

p(a,vi + Vrv rVi) + ai p + pail/> = 0, 

vrv r l/> = 4trGp, 

(3.1) 

(3.2) 

(3.3) 

where V is with respect to a flat 3-metric Ylj which may be 
written in arbitrary coordinates but so that at Y ij = 0. If the 
equation of state p = pfp) is fixed and p and v are given on an 
initial time slice and the boundary conditions are such that 
the Laplace operator has an inverse, then the time evolution 
of the system is determined. 

These equations can be derived from a (degenerate) La
grangian density 

.!/ =p[!lvI 2 
- €fp) -l/> 1 - (8trG)-larl/>arl/> (3.4) 

if one takes b A (t, x) and l/> as dynamical variables and defines 
p and v, similarly as in Sec. 2, by P = m det(b 1) and 
a,b A + b1 vr

= 0. 
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Since the metric and the coordinate system are fixed, 
however, one cannot compare this theory with the relativis
tic version without introducing there somewhat arbitrary 
coordinate (gauge) conditions. Our aim is to see explicitly 
how the general canonical or symplectic structure of the rel
ativistic theory degenerates in the Newtonian limit and 
therefore we must a priori admit the metric as a dynamical 
variable in the Newtonian theory. In fact, the system (3.1)
(3.3) is not even invariant under time-dependent Euclidean 
transformations since the potential (/J does not transform as 
a scalar in that case. It is only correct in an "Aristotelian" 
space-time.40 

Newtonian manifolds 

We recall the main definitions of the geometric Newto
nian gravitation theory as formulated in Refs. 14 and 15 
where also further references to its long history can be 
found. 41 

A Galilei manifold is a space-time M with an equiv
alence class of frames singled out at each point that are relat
ed by the (homogeneous) Galilei group rather than the Lor
entz group as for a Lorentz manifold. This class of frames 
{ea J is determined by a contravariant symmetric positive 
semidefinite tensor field y of rank 3 (the space metric) and a 
rank 1 tensor field g (the time metric) such that 

(3.5) 

(3.6) 

We assume that the space-time M is time and space 
orientable. Then eO is a Galilei invariant which we also call 
",. Also a volume element and thus the tensors Eaf3y8 and 
Eaf3y8 are still well defined. A vector X is called spacelike if 
",(X) = 0, unit timelike if ",(X) = 1. 

A Galilei manifold admits a compatible symmetric lin
ear connection V (i.e., Vy = 0 and V", = 0) if'" is closed. 
Then, locally, '" = dt and there exists a canonical foliation 
into spacelike hypersurfaces. Such a torsion-free Galilei con
nection is not fully determined by y and", but is given by 

u 

rpy = rpy + "'113 F ylA yaA (3.7) 

in terms of a unit timelike vector field u and a 2-form F where 

V is the unique symmetric Galilei connection such that u is 

geodesic and irrotational, i.e., such that 
u u 

UAVAUa=O and yA[aVAuf3J =0. (3.8) 

The curvature tensor of any symmetric Galilei connec
tion satisfies 

YAla Rf3l = 0 d .1. RA 0 Al"v an 'YA af3y = . (3.9) 

If, moreover, 

R a
f3A8 yyA = RY/jAf3 yaA, (3.10) 

the connection is called Newtonian. The condition (3.10) is 
equivalent to dF = 0 in (3.7), and it is not hard to show7 that 
if a family of symmetric Lorentz connections has a Galilean 
limit then that limit is Newtonian. We will only consider 
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Newtonian structures from now on. They can be described 
by (y,"',r) together with the constraints (3.10) and 

Vy = 0, V", = 0, (3.11) 

orlocally, via(3.7)by (y,,,,,u,A)whereF = dA, or even, when 
convenient, by (y,,,,,u,A,r) subject to l5 

u 

Faf3 + 2YA [a Vf3 J u
A 

= 0, (3.12) 

where y is defined by 

u u 

Ywl uA=O and YaAyAf3=~ -",,,uf3. (3.13) 

Clearly, these latter two descriptions of the Newtonian 
space-time contain more information than needed. Both u 
and A are some sort of gauge fields; either of the two could be 
fixed, though not in a canonical way. On the other hand, it 
seems quite hopeless to achieve a Lagrangian or Hamilton
ian formalism in terms of y, "', and r alone. When we de
scribe the geometry by (y,,,,,u,A), however, we have-in ad
dition to the in variance of the formalism under space-time 
diffeomorphisms-the gauge transformations 18 

ua 
f--+ ua + yaAw A' 

Aa f--+ Aa + aa X + Wa - ~ "'a ("("I"WA WI" + 2UAWA) 
(3.14) 

which are parametrized by a scalar X and a I-form 
W = W A dxA

• (There is a connection between this gauge group 
and the extended Galilei (or Bargmann) bundle.42

•
18

) 

In Ref. 14 it was shown that the field equations 

(3.15) 

imposed on a Newtonian manifold lead to a theory that is 
only slightly more general than classical Newtonian gravita
tion and agrees exactly with the latter if suitable global con
ditions are added. 

In contradistinction to Einstein's theory the field equa
tions (3.15) do not imply the conservation equations for mat
ter. On the other hand, it was shown in Ref. 15 that the 
conservation equations of matter can be obtained essentially 
by Noether's theorem if the matter Lagrangian.2" m depends 
on the gravitational field (y,,,,,u,A) and is invariant (possibly 
up to a divergence) under the gauge transformations (3.14). 
As in particle mechanics the mass density p, or here better 
the matter flow vector j, is independent of the stress energy 
tensor Ta 13 so that the conservation equations are 

V',d' = 0 (3.16) 

and 
v 

V A TA a = PYaA v'" V I" vA, (3.17) 

wherej =pV, "'(v) = 1, and T[aA yf3JA = O. Equation (3.16) is 
the matter conservation (continuity) equation, (3.17) com
prises energy and momentum conservation. 7 

For a perfect fluid 

(3.18) 

where we consider the internal energy per unit mass E and 
the pressure p as functions of P, related by p = p 2dddp. 
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As mentioned already we can consider Eqs. (3.17) for 
the perfect fluid also as the field equations for the variables 
b A (x) if j is of the form (2.6).43 

In fact, the matter part of the Lagrangian (3.4) can be 
generalized to 

u 

2" m = (! PYa{3 vayf3 + Aar - pE)u, (3.19) 

wherej,p, and v are now defined by (2.6) and (2.7) in terms of 
the fields b A (x) and U d4x is the Galilean space-time volume 
element. The Lagrangian 2" m is invariant under the gauge 
transformations (3.14) up to a divergence and it can be shown 
that the Euler-Lagrange equations (with respect to the var
iables b A) are equivalent to (3.17) with ra {3 defined by (3.18). 
No field Lagrangian is known, however, that also yields Eqs. 
(3.15). 

(3 + 1 )-dimensional formalism 

Our next step is to cast this geometrical theory again 
into a (3 + 1 )-dimensional form in a way as similar as possi
ble to the relativistic ADM formalism. However, since a 
Newtonian manifold has a canonical foliation into spacelike 
hypersurfaceslt~ -+M defined bYlt *t/J = Owe have hardly 
any choice but to adopt this time slicing. In fact, if there is to 
be a field of Galilei frames I en l adapted to this foliation as 
the field of Lorentz frames in Sec. 2, then this foliation must 
be the canonical one. 

Using the natural adapted local coordinates (t, x a
) such 

that (}O = dt we have fixed the lapse function N to be the 
constant 1 while Y = Dabea ® eb restricts to the inverse met
ric Y- 1 of the slices. But we can still introduce an arbitrary 
(kinematical) shift vector Yby choosing, like in (2.4), 

(3.20) 

Without loss of generality we can now identify eo with 
the vector u and calculate the general Newtonian connection 
coefficients in this coordinate system according to (3.7) 
where we let F = dA. This gives 14 

~(3 = 0, £"'00 = - va(y2) + r"b [at(Yb + Ab) - abAo], 

(3.21) 

r~b = r"r[ alb (ArJ + YrJ ) + ~ Ybr]' ~c = r%c' 
We observe that it will be convenient to introduce a 

dynamical shift vector 

X: = (ya + r"rAr)aa' 

Ifwe also introduce, in analogy with (2.13), 

Kab: = - ~(Yab - £XYab)' 

then the gravitational field equations (3.15) become 

Rab(Y) = 0, 

V r K ~ - Va K; = 0, 

V2f/J - 41iGp + at K; - £x K; - KrsKrs = 0, 

where 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

f/J: = - Ao + XrAr - ~ A rA r. (3.27) 

Ifwe split the 4-velocity as in (2.14), but using the dyna
mical shift vector 
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v = at + (Va - Xa)aa, (3.28) 

then it is found by a straightforward calculation that (3.16) 
and (3.17) become 

p - £x p + Vr(pvr) - K; P = 0 (3.29) 

and 

p(va - £x Va + vrVr Va) + aa P + paaf/J = 0, (3.30) 

respectively. 
It is possible to replace (3.29) and (3.30) by Hamiltonian 

equations for b A and FA similar to (2.32) and (2.34) which 
can be derived from the matter Lagrangian (3.19). 

It is already clear that the tensor Kab takes the role of a 
second fundamental form of the hypersurfaces (although the 
standard definition of the latter is not available in the Newto
nian case since no surface normal is defined). While the lapse 
function of the relativistic theory is trivial here its dynamical 
role is taken over by the quantity f/J which will be seen to 
coincide in the limit c -+ 00 with the relativistic f/J defined in 
(2.39). Finally it is clear that the relativistic shift vector must 
correspond to the dynamical shift vector of the Newtonian 
theory. 

New variables and the relativistic-Newtonian 
correspondence 

In order to see precisely how the Newtonian equations 
are obtained from the relativistic ones in the limit c -+ 00 we 
now simply have to rewrite Eqs. (3.24)-(3.26) and (3.29), 
(3.30) in terms of variables corresponding to the relativistic 
tensor densities. Define if and yab as in Sec. 2 and let 

(3.31) 

and 

- .- 1/3(IKr -K) 1i ab' - if ) r r ab ab . (3.32) 

We now write the gravitational equations (3.32)-(3.26) in the 
form 

at if - £x if = - i if1r, 

!!It ab: = - Rab + j RYab = 0, 

dY': = - ifR = 0, 

/a: = - 2v2
/
3vr1rra - ifaa 1r = 0, 

at 1r - £x 1r = - j(V2f/J - 41iGp) 

+ 4 -2/3=s1i- + 1 --2 
)if '/I rs 411. 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

It is now obvious that the system of equations (3.33)
(3.38) is the limit forc- 2 

-+ 0 (andN -+ 1) of the correspond
ing relativistic system (2.52)-(2.57). Also the hydrodynami
cal equations (2.43) and (2.44) go over into (3.29) and (3.30) if 
we observe that V = (1 - IvI 2c-2)1/2 and also/tend to 1. (We 
have assumed that all physical and geometrical quantities 
introduced remain regular and that the equation of state is 
Il = pc2 + E(P) with the function E(P) either independent of c 
or having a regular limit for c- 2 -+ 0.) 

4. GEOMETRICAL INTERPRETATION 

Fischer and Marsden have interpreted the canonical 
formalism for general relativity geometrically in terms of 
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symplectic structures on Banach manifolds. (See, for exam
ple, the review paper. 3) We show here how in that framework 
the limit to the Newtonian theory can be understood. This 
formalism is necessarily global, the Banach manifolds not 
being defined without precise asymptotic conditions (except 
for compact.I, where the Newtonian limit will not normally 
exist). We will not discuss the technical analytical aspects 
here, but simply outline the geometrical structure. 

limit of the Hamiltonian structure? 

First we review the relativistic case closely following 
Ref. 3. Let the configuration manifold Q be the set of pairs 
(y, b) where y is a Riemannian metric on .I 44 and b a map 
from .I into B. We still write Q if we parametrize this set 
instead by q = (y,l",b ). Let TQ be the Lrcotangent bundle of 
Q, i.e., the set (q,w) = Wj,l", b A,1Tij,1T,PA) with the pairing 
between Tq Q = ! (k ij, I, B A ) 1 and Tq *Q being given by 

(4.1) 

It follows that Hamilton's equations of motion deriving 
from the action principle (2.25) are equivalent to saying that 
the time flow generator!? on T*Q is given by 

(4.2) 

where nc is the standard symplectic form on the cotangent 
bundle, the map 

1/1 = (c2JY',/"):T*Q-+ C :(.I)XA ~(.I) = :fl, (4.3) 

and Z an arbitrary cross section of T * fl. Here we follow the 
notation of Ref. 3 where C: denotes the set of scalar densi
ties on.I and A ~ the set of I-form densities so that 
Z = (N, X) is a pair consisting of a scalar function and a 
vector field on.I. 

The constraint equations mean that the motion is con
fined to the submanifold46 9 I: = 1/1 - I (0) so that we must 
also have 

(4.4) 

which can, in principle, impose additional restrictions on 
!? But it is well known that in view of (2.37), Eq. (4.4) is 
automatically satisfied in this case. 

On the other hand, the time flow!? on 9 I is still deter
mined only up to arbitrary Z which must be fixed or "fac
tored out" before one obtains the true "space of motions" or 
"space of solutions" or "space of all degrees of freedom." In 
principle, this is done by a generalization of the symplectic 
reduction method of Marsden and Weinstein47 described in 
Ref. 48. In practice, one chooses gauge conditions. The re
sult is a symplectic manifold of the true gravitational degrees 
offreedom X the manifold of maps.I -+ T * B which must be 
further reduced by factoring out the diffeomorphisms on B. 

What happens when we approach the limit c- 2 -+o? 
We have described our phase space Q in terms of quantities 
that all have regular limits and the system of evolution and 
constraint Eqs. (2.32), (2.34), (2.52)-(2.57) transforms cor
rectly into the corresponding Newtonian system for c -+ 00. 

But the gravitational Newtonian system (3.33)-(3.38) is no 
longer of the form (4.2) for a standard symplectic form on a 
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cotangent bundle. Also the map 1/1 used in (4.2) has no regu
lar limit. 

Constraint algorithm for the Newtonian equations 

It appears that even in terms of these carefully chosen, 
and in the limit well-behaved, variables the Hamiltonian 
structure (n c ' 1/1) on T *Q has no Newtonian limit. Neverthe
less the system (3.33)-(3.38) of evolution and constraint 
equations of the Newtonian theory can be studied just like a 
degenerate Hamiltonian system. (See, for example, Gotay 
and Nester.49

) But this is somewhat cumbersome to carry 
out, especially if no gauge conditions are imposed. We will 
simply show how it means that degrees offreedom connect
ed with the conformal 3-metric yj are frozen out. 

The constraints Yl'} = 0 and JY' = 0 must hold for all t 
so that also their time derivatives must vanish. This leads to 
the secondary constraints 

IT . - -1/3"," - _ 3(" " - _ I"'" - ) - 0 ij'-(' V v,1Tij 4 vjv j 1T "jv v,1TYij - (4.5) 

(where the primary constraints have been used). This how
ever, represents an elliptic system for 1T ij when 1T is known 
which will, whenever the asymptotic conditions are such 
that the Laplacian has an inverse, uniquely determine 1T ij in 
terms of 1T. No further condition on 1T arises since the diver
gence of IT ij and the Laplacian of /" a lead to the same equa
tion. 

Gauge conditions 

Of course, all this is unnecessary since one can use non
rotating Cartesian coordinates and put Yab = {jab through
out. Let us see, however, how these coordinate conditions 
follow naturally from the maximal slicing and minimal dis
tortion condition discussed in Sec. 2. Again we assume ap
propriate asymptotic conditions to have an invertible Lapla
cIan. 

The maximal slicing condition has the limit 

so that (4.5) now implies 

1Tij = 0 

and (3.38) now becomes the Poisson equation 

V2<[J = 41TGp. 

(4.6) 

(4.7) 

(4.8) 

The shift vector field X is still arbitrary, however, and 
determines the time derivative of the components Yab of the 
(flat) metric of the time slices. The minimal distortion condi
tion, finally, leads to [see (2.47)] the elliptic equation 

V'V, X j + j ViV, X' = 0 (4.9) 

on Euclidean 3-space which implies X j = 0 if one requires 
that X j fall off sufficiently fast at infinity. 50 

At this stage we have recovered the standard classical 
description of a gravitating perfect fluid. In this form the 
theory admits again a symplectic description, even a (degen
erate) Lagrangian one as was mentioned at the beginning of 
Sec. 3. 
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5. THE LOWEST-ORDER POST-NEWTONIAN 
APPROXIMATION 

LetA ~ (&,p(A ),Tap(A )) or A ~ (yi,u-,1f ,p,Vi>CP' X;) be a 
one-parameter family of solutions of the relativistic field 
equations to a given equation of state € = €(A,p) on a space
time diffeomorphic to JR4 satisfying the appropriate asymp
totic falloff conditions. We assume that for A ~ 0 the solu
tion approaches a given Newtonian solution in the standard 
gauge, i.e., such that for A = 0, 

Yii flat, a,Yij=o, 1fij=O, 1f=0, X;=O, (5.1) 

andp, vi> and cP satisfy (3.1)-(3.3). 
To linearize the equations on the Newtonian back

ground we write 

DF: = aF I ' 
aA A~O 

(5.2) 

where F is any of the above tensor densities describing the 
field. For small positive values, at least, A must be a contin
uous monotonic function of c- I

, so that without loss of gen
erality we can assume that A = c - a (a > 0). With this identi
fication we will now differentiate Eqs. (2.52)-(2.57) with 
respect tOA, put A equal to 0 and use (5.1) and (5.2). It turns 
out that for a > 2 one would get conditions on the Newtoni
an background field rather than on the variations, which is 
not what is wanted. For 0 <A < 2 we get the same system as 
below for A = 2 but without the inhomogeneous terms. We 
will therefore state the linearized equations only for A = 2 
and, moreover, in tensorial form in terms of the variables 

Then they are 

a, cij + 2fjij + 2(VI;8X Jl - j V ,8X 'yi) = 0, 

a,v - V,8X' + ~ 81f = 0, 

~ V'V, cij - Vii V'cJ1, + j V, Vs CTSYij 

(5.3) 

(5.4) 

(5.5) 

- j(V; VjV - j V'V, vYij) = - V; VjCP + j V2CPYij' 
(5.6) 

a,81f + ~(a,cpvscs' + V, VS<PcTS + j a'cpa,v -1V2CPV) 

+ ~(V28<P - 41rGDp) = j kp(<P + € + 3pp-1 + 2IvI2), 

(5.7) 

V,VSCTS+~V'V,v= -kp, (5.8) 

- 2V' q,; - a;D1f = kpv;. (5.9) 

One should add the variations of the matter and mo
mentum balance equations. But it turns out that they simply 
amount to evolution equations for 8p and 8v;. Since it is 
rather arbitrary, how the matter variables and the equations 
of state should vary with c, no insight is gained from looking 
at these equations in such a general framework. We will sim
ply assume that 8p and 8v; are arbitrarily prescribed on some 
initial time slice and that they evolve according to these lin
earized matter equations. 

Some of the above variations may not be truly relativis
tic terms. Variations of the form 8F = £s F where 5' is an 
arbitrary asymptotically vanishing vector field on each time 
slice are simply due to infinitesimal coordinate changes in 
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the Newtonian background. We will factor them out as fol
lows. 

Let, for any dynamical variable F, 

DF = 8F + £s F, 

where the vector field 5' is chosen such that 

cij = eij - 2V(i5' j) + 1V,5',yj 

and 

V, e'; = o. 

(5.10) 

(5.11) 

(5.12) 

Under the asymptotic conditions we assume there is a 
unique such vector field for any cij, namely the solution of the 
elliptic equation 

(5.13) 

(For the precise statement and the proof see Christodoulou 
and O'Murchadha.45

) Explicitly (5.10) means that we put 

v=v+V,5", D<P=D';p+£{;CP, Dp=Dp+£sP, 

DV; = 8~i + £s Vi' (5.14) 

For the variations of 1f ij and 1f which correspond to the time 
derivatives of the metric we choose, however, 

and 

81f = q - ~ V'W" 

where 

(5.15) 

(5.16) 

(5.17) 

(Recall that we work on the flat background metric and that 
a,Yij =0.) 

Equations (5.4)-(5.9) now take the form 

a, eij + 2qij = 0, 

a,v+H=o, 

~ V'V, e;j - j V; VjV = Vi Vj<P, 

a,(q + V'W,) + j(V38<P - 41TG8p 

+ V, V s <PeTS - a'cpa, v - i kpv) 

=! kp(CP + € + 3pp-1 + 2IvI 2), 

V'V,v = - ~ kp, 

Viq-2V'V[,Wij = -kpv;. 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

This system turns out to be consistent and can largely be 
solved explicitly. Differentiating (5.20) with respect to t and 
using (5.18) gives 

V'V,qij-!ViVjq= -vivja,<p, (5.24) 

and from the traces of this we conclude that 

q = 4a, <P. (5.25) 

Equation (5.22) gives V2V = - 12G1Tp = - 3V2<p, whence 

v = - 3<P. (5.26) 

Using (5.25) and (5.26) in (5.24) and (5.20), respectively, we 
see that 

qij = 0 and eij = o. (5.27) 

We decompose now Wi into a gradient and a transverse 
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part,45 

Wi =aiw+ Wi> 
Then (5.23) gives 

VrV r W; = 4aiat <P + kpVi 

(5.28) 

(5.29) 

which determines the transverse part of Wi. Finally Eq. 
(5.21) now takes the form 

V28(P - 41TGo'"p + at v2 W 
= 41TGp(c - <P + 3pp~1 + 21v12) 

- 3(at at <P + ySar <pas <P). (5.30) 

We see that the vector field 5 i and the scalar W can be 
arbitrarily chosen on space-time. Then if8p and 8vi are given 
on an initial time slice all variations are uniquely determined. 
In other words this means that the first-order shift vector 
8X i and a scalar function (instead of the lapse) can be chosen 
freely as we expect since we have not yet imposed any gauge 
conditions. 

The maximal slicing condition requires that 81f = 0, 
whence, by (5.16) and (5.25), 

(5.31) 

which determines Wand therefore Wi uniquely. If also the 
minimal distortion condition is imposed we have Vr V rat5 i 
+ jViar 5 r = 0 and thus at 5 i = O. In this case the first-or

der post-Newtonian approximation is completely deter
mined by the Newtonian background field except for an ar
bitrary time-independent infinitesimal coordinate 
transformation on the flat background. 

If we had chosen A = c~ I all equations for the varia
tions would have been homogeneous and it is easily seen that 
then no nontrivial first-order variations exist. 

We have thus rederived the usual results for the first 
post-Newtonian approximation in a systematic manner and 
in a very flexible form. Instead of imposing the maximal 
slicing and minimal distortion conditions it would still be 
possible to use (four-dimensional) harmonic coordinates. But 
this condition looks much less attractive in our geometrical 
framework although it is compatible with maximal slicing 
on the Newtonian background (only). It also implies that 
Cartesian coordinates must be used in the Newtonian back
ground provided the usual asymptotic conditions are im
posed. 
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Separation of variables and symmetry operators for the neutrino and Dirac 
equations in the space-times admitting a two-parameter abelian orthogonally 
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We show that there exist a coordinate system and null tetrad for the space-times admitting a two
parameter abelian orthogonally transitive isometry group and a pair of shearfree geodesic null 
congruences.in which the neutrino equation is solvable by separation of variables ifand only if the 
Weyl tensor IS Petrov type D. The massive Dirac equation is separable if in addition the conformal 
~actor satisfi~s a certai~ functional equation. As a corollary, we deduce that the neutrino equation 
IS separable In a canomcal system of coordinates and tetrad for the solution of Einstein's type D 
vacuum or electrovac field equations with cosmological constant admitting a nonsingular aligned 
Max~ell field and that the Dirac equation is separable only in the subclass of Carter's [A] 
solutIOns and. the Debever-McLenaghan null orbit solutionAo. We also compute the symmetry 
operators WhICh arise from the above separability properties. 

PACS numbers: 04.20.Jb, 03.65.Ge, 02.20.Km 

1. INTRODUCTION 

Central to the analytic solution of the relativistic hydro
gen atom problem 1.2 stands the fact that in Minkowski 
space-time, the Dirac equation for a central potential is solv
able by separation of variables in spherical coordinates, the 
symmetry operator3 which underlies this separability prop
erty being the total angular momentum operator well known 
to Dirac himself. 4 

In curved space-time, although the separability proper
ties of scalar equations such as the Hamilton-Jacobi and 
Klein-Gordon equations have been studied in detail by 
Carte..s in the physically important situation of a charged 
rotating black hole described by the Kerr-Newman solu
tion, it is only in the last decade that significant progress has 
been achieved in understanding the separability of higher 
spin wave equations. In particular, the separability of the 
Weyl neutrino equation (spin one-halt), Maxwell's equations 
(spin one), and the perturbed Einstein gravitational field 
equations (spin two) has been established in the Kerr back
ground by Teukolsky6 and, using an analogous method, in 
the seven-parameter Plebafiski-Demiafiski background by 
Dudley and Finley.7 All attempts to extend Teukolsky's se
paration method, where previously decoupled single-com
ponent equations are separated, to the Dirac equation for a 
massive charged spin one-half particle were unsuccessful un
til Chandrasekhar8 ingeniously performed separation prior 
to decoupling, establishing the separability of the Dirac 
equation in the Kerr background. Chandrasekhar's result, 
which was immediately extended to the Kerr-Newman 
background by Page9 and ToopiO and to the Kinnersley case 
II vacuum solutions by Guven, II was subsequently analyzed 
by Carter and McLenaghan I2

•
13 who constructed an opera

tor commuting with the Dirac operator in the Kerr-New-

"This work was supported in part by a grant from the National Sciences 
and Engineering Research Council of Canada. 

man background, admitting the separated solutions as eigen
functions with the separation constant as eigenvalue, which 
is the symmetry operator associated to this separability, gen
eralizing the total angular momentum operator existing in 
flat space-time. The symmetry operators for the Dirac oper
ator on an aribtrary curved background were given a tensor
ial interpretation by Carter and McLenaghan 14 and a tensor
ial characterization by McLenaghan and Spindel. 15 The 
symmetry operators for the neutrino operator have recently 
been characterized tensorially by Kamran and McLen
aghan. 16 

The purpose of this paper is to perform a systematic 
study of the separability properties of the neutrino and mas
sive charged Dirac equations and an explicit computation of 
the associated symmetry operators in the class of Lorentzian 
spaces characterized by the existence of a two-dimensional 
abelian group of local isometries acting orthogonally transi
tively and the existence of two geodesic and shearfree real 
null congruences. The motivation behind this choice of 
background lies in a theorem of Debever, Kamran, and 
McLenaghan 17. 18 which gives a canonical form for the met
ric and Maxwell field for the class :D of solutions of Einstein's 
vacuum and electrovac field equations with cosmological 
constant, for Petrov type D, with a nonsingular aligned 
Maxwell field. This canonical form, in which the Einstein
Maxwell equations have been integrated and a single expres
sion for the general solution has been given, 19 is the starting 
point of our study, our aim being to impose only those condi
tions that are required for separability rather than work in 
the explicit form of the integrated solutions. Section 2 is de
voted to the explicit statement of our hypotheses and results. 
Sections 3, 4, 5, and 6 contain the proofs of our theorems. 

2. HYPOTHESIS AND STATEMENT OF RESULTS 

Weare investigating the separability properties of the 
neutrino equation 
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HN¢: = iY'Vk ¢ = 0, 

and the Dirac equation 

(2.Ia) 

H D ¢: = [iY'(Vk - ieA k ) - V~J]¢ = 0, (2.Ib) 

where! Yk J is a set of Dirac matrices associated to a Lorent
zian metricgij'V k denotes the covariant differentiation oper
ator20 on four-spinors corresponding to the choice of Y' 's 
and to the Levi-Civita connection of gij' and where 
A = Ak dxkis a I-form field, in the class of Lorentzian spaces 
admitting a metric of the form 

ds2 = 2(8 18 2 
- 8 3

(
4), (2.2a) 

where 

8 1= (vLT(w,X))-IIZ(w,x)II/2[JW(W)Z(W,X)-1 

X (tldu + m(x)dv) +g-2W(W)-ldw], (2.2b) 

8 2 = (vLT(w,X))-IIZ(w,x)II/2[ W(w)Z(W,X)-1 

X(tldu + m(x)dv) - /g-2W(W)-ldw], (2.2c) 

8 3 = (vLT(w,X))-IIZ(w,x)II/2[X(X)Z(W,X)-1 

X (t2du + p(w)dv) + lX(X)-ldx], (2.2d) 

8 4 = 7P, (2.2e) 

with 

Ak dxk = T(w,x)(2Z(w,X))-1I2[g-2H(w)W(W)-1 

XU8 1+ ( 2) + G(x)X(x)-1(8 3 + ( 4)],(2.2f) 

where 

Z(w,x) = tIP(W) - t2m(x), g = ((1 + F)/2)1/2, (2.3) 

and where tp t2' and/are real constants satisfying ci + t~ 
=I-° and all functions are real valued. 

The Lorentzian spaces whose metric is given by (2.2) 
and (2.3) are characterized21 by the following properties: 

(i) There exists a two-dimensional abelian group oflocal 
isometries acting orthogonally transitively. 

(ii) There exist two geodesic and shearfree real null con
gruences. 

The motivation for the study of the separability proper
ties of Eqs. (2.1) in the Lorentzian spaces whose metric is 
given by (2.2) and (2.3) with the I-form field A = Ak dx k by 
(2.3) lies in the following result: Let ~ denote the class of 
solutions of Einstein's vacuum and electrovac field equa
tions with cosmological constant, which may be written as 

Rij - !Rgij + Agij = FikF} k - };.gijFrsF rs , (2.4a) 

Fik; k = 0, Flij;k I = 0; Fij = 2A lj;i!' (2.4b) 

where we permit the cosmological constant A and the elec
tromagnetic field tensor Fij to vanish, that satisfy the follow
ing conditions: 

HI. The Weyl tensor is everywhere of Petro v type D. 
H2. If the Maxwell field tensor Fij is nonzero, it is nonsingu
lar with its principal null directions aligned with the repeat
ed principal null directions of the Weyl tensor. 
H3. The hypothesis of the generalized Goldberg-Sachs 
theorem is satisfied, insuring that the null congruences asso
ciated to the principal directions of the Weyl tensor are geo
desic and shearfree. 
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Then, we have the following result, proved in Debever, 
Kamran, and McLenaghan (DKM).22 

Theorem 1: For every solution in ~, there exists a sys
tem oflocal coordinates (u,v,w,x) and a null basis of I-forms 
! ()" J such that the metric and self-dual Maxwell field take 
the form 

+ 
F =B(w,x)(8 11\8 2 

- 8 3 1\( 4
), 

(2.5a) 

(2.5b) 

where B is a complex valued function, with the I-forms ()" 
and a real vector potential A given by (2.2) and (2.3). 

The field equations (2.4) have been integrated for the 
class ~ and a single expression has been given in DKM for 
the general solution in the tetrad and coordinates of 
Theorem 1. 

We shall work in the general context of the metric and 
I-form (2.2) rather than in the explicit form of the integrated 
~ solutions, imposing those conditions that are necessary 
and sufficient for separability and subsequently determining 
those subclasses of ~ satisfying the separability require
ments. 

The main results of this paper are given in the following 
theorems: 

Theorem 2: In the Lorentzian space of Theorem 1, the 
neutrino equation (2.Ia) admits, in the Weyl representation, 
an R- separable23 solution of the form 

(
PO) ( e

icrJ 

R I(x)S2(W) ) 
,I. = !I = ei(au +f3vIT 3 / 2z -1/4 e

idJ 
R 2(x)SI(W) 

'f' QO' e-l:1IIR I(x)SI(W) , 

Q I. e - i1ll R2(x)S2(W) 
(2.6a) 

where a and f3 are arbitrary real constants and where 

dYJ = (4Z)-I(tlm'(x)dw + t2p'(w)dx), (2.6b) 

if and only if the Petrov type D condition HI, which insures 
the existence of YJ 24 as given in (2. 6b), is satisfied. 

Corollary: In all space-times in the class ~, the neutrino 
equation (2.Ia) admits, in the Weyl representation, an R
separable solution of the form (2.6a). 

Special cases of our corollary have been obtained using 
a different approach, where starting from the Weyl neutrino 
equation in terms of two-spinors, previously decoupled sec
ond-order equations are separated, by Teukolsky25 for the 
Kerr solution and Dudley and Finley26 for the seven-param
eter Plebanski-Demianski solutions. It should be noted that 
this decoupling prior to separation procedure seems to re
quire either the vacuum ~ equations or all but two of the 
electrovac ~ equations27 rather than the weaker conformal
ly invariant Petrov type D equation appearing in Theorem 2. 
Although Theorem 2 and its corollary deal with the separa
bility of the neutrino equation in ~ and hence could be en
tirely formulated in terms of a single two-spinor, we employ 
a four-spinor formalism to be able to compare the above 
results with the following separability theorems for the mas
sive charged Dirac equation, which may be formulated ei
ther in terms of four-spinors or a pair of two-spinors. 
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Theorem 3: In the Lorentzian space of Theorem 1, the 
Dirac equation (2.1b) admits, in the Weyl representation, an 
R-separable solution of the form given in (2.6a) and (2.6b) if 
and only if: 

(i) The Petrov type D condition (HI)' which insures the 
existence of f!iJ as given in (2.6b), is satisfied. 

(ii) There exist real valued functions h (w) and g(x) such 
that 

(2.7) 

Theorem 3 enables us to characterize those space-times in :tI 
admitting a separable Dirac equation through the following 
corollary. 

Corollary: Within the class :tI of space-times, the Dirac 
equation (2.1b) admits, in the Weyl representation, an R
separable solution of the form given in Eqs. (2.6a) and (2.6b) 
only in Carter's [A] family of solutions and in the Ao null 
orbit solution of Debever and McLenaghan.28 

Our corollary becomes an immediate consequence of 
Theorem 3 once the values of Z, T, and f!iJ as given in DKM, 
which contains the result of the integration of the field equa
tion (2.2) in the canonical (u,v,w,x) class of coordinates of 
Theorem 1, are substituted in Eq. (2.7). Special cases of our 
corollary have been obtained for the Kerr solution by Chan
drasekhar,29 whose approach was subsequently applied by 
Page30 and TOOp31 to show separability of the Dirac equa
tion in the Kerr-Newman solution and Giiven32 in the Kin
nersley case II vacuum solutions. 

There is a well-known connection between separation 
of variables and constants of the motion. In the case of the 
Hamilton-Jacobi equation for the massive charged particle 
orbits, it has been established in DKM that Carter's [A] fam
ily of solutions and theAo null orbit solution are those space
times in :tI where one has separation. This separation ofvar
iables gives rise to a quadratic first integral of the equations 
of motion which implies the existence ofa (O,2)-Killing ten
sor and whose Poisson bracket with the Hamiltonian vanish
es. In the case of the Hamilton-Jacobi equation for the zero 
rest mass particles (null geodesics) it has been shown by Deb
ever and McLenaghan33 (in the electrovac case) and Czapor 
and McLenaghan34 (in the vacuum case) that a separable 
coordinate system exists for every solution in:tl. This separa
tion of variables gives in turn rise to a function on the cotan
gent bundle which is also quadratic in the momenta, whose 
existence yields a (O,2)-conformal Killing tensor, and whose 
Poisson bracket with the Hamiltonian will beproportional to 
this Hamiltonian. 

When studying the motion of test particles in the first
quantized limit rather than in the classical description pro
vided by the Hamilton-Jacobi equation, the connection 
between separation of variables and constants of motion is 
reflected in commutation relations rather than Poisson 
bracket relations (for a general discussion of this point, see 
Carter35). In the case of the Klein-Gordon equation for 
charged (massive or massless) spin zero particles, the separa
bility properties in the class :tl have been studied in detail in 
DKM. The constants of the motion appear there as symme
try operators admitting the separated solutions as eigenfunc
tions with the separation constant as eigenvalue. Explicitly, 
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denoting by HK the massless conjormally invariant Klein
Gordon operator, for which R-separability was established 
in DKM for the entire:tl class, we have a symmetry operator 
Kk defined by 

KK = TUKI(UKxWKW - UKwWKx)T-I, (2.8a) 

where 

UKx = - E2mT-2, UKw = E!pT - 2, UK = UKw + UKx ' 

W Kx = X 2J; + (X2)'Jx + X -2[( - mau + E1aV
)2 

+ ieG( - mau + EIJv )) 

(2.8b) 

+ GX -2(ie( - mau + Etav ) - e2G) + i(X 2)", 
(2.8c) 

W Kw =jW2a; + (f(W2)' - g-2(1 - j2)(pau - E2av ))aw 
+ g-4W- 2 [ - j(pJu - E

2
av )2 

- gZieH(pJu - E2av )] 

- 2- lg- 2 (1 - j2)p'a
u 

+ HW- 2
( - ieg- 2(pJu - e2av ) 

+ e2g-'iH) + U(W 2
)". 

If the wave function takes the R-separable form 

¢(u,v,w,x) = ei(Uu HV)¢I(W)¢2(X)T(w,x), 

(2.8d) 

(2.8e) 

the symmetry operator Kk satisfies the eigenvalue equation 

(2.8t) 

where A K denotes the separation constant arising from the 
separation of variables, and the commutation relation 

[KK,HK ) = rKHK, 

where 

(2.8g) 

rK =TUK
1 ![UKx,WKw ] - [UKw,WKw]JT-t, 

(2.8h) 

and where use has been made in the expressions of those :tI 
field equations required for separability. It can be checked 
that in the massive case, one obtains in the subclass of:tl 
where one has separability, that is the Carter [A] and theAo 
null orbit solutions, a symmetry operator which reduces to a 
commuting operator and still satisfies the eigenvalue equa
tion (2.8t). 

Central to the Poisson bracket discussion of the con
stants of the motion for the charged particle orbits in :tI and 
the commutator discussion of the constants of the motion for 
the first-quantized spin zero test particles in :tl, as they arise 
from the separability of the Hamilton-Jacobi and Klein
Gordon equations, stands a lemma, first stated by Carter36 in 
the Poisson bracket case and subsequently employed by 
Carter and McLenaghan37 in the commutator case, that will 
also be applied to the derivation of the symmetry operators 
associated to the separability of the neutrino and Dirac equa
tions in :tI. 

Lemma: Let M and N be matrix differential operators 
and P, PI' P2 be nonsingular matrices not involving any dif
ferentiation operators. Then 
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[P -I(M + N),P -I(PIN - P2M)] 

=P-I[M,P-l(P1 +P2)]N 

- P -I [N,P -l(P1 + P2)]M 

+P- 2(P1 +P2 )[M,N] +P-I([N,PI ] - [M,P2 ] 

-NP-I[PI,P] -MP- l [P2,P]jP- l(M +N). 
(2.9) 

The commutation relation (2.8g) can be deduced from this 
lemma by letting 

P=Uk , PI=UKx ' P2 =UKw ' M=WKx ' N=WKw 
(2.10) 

in Eq. (2.9). 
The separability Theorems 2 and 3 and their corollaries 

give rise to matrix symmetry operators for the neutrino and 
Dirac equations, which we will compute using the above 
Lemma. The expressions of these symmetry operators are 
given in the following theorems. 

Theorem 4: In the single expression given in DKM for 
the class ::3) solutions, in the tetrad and coordinates of 
Theorem 1, let KN be the operator defined by 

KN =SNU Ii I(UNx WNw - UNwWNx)SIi I, 

where 

(2.lla) 

SN 

= T 3/2 diag{ [b 2(ew cos r + k) - i(ex sin r + I)] -1/2, 
[b 2(ew cos r + k) - i(ex sin r + I)] -1/2, 
[b 2(ew cos r + k) + i(ex sin r + I)] -1/2, 
[b 2(ew cos r + k) + i(ex sin r + I)] -1/2l, (2.IIb) 

UNx = T-li(ex sin r + I)diag(I, - 1,1, - 1), (2.llc) 

UNw = T-Ib 2(ew cos r + k )diag(I, - 1, - 1,1), 
(2.lld) 

UN = UNx + UNw , (2.IIe) 

a a a 

LD W N, ~ ( ~ a -L/ 

L- a x 

-Lx+ a a 

a a 
- f.-le(ex sin r + I) 

a 
W -

(

a 

Nw - _ ~;:; 

a 
a 
a 

L+ 
w 

L+ 
w 

a 
a 
a 

(2.llt) 

L x- = 2- 1/2( - iXJx + X-l(E1Jv - mJu) - i2- IX'), 
(2.IIh) 

L:; = 2- l/2(WJw + jg-ZW-1(pJu - E2J v ) + 2- 1 W'), 
(2.lli) 

L;:; = 2- l/2( - fWJw + g-2W- l(pJu - E2J v ) - 2- lfW'). 
(2.1Ij) 

The operator KN has the following properties: 
(i) The operator KN is a symmetry operator for the neu

trino operator HN , that is 

[KN,HN] = rNHN' 

where 

(2.12a) 

r N = S N U Ii 1 { [ U Nx , WNw] - [ U Nw' W Nx Jl S Ii I. 
(2.12b) 

(ii) The R-separable solution (2.6) is an eigenspinor of 
KN with the separation constant 4 N arising from the separa
tion of variables as eigenvalue: 

(2.13) 

Now, for the Dirac equation, we have: 
Theorem 5: In the expression given for the Carter [.4 ] 

solutions and theAo null orbit solution in DKM, which uses 
the tetrad and coordinates of Theorem 1, let KD be the oper
ator defined by 

KD =SDU;;I(UDxWDW - UDwWDxlS;;I, 

where 

SD = T- 3IZSN, UDx = TUNx ' 

UDw = TUNw ' UD = UDx + UDw ' 

(2.14a) 

(2.14b) 

WDx = 

(

f.-le(ex si~n r + I) 

-Dx+ 

D-x 

a 
f.-le (ex sin r + I) 

a 

_ (- if.-leb 2(e~ cos r + k) 

W Dx - -D-
w 

a 

D + =L + -i2- 1/2eX- I G 
x x ' 

D x- = L x- - i2- 1/2eX -IG, 

D:; =L:; _i2-1/2jg-2eW-IH, 

D;:; = L;:; - i2-l/2g-2eW-IH. 

a 
if.-leb 2(ew cos r + k) 

a 
D+ 

w 

(2.14d) 

(2.14e) 
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D+ 
w 

a 
if.-leb 2(ew cos r + k) 

a 

-~;:; ) 
a ' 

- if.-leb 2(ew cos r + k) 

The operator KD has the following properties: 

(2.14c) 

(i) The operator KD commutes with the Dirac operator 

HD : 

(2.15) 
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(ii) The R-separable solution (2.6) is an eigenspinor of 
Ko with the separation constantA D arising from the separa
tion of variables as eigenvalue: 

(2.16) 

Operators commuting with the Dirac operator have 
previously been considered, the first example of which is 
given in fiat space-time by the total angular momentum op
erator 7 38 which is notably associated to the separability in 
spherical coordinates of the Dirac equation for a central po
tential and whose eigenvalues yield quantum numbers. 

First-order operators which commute with the Dirac opera
tor on a curved background were obtained in the Kerr-New
man solution by Carter and McLenaghan,39 using the above 
Lemma in their analysis of Chandrasekhar's separation of 
variables procedure. A tensorial characterization of the op
erators commuting with the Dirac operator on an arbitrary 
curved background was given by Carter and McLenaghan40 

and McLenaghan and Spindel.41 The symmetry operators 
for the neutrino operator on an arbitrary curved space-time 
have been characterized tensorially by Kamran and McLen
aghan.42 

3. PROOF OF THEOREM 2 

The essence of our proof lies in the analysis performed by Carter and McLenaghan43 of Chandrasekhar's separation of 
variables procedure for the Dirac equation in the Kerr space-time. 

In the Newman-Penrose spin coefficient formalism, the neutrino equation (2.1a) reads,44 using the Weyl representation 
for¢, 

(

a 
a 

A+/-l-Y 
- (8" + 1T - a) 

a 
a 

- (0 +p'-r) 

D+,€-p 
"8+p-r 

a 
a 

In the tetrad and coordinates of Theorem 1, we have, letting 

(J 1 = ni dxj
, (J2 = Ii dxi , (J3 = - mj dx

j
, (J4 = - mj dxi , 

the following: 

D + E - P = T2- 1 / 2Z -1/2[ waw + jg-2W- 1(pau - E2av ) 

-lWZ-'E,( -p' + im') + !W' - ~T,wT-IW], 
A - Y + /-l = T2- 1I2Z -1/2[ - fWaw + g-2W- 1(pau - E2av ) 

+ lfWZ-'EI( -p' +im') - !fW' +~fT'wT-'W], 

o +P' - r = T2- 1/2Z -1/2 [ - iXa" +X -1(Elav - maul - ~z -IE2(p' - im') - !iX' + ~iT,,, T-1X], 

"8 - a + 1T = T2-1/2Z -1/2[iXax +x-1(Elav - maul + lXZ -IE2(p' - im') + ~iX' - ~iT,x T-IX]. 

We first perform the four-spinor transformation defined by 

¢=S¢', 

with 

where 

dYJ = (4Z)-I(E}m' dw + E2P' dx), 

the integrability condition of which is satisfied thanks to the Petrov type D condition (Hl).45 
The resulting operator acting on the transformed spinor ¢' is 

S-'H S~ TZ-"'( . ~ 
a e- 2j:5iJL .: eU'L<-) 
0 e- 2j:5iJ L x+ e - 2j:5iJ L w-

N 2.:5iJ L - - e2j:5iJL,,- a a ' e w 

_ e2j:5iJ L / e2j:5iJ L': a a 
r 

where the operators L ,,+ , L ,,- , L .: , and L ,;; are defined by 
Eqs. (2.11). We next mUltiply the operator which acts on the 
transformed spinor ¢' by the nonsingular separating matrix 
U defined by 

( 0 -I a 
W N = US HNS= 

-L';; 

U = Z 1I2T -I diag(e2j:5iJ, _ e2i:5iJ, _ e - 2j:5iJ ,e - 2i:5iJ), (3.5) -Lx+ 

to obtain an operator W N given by 

a L+ 
w 

a -L,,+ 

L-
" 

a 
L+ w a 

1023 J. Math. Phys., Vol. 25, No.4, April 1984 N. Kamran and R. G. McLenaghan 

(3.1a) 

(3.lb) 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4) 

L,,- ) 
-L,;; 

a . 
a 
(3.6) 
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Now, taking into account the existence for all solutions in ::tl 
of a two-parameter abelian group of local isometries,46 
which manifests itself in the form given in Theorem 1 for the 
met rices of the ::tl class by u and v being ignorable coordi
nates, we may write 

(

Fl(W'X)) 
.li(U v W x) = ei(au + f3v) F2(w,x) 
'i" " , Gl(w,x) , 

G2(w,x) 

(3.7) 

where a and f3 are arbitrary constants. 

When the form (3.7) for ¢' is substituted into the trans
formed equation W N¢' = 0, we obtain the following system 
of first-order partial differential equations: 

L :: Gl + L x- G2 = 0, - L :;; Fl + L x- F2 = 0, (3.8a) 

L / Gl + L :;; G2 = 0, - L / Fl + L :: F2 = 0, (3.8b) 

where L / , L x- , L :: , and L:;; denote the operators given 
in Eqs. (2.11) where the derivatives with respect to ignorable 
coordinates a / au and a/au have been, respectively, replaced 
by ia and if3. Following Chandrasekhar,47 we seek separable 
solutions of the form 

Fl(w,x) = R l(x)S2(W), Gl(w,x) = Rl(x)SI(W), 

F2(w,x) = R2(x)Sj(w), G2(w,x) = R2(x)S2(W), 

which, when substituted into the system (3.8), yield 

Rl(x)i,:: SI(W) + S2(w)L x- R2(x) = 0, 

SI(W)i, / Rl(X) + R2(x)i,:;; S2(W) = 0, 

- R I (x)L :;; S2(W) + SI(W)i, x- R2(x) = 0, 

- S2(W)i, x+ Rj(x) + R2(x)i, :: SI(W) = o. 

4. PROOF OF THEOREM 3 

(3.9a) 

(3.9b) 

(3. lOa) 

(3. lOb) 

(3.lOc) 

(3.lOd) 

These relations give then immediately 

L :: SI(W) = AlS2(W), L:;; S2(W) = A3SI(W), (3.11a) 

L x-R2(x) = -AlRl(x), L x-R2(x)=A3R l(x), (3.11b) 

L:;; S2(W) = A2SI(W), L:: SI(W) = A4S2(W), (3.11c) 

L / Rl(x) = - A2R2(x), L / Rl(X) = A4R2(x), (3.lId) 

where AI> A2, A3, A4 are the separation constants, which for 
consistency must satisfy 

(3.12) 

Equations (3.11) are thus equivalent to the system of 
coupled first-order ordinary differential equations 

L :: SI(W) = ANS2(W), L:;; S2(W) = - ANSl(W), (3.13a) 

L x-R2(x) = -ANR1(x), L x+R l(x)=ANR2(x),(3.13b) 

and the proof of Theorem 2 is complete. Note that the first
order system (3.13) can be written as a system of decoupled 
second-order ordinary differential equations which reads as 
follows: 

L :: L :;; S2(W) = - A ;,S2(W), 

L :;; L :: Sj(w) = - A ;,Sj(w), L / L x- Rz(x) = - A ;'R2(x). 
(3.14b) 

It may be noted that one recovers as special cases of Eqs. 
(3.14) TeukolskY's48 decoupled equations in the Kerr back
ground and Dudley and FinleY's49 decoupled equations in 
the Plebaiiski-Demiaiiski background when the metric 
functions appearing in Theorem 1 are appropriately special
ized. 

The first steps of our proof are similar to those of Theorem 2. In the Newman-Penrose formalism. the Dirac equation 
(2.1b) reads,50 using the Weyl representation for ¢, 

- ill e 

( 0 

0 D+"E-p-eAj 8H-a_ieA')C) 0 - ille {} + 1J - T - ieA4 .:i + Jl - r - ieA2 !.I = 0 
(4.1) 

.:i + Il - r - ieA z - (8 + f3 - 1') + ieA3 - ille 
o QO' 0 ' 

- ({) + 1T - a) + ieA4 D+€-p-ieA l 0 - ille (F 0 

where Aa are the components of the vector potential I-form in the basis lea J. Having written Eq. (4.1) with the tetrad, 
coordinates, and vector potential given in Eqs. (2.3), (2.4), (2.5), and (3.1b) we perform, as we did for the neutrino equation, the 
four-spinor transformation defined by Eq. (3.3) and we multiply on the left the Dirac operator S -IHDS acting on the 
transformed spinor ¢' by the separating matrix U given in (3,5) to obtain an operator W D given by 

o D+ 
w 

liJ.e Z IIzT -le2idJ 

D;; 

-Dx-

illeZ l/ZT -Ie - Zid! 
- D:;; (4.2) 

D
x

- ) 

. ZI/~T-l -21d! ' D:: 

where the operators D x+ , D x- , D :: , and D:;; are those giv
en in Eqs. (2.14). 

A necessary condition for the separability of the trans
formed equation W D ¢' = 0 is that each diagonal entry in the 
expression given in Eq. (4.2) for the operator W D split into 
the sum of a function of x and a function of w, in other words 
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o - Ille e 
i 

that there exist real valued functions/(x), g(x), h (w), and k (w) 
such that 

ZI/ZT- 1e2i&J = [f(x)+ig(x)] + [h(w)+ik(w)]. (4.3) 

However, this condition is not sufficient for separability with 
¢' given (following Chandrasekhar) by 
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@
t(X)K2(W)) 

t/J(U,V,W,x) = ei1au + /:Iv) H 2(x)Kt(W) . 
Ht(x)Kt(w) 

2(X)K2(W) 

(4.4) 

Indeed, substituting Eqs. (4.3) and (4.4) into W D t/J' = 0 with 
W D as given by (4.2), we obtain, in the same way in which we 
obtained Eqs. (3.11), the following equations: 

D': Kt(w) - if-te(h (w) + ik (w))Kz(w) = f-ttK2(W), (4.Sa) 

D x- Hz(x) - if-te(f(x) + ig(x))Ht(x) = - f-ttHt(x), (4.Sb) 

D;;; Kz(w) - if-te(h (w) + ik (w))Kt(w) = f-t2Kt(W), (4.Sc) 

D x+ Ht(x) - if-te(f(x) + ig(x))H2(X) = - f-t2Hz(x), (4.Sd) 

D;;; Kz(w) - if-te(h (w) - ik (w))Kt(w) = f-t3Kt(W), (4.Se) 

- D x- H 2(x) - if-te(f(x) - ig(x))Ht(x) = - f-t3H t(X), 
(4.Sf) 

D': Kt(w) - if-te(h (w) - ik (w))Kz(w) = f-t4Kz(w), (4.Sg) 

- D x+ Ht(x) - if-te(f(x) - ig(x))H2(X) = - f-t4H 2(X), 
(4.Sh) 

where D x+ , D x- , D .: , and D;;; denote the operators given 
in Eqs. (2.14) where the derivatives with respect to the ignor
able coordinates a lau and a lav have been, respectively, re
placed by ia and if3. 

Subtracting Eq. (4.Sg) from Eq. (4.Sa), we obtain 

k (w)=c t , (4.6a) 

wherec t is a real constant and adding Eq. (4.Sh) to Eq. (4.Sd) 
we obtain 

(4.6b) 

where C2 is a real constant. Defining now new functions g(x) 
and h (w) by 

g(x) = g(x) + Ct, h (w) = h (w) + Cz, (4.7) 

the condition (4.3) reduces, dropping tildes, to the following: 

Z tl2T -te2i3iJ = h (w) + ig(x), (4.8) 

which along with the Petrov type D condition HI constitutes 
a necessary and sufficient condition for the existence of a 
separable solution of the form given in Eqs. (2.6); indeed, 
substituting Eq. (4.8) into Eq. (4.2) yields, by a consistency 
argument similar to that used for the neutrino equation, the 
following system of coupled first-order ordinary differential 
equations: 

D': Kt(w) - if-teh (W)K2(W) = ADK 2(w), 

D;;; K 2(w) - if-teh (w)Kt(w) = - ADKt(w), (4.9a) 

D x- H 2(x) + f-teg(x)Ht(x) = - ADHt(x), 

D x+ Ht(x) + f-teg(x)H2(X) = ADH2(x). (4.9b) 

This completes the proof of Theorem 3. 
It should be noted that one recovers as special cases of 

Eqs. (4.9) the separated equations ofChandrasekha~t in the 
Kerr solution, of Carter and McLenaghan52 in the Kerr
Newman solution and of Giiven53 in the Kinnersley case II 
vacuum solutions. One also notes that the first-order system 
(4.9) can be written as a system of decoupled second-order 
ordinary differential equations which reads as follows: 
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o 0 if-te (D ;;; h (w)) 0 + 
D;;; D': Kt(w) - D w Kt(w) 

AD + if-teh (w) 

+ (A t + f-t;h (w)Z)Kt(w) = 0, 

o 0 iJJ (D + h (w)) 0 

D + D - K (w) - r'e w D - K (w) 
w w 2 '+' h() W 2 - ""-D If-te W 

+ (A t + f-t;h (W)Z)K2(W) = 0, 

D x- D x+ Ht(x) - f-te(D x- g(x)) D x+ Ht(x) 
- AD + f-teg(x) 

+ (A t - f-t;g(x)2)Ht(x) = 0, 

D x+ D x- H 2(x) - f-te(D x+ g(x)) D x- Hz(x) 
AD + f-teg(X) 

+ (A t - f-t;g(x)Z)Hz(x) = O. 

(4. lOa) 

(4. lOb) 

(4.lOc) 

(4.lOd) 

We again remark that one recovers as special cases of Eqs. 
(4.10) the decoupled second-order equations ofChandrasek
har54 in the Kerr solution, of Page 55 and Carter and McLen
aghan56 in the Kerr-Newman solution, and of Giiven57 in 
the Kinnersley case II vacuum solutions. 

5. PROOF OF THEOREM 4 

The main tool in our proof is the identity (2.9). Ifwe go 
back to Eq. (3.6), we see that we have a splitting 

W N = WNw + W Nx' (S.l) 

where WNw and W Nx are given in Eqs. (2.11). It should be 
noted that except for derivatives with respect to the ignora
ble coordinates a 1 au and a 1 av, WNw depends only on wand 
W Nx depends only on x, moreover it may be readily checked 
that 

[W Nw' W Nx] = O. (S.2) 

Now, if we refer ourselves to the single expression presented 
in Ref. 18 for the general solution of the class Sl) field equa
tions, we have as solution to Eqs. (2.6c) 

f!lJ = (iI4) [In(b 2(CW cos r + k ) - i(cx sin r + I)) 
-In(b 2(CW cos r + k) + i(cx sin r + I))], (S.3) 

which implies that the matrix UN' obtained upon substitu
tion of f!lJ's expression (4.3) into the definition (3.S) ofthe 
matrix U, splits as follows 

UN = UNw + UNx , (S.4a) 

with U Nw and U Nx given by Eqs. (2.11). 
Also, one checks immediately that 

[UNw,UNx ] = O. (S.4b) 

Thus, if we set in the identity (2.9) 

P= UN' Pt = UNx ' P2 = UNw ' M = WNx ' NNw'(S,S) 

we obtain part (i) of Theorem 4, thanks to Eqs. (5.2) and (S.4). 
To prove part (ii) of Theorem 4, we proceed as follows. Equa
tions (3.13) are equivalent, using Eqs. (3.9), to the following 
relations: 

i .: F2(w,x) = AN Gz(w,x), i x+ F\(w,x) = ANG2(w,x), 
(S.6a) 

i.: Gt(w,x) = ANFt(w,x), i x+ Gt(w,x) = ANFz(w,x), 
(S.6b) 
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i x- Gz(w,x) = - ANFI(w,x), i;; Gz(W,x) = - ANFz(w,x), 
(5.6c) 

i x- Fz(w,x) = - ANGI(W,X), i;; FI(w,x) = - ANGI(w,X). 
(5.6d) 

Now, on account of Eqs. (5.1b) and (3.7), it is easily seen that 
Eqs. (5.6) are equivalent to 

(5.7) 

Equations (5.7) enable us to show as follows that tf is an 
eigenspinor of KN with the separation constant AN as eigen
value. Let us first note that S N as defined in (2.11 b) is ob
tained by replacing §J with its expression (5.3) for the class:D 
solutions in the definition (3.3b) of S. We have then from 
(2.11a), (3.3a), (5.4a), and (5.7): 

KNtf=SU ii I(UNxWNwtf' - UNwWNxtf') 

=ANSU iil(UNx + UNw )¢' =ANtf· 

6. PROOF OF THEOREM 5 

(5.8) 

Ifwe consider the separability condition (4.8) and we 
refer ourselves to the single expression presented in DKM 
for the general solution of the class :D field equations, we see 
that in the tetrad and class of coordinates of Theorem 1, we 
have separability for those solutions with 

T(w,x) = 1, (6.1) 

in the above-mentioned single expression, that is, the Carter 
[A] solutions and theAo null orbit solution listed in the Cor
ollary to Theorem 3. 

Using now Eq. (6.1) along with the expression (5.3) for 
§J and the fact58 that 

Z (w,x) = b 4(ew cos r + k)Z + (ex sin r + I)z, (6.2) 

in the above-mentioned single expression, we see from (4.2) 
that there is a splitting 

W D = W Dw + W Dx' (6.3) 

where W Dw and W Dx are as given in Eqs. (2.14). 
It should be noted that in analogy with the neutrino 

case, W Dw and W Dx depend, except for derivatives with re
spect to the ignorable coordinates a/au and a/au, only on w 
and x, respectively. We also have 

(6.4) 

Now, the matrix UD' obtained upon substitution of §J's 
expression (5.3) and the separability condition (6.1) into the 
definition (3.5) of the matrix U, splits as follows: 

(6.5) 

with UDw and UDx given by Eqs. (2.14). It may then be veri
fied by direct calculation that 

[ U Dw ,U Dx ] = 0, [ U Dw' W Dx ] = 0, [ U Dx ,W Dw] = 0. 
(6.6) 

It is then straightforward to obtain part (i) of Theorem 5 by 
applying the Identity (2.9) with 

P= UD' PI = UDx , Pz = UDw , 

M=WDx , N=WDw , (6.7) 

and using Eqs. (6.4), (6.5), and (6.6). 
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To prove part (ii) of Theorem 5, we note first that Eqs. 
(6.2), (6.1), (5.3), and (4.8) y~ld 

h (w) = b Z(ew cos r + k), g(x) = ex sin r + I, (6.8) 

so that Eqs. (4.9) imply, using Eqs. (3.7), (4.4), and (6.8) that 

h.: Fz(w,x) - ilteb Z(ew cos r + k )Gz(w,x) = ADG2(W,X), 
(6.9a) 

h x+ FI(w,x) + Ite(ex sin r + I)G2(w,x) = AD Gz(w,x), (6.9b) 

h.: G1(w,x) - ilteb Z(ew cos r + k )Fl(W,X) = ADFI(w,x), 
(6.9c) 

h / GI(w,x) + Ite(ex sin r + 1 )Fz(w,x) = ADFz(w,x), (6.9d) 

h x- Gz(w,x) + Ite(ex sin r + 1 )FI(W,X) = - ADFI(w,x), 
(6.ge) 

h;; G2(w,x) - liJ,eb 2(ew cos r + k )Fz(w,x) = - ADFz(w,x), 
(6.9f) 

D x- F2(w,x) +lte(ex sin r + I)GI(w,x) = -ADG1(W,x), 
(6.9g) 

h;; FI(w,x) - ilteb 2(ew cos r + k )GI(w,x) = - AD GI(w,x). 
(6.9h) 

Now, Eqs. (6.9), using the expressions (2. 14c) for W Dw 
and W Dx and Eq. (3.7), are equivalent to 

WDwtf' =ADtf', WDxtf' = -ADtf'· (6.10) 

We then have from Eqs. (2. 14a), (3.3a), (6.5), and (6.10) 

KDtf = SU;; l(UDx WDwtf' - UDw WDxtf') 

=ADSU;;l(UDX + UDw)¢'=ADtf. (6.11) 

Let us finally note that the expression of the operators W Dw 
and WDx verifying the property (6.10) was computed in the 
Kerr-Newman background by Carter and McLenaghan59 

in their analysis of Chandrasekhar's separation of variables 
procedure. 
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The time-asymmetric initial-value problem for N-body systems consisting of N black holes is 
described. The spacelike hypersurface for setting up the initial data is chosen to be the Einstein
Rosen manifol~ with N bridges. An explicit procedure in the form of an infinite series is given to 
construct. solutIons of the momentum constraints on the Einstein-Rosen manifold, starting from 
any s~~utlOn of the momentum constraints in three-dimensional Euclidean space. A sufficient 
condltlo~ for the abso~ute convergence of a wide range of these solutions is derived. In particular, 
the solutIon representmg N black holes with arbitrary momenta and spins is presented. The 
formulation of the Hamiltonian constraint as a boundary-value problem is discussed briefly. 

PACS numbers: 04.20.Jb, 02.90. + p, 97.60.Lf 

I. INTRODUCTION 

The N-body problem has been of interest since the be
ginning of general relativity. However, because of its com
plexity, the study of this problem has been mainly confined 
to situations where perturbation theory or other approxima
tion techniques can be used; i.e., where the speeds of the 
interacting objects are small or gravity is weak. But to under
stand fully the implications of general relativity, the strong
field, high-speed situations do need to be analyzed. An impe
tus to these studies also comes from relativistic celestial 
processes. In the analysis of these situations, the full nonlin
ear equations of general relativity must be solved. 

Recent developments 1.2 show that the solutions can be 
obtained by the Cauchy formulation of these problems, in 
which the first step is to choose a spacelike hypersurface and 
to set up initial data on it satisfying the constraint equations 
of general relativity. 3 The initial data consist of the 3-metric 
and the extrinsic curvature of the initial hypersurface, and 
the energy and momentum densities on it. From this data 
set, the data on a successive hypersurface is obtained by inte
grating the evolution equations numerically. By repeating 
this procedure, the geometry of spacetime is constructed. 

In this paper, I describe the initial-value problem for N
body systems consisting of Nblack holes. The corresponding 
problem for noncollapsed objects will, in general, depend on 
their stress-energy tensor. Instead of choosing a particular 
stress-energy tensor, for this work I bypass this issue by con
sidering black holes (which also simplifies the problem). For 
this system, the initial hypersurface is chosen to be the singu
larity-free and matter-free model of particles proposed by 
Einstein and Rosen,4 i.e., the Einstein-Rosen manifold M N 

(Fig. 1). It consists of two asymptotically flat universes 
(sheets) connected by N bridges (throats). The symmetry 
between the two sheets of this manifold makes the numerical 
integration of the evolution equations particularly conven
ient, since it suffices to evolve the data on just one sheet; the 
evolution on the other sheet follows by symmetry. 

This model was given further attention by Misner5 and 
Lindquist.6 Misner5 solved the initial-value problem on MN 
for N particles momentarily at rest, and Lindquist6 extended 
the solution to the case of N charged particles. Their data 
were originally interpreted as geometric models of particles, 
but later as black holes. All these data were obtained by 

taking the extrinsic curvature of M N to be zero (time sym
metric data), which necessarily yielded particles momentar
ily at rest. Such a data set for two identical black holes was 
evolved numerically by Eppley and Smarr,? who retained the 
full nonlinear nature of the head-on collision of two black 
holes. 

Problems such as the scattering of two spinning black 
holes or the dynamics of a binary system of black holes orbit
ing each other are more interesting. But they would require 
initial data describing holes with arbitrary spins and mo
menta. That is, the extrinsic curvature of M N can no longer 
be taken to be zero. For the case of a single moving and 
spinning black hole, assuming the Einstein-Rosen manifold 
M1 to be conformally flat, Bowen and York8 have explicitly 
solved the momentum constraints and have formulated the 
Hamiltonian constraint as a well-posed boundary-value 
problem. These results are extended to N black holes else
where. 9 The solutions (Kij) of the momentum constraints for 
the problem of Nblack holes have several interesting math
ematical features, and these features, especially the existence 
and convergence properties of the in~nite sum for K jj , are 
the main topics of this paper. In addition to the purely math
ematical and aesthetic reasons, the study of convergence is 

TOP SHEET 

~ 
1 I 

-+1--
~~_-;.-i __ 
! :: : : 

BOTTOM SHEET 

FIG. I. The Einstein-Rosen manifold M N with three bridges (N = 3) and 
with one dimension suppressed. Topologically, it consists of two copies of 
three-dimensional Euclidean spaces (top and bottom sheets) with the interi
ors of N nonintersecting spheres removed and their boundaries identified (as 
indicated by the arrows). These boundaries constitute the bridges connect
ing the two sheets (universes). 
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also motivated by the fact the data will be used in numerical 
work. For such work, the series will be truncated, and one 
would like to have an estimate of the accuracy of such a 
truncation. 

The organization of this paper is as follows: First I de
fine the Einstein-Rosen manifold M N as a point set and de
scribe its differentiable structure in terms of coordinate 
patches. Then I address the question of constructing initial 
data on M N' The data must preserve the symmetry between 
the two sheets of this manifold. The resulting symmetry con
ditions on the data are derived assuming M N to be confor
mally flat. Starting from any solution of the momentum con
straints in the Euclidean space E 3, I give a systematic 
procedure, in the form of an infintie series, to construct solu
tions of the momentum constraints on MN satisfying the 
symmetry conditions. I find a sufficient condition (which is 
not very restrictive) for the absolute convergence of a wide 
range of these solutions and examine its implications for var
ious values of N. The problem of representing N black holes 
with arbitrary spins and momenta is addressed, and finally, 
the remaining part of the initial-value problem, the Hamil
tonian constraint, is discussed briefly. 

II. FORMULATION OF THE PROBLEM 

The initial hypersurface M N and its differentiable struc
ture (which turns out to be analytic, C W) must be described in 
a computationally convenient form. Letp = (pl,p2,p3) rep
resent points in a three-dimensional Euclidean space E 3. 

Draw N noninteresting spheres in E 3 of radii aa and centers 
at Ca (a = 1, ... , N). Then, as point sets, the top sheet Yand 
the bottom sheet Z of M N can be defined as follows (they are 
topologically the same; Fig. 2): 

Y = Z = (pEE3:lp - ca I >aa' a = 1, ... ,N I. 

Let Y = YuB, whereB = ~~ IBa' and Ba 
= (pEE 3: IP - Ca I = aa I. Define Z similarly. Then M N 

= YuZ with boundaries of Yand Z identified. The B 's a 

represent the bridges between the two sheets. 
Having described M N as a point set, I describe its topol

ogy in terms of the basic neighborhoods of its points. Since Y 
is open in E 3, every point yE Y has neighborhoods lying in Y; 
these define its neighborhoods in M N' The same applies to 
every zEZ. The basic neighborhoods of points in B are de
fined as follows. 

LetpER andletB '(p,r)CE 3betheopen ball with center 
p an_d radius r> O. Then BnE '( p,r) is the boundary of Ny (p,r) 
= YnE '(p,r) as well as that of Nz(p,r) = ZnE '(p,r) (Fig. 2). 
Let N (p,r) = Ny (p,r)uNz (p,r) with boundaries identified. 
Then (N (p,r): r> 0 J constitute a collection of basic neigh
borhoods of p. This structure makes M N a topological mani
fold. 

M N is covered with coordinate patches by defining C w_ 

related coordinate maps ¢a' a = 1, ... , N. A particular map 
¢a will cover the two sheets (Yand Z) continuously through 
the ath bridge, and its range will be a subset of E 3 (whose 
points will be labeled as x). Let 

X= (XEE 3:lx-ca l>aa' a= 1, ... ,NI 

and 
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TOP SHEET 

Y 
E3 

B, 

()" • C
2 

B nB'(p,r) 

Ny(p,r) 

BOTTOM SHEET 

Z 
E3 

B, 

c5~ 
• C

2 

BnB'(p,r) 

FIG. 2. A two-dimensional analog of the point sets Yand Z (with N = 2). 
The shaded regions Ny (p,r) and N, (p,r) include BnE '( p,r), their boundary. 

Sa = [xEE 3:lx - Ca 1= aa J, a = 1, ... ,N. 

Also, in this space, define the inversion maps Ja : E 3 - (Ca 1 
_E3-!ca lby 

Ja(x)==Jax=(a~/ra)na +Ca , 

where 

ra = Ix-cal and na = (x-ca)/ra · 

( 1) 

(2) 

These maps are one-one and onto, and they map the regions 
r a > aa and 0 < r a < aa onto each other; hence the name in
version map. Also, J ~ = identity. Thus J a- I = J a . Because 
of these properties, X, Sa' and J a [X]=fa are disjoint sets 
(Fig. 3). So ¢ a's can be defined in such a way that ¢ a [Y] = X, 
¢a[Ba] = Sa' and ¢a' and ¢a [Z] = fa; to be precise, 

if pE(YuBa ), 

if pEZ. 

These maps are homeomorphisms and are analytically relat
ed to each other. Thus M N becomes an analytic manifold. 

The initial-value problem on M N is now equivalent to 
setting up data in the regions (XUS auf a)' representing the 
coordinate patches YuBauZ,a = 1, ... ,N. Those parts ofMN 
on which the patches overlap will receive more than one data 
set. Hence, for consistency, all such overlapping data (that 
are geometric objects) must be related to each other by the 
pull-back map. To formulate these conditions precisely, first 
note that the initial data may be set up on the single set 
X ' ~ ~ I (XuS auf a). Then the bottom sheet Z receives N 
sets of data from fa 's, a = 1, ... , N, whereas all other parts of 
M N receive precisely one. Since fa is (Jax: xEX J, for every 
xEX, the points Jax (a = 1, ... , N) assign data to the same 
point in Z. Hence the consistency requirements on the data 
must be, for every xEX and a, f3 = 1, ... , N, 
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x 

J2

5

• S2 

C2 =-- J 2 53 

I2 

FIG. 3. A two-dimensional illustration ofthe range of the coordinate maps 
l/;a. a = 1,2,3. In this case, three l/;a 's cover M3• X is the region outside all 
spheres, Ia==Ja [X] is the shaded region excludingca , andX' is the union of 
X, the spheres and the shaded regions.Da [Def. (18)] is Sa together with its 
interior. Thus, for example, J2D, is the unshaded circle together with its 
boundary, as shown in the figure. 

(data at (JtJX)) = (tPa °tPtJ- I)*(data at (Jax)) 
= (Ja oJtJ )*(dat at (Jax)). (3) 

Here (tPa 0tPtJ- 1)* is the pull-back associated with the map 
(tPa °tPP- I): XuIr-+XuIa, and Ja oJtJ is the restriction of 

tPa °tPiJ I onto ItJ. 
Now recall that the symmetry between the two sheets of 

the Einstein-Rosen manifold makes it convenient to evolve 
on the computer. For this reason, as well as from the aesthet
ic point of view, the data must also preserve this symmetry. 
That is, the data atYEYand zEZ with (yl,y2,y3) = (ZI,Z2,Z3) 
must be the same or at least closely related (to be made pre
cise). [I distinguish the 3-tuple (zl,z2,r) associated with z as 
an element of Z C E 3 from its coordinates tP a (z)E1 a . 1 make a 
similar distinction for y.] To obtain related data at y and z, 
the data at xEX and (Jax)E1" must also be related, where 
x = tPa (y); [then Jax = tP" (z), since tPa (z) = Ja (Zl ,z2,Z3) = 
Ja (yI,y2,y3) = Ja(x ',X2,X3) = Jax]. SinceJa maps X onto 
la' it is natural to compare the data at x and Jax using the 
pull-back map J ~. Hence the required symmetry conditions 
are, for every xEX and a = 1, ... , N. 

(data at xEX) = ± J~(data at J"x)). (4) 

The minus sign can occur since it gives physically meaning
ful results for some data functions (which may be seen by 
looking at the electric field6 and the extrinsic curvature 10.11 
in this language). Also note that if a geometric object at x is 
proportional to the object at Jax, then the constant of pro
portionality must be ± 1 (since J~ = identity). 

The symmetry conditions (4) incorporate the consisten
cy requirements (3): Since J tJ- I = JtJ, (4) is equivalent to 

(data at (JtJx)) = ± J;(data at xEX). 

Therefore it follows that 

(data at (JtJx)) = ± J ;(data at xEX) 

1030 

= ± J; [ ± J~(data at (Jax))] from (4) 

= (Ja oJtJ )*(data at (Jax)). 
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Thus the initial-value problem is reduced to obtaining the 
data on X' subject to the symmetry conditions (4). 

The data must also satisfy the vacuum constraint equa
tions of general relativity (e = G = 1) 

R + (g- K pq)2 - K Ie ij = 0 
pq IJ ' 

Vj [K ij - g'j(gpqK pq)] = 0, 

where gij and K ij are the 3-metric and the extrinsic curva
ture of M N' R its scalar curvature, and Vj the covariant deri
vative associated withgij . These equations can be simplified 
using the conformal technique, as, for example, in Ref. 12: 
Take tr K gpqK pq=o (maximal initial slice), and make the 
c.9nformal transformationsgij = rp 4gij and K ij = rp - 10K i, 
(Kij = rp -2Kij )· Then the constraint equations become an 
uncoupled system 

'iljKij = 0, 

8(.1rp) = - rp -7KijK ij, 

(5) 

(6) 

where'ilj and.1 are convariant derivative and the Laplacian 
associated with gij' 

For simplicity, 1 shall assume M N to be conformally 
fiat, i.e.,gij = J,j,J = fiat 3-metric. (Unfortunately, the tech
niques described here do not readily adapt to the most gen
eral 3-metric.) Then the initial data reduce to rp and Kij . 
Since the symmetry conditions (4) are applicable only to the 
physical data (gij and Kij)' the corresponding conditions on 
rp and Kij must be derived from the relationsgij = rp ~j and 
K- -2K S 10 F - h d' . ij=rp ij" orgij,t econ ltIonsare 

gij(X) = ± J~ [gpq(J"x)] 

= ± [~(J"XY] [~(JaX)q]gpq(Jax). (7) 
ax' ax' 

From Eqs. (1) and (2) in Cartesian coordinates, it is seen that 

(alaxi)(Jax) P = (aa 1ra)2(8ip - 2n~n~) 

_(a"lra)2(R ~)iP' (8) 

Note that the matrices R ~ are symmetric and orthogonal. 
The sUbscript x inR ~ specifies thatR a are to be evaluated at 
the point x. Then substitution ofgij = rp 48ij in p) gives 

8ij rp4(x) = ± (aa1r,,)4(R ~)ip(R ~)jq8pqrp4(J"x) 

= ± 8ij (aa 1r" )4rp 4(JaX). 

It is now clear that the plus sign must be chosen in (7), for 
otherwise rp would vanish. Then the symmetry conditions on 
rp read: for every xEX and a = 1, ... , N, 

(9) 

Here too, the minus sign is ruled out since it leads to rp-O on 
the bridges Sa (the r" = aa surfaces). 

Next I consider Kij = rp -2K ij' Following the same 
steps as above, and using Eq. (9) with a plus sign gives 

Kij(x) = ± (a"lra)6(R ~)iP(R ~tqKpq(Jax). 

These conditions can be expressed concisely in matrix nota
tion as 

(10) 

for every xEX and a = 1, ... , N. 
Thus the initial-value problem on M N consists of find-
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ing (jJ and Kij on X' satisfying the constraint equations (5) 
and (6) and symmetry conditions (9) and (10). 

III. EXISTENCE OF SOLUTIONS OF THE MOMENTUM 
CONSTRAINTS 

In this section, I shall give a constructive method of 
finding solutions (Kij) of the momentum constraints having 
the symmetry (10). Recall that Kij 's are taken to be tracefree 
and the 3-metric is assumed to be conformally flat. Then, in 
Cartesian coordinates, the momentum constraints (5) take 
the form 

Kij.j = O. (11) 

The matrices R ~ (a = 1, ... , N) are now used to define 
operators!Ra , in terms of which Ki/S satisfying (11) and (10) 
will be constructed. The operators!Ra are defined as follows: 
Let Mi j (x) be a tensor field on E 3. Then 

(12) 

These operators have the following four properties. 
(1) !Ra!Ra =~, the identity operator (no sum over a). 
Proof 

[!Ra(!RaM)] (x) = ± (aa1ra)6R ~ [(!RaM)(Jax)]R ~ 

= ± (aa1ra)6R ~ [ ± (ra 1aa)6 

X R ~"xM (x)R~"x ] R ~ 

=M(x), 

where the facts J~ = identity, R ~ = R ~"x' and (R ~)z = I 
have been used. 

(2) (!RaM)' = !Ra (M'), where M' is the transpose of M. 
Proof 

(!RaM)'(x) = ± (aa1ra)6[ R ~M(Jax)R ~]' 

= ± (aa1ra)6R ~M'(Jax)R ~ 

(since (R ~)' = R ~) 
= [!Ra(M')] (x). 

(3) [tr(!RaM)](x) = ± (aa1rat[(tr M)(Jax)]. 

Proof 

[tr(!RaM)](x) = ± (aa1ra)6tr[ R ~M(Jax)R ~] 

= ±(aalra)6tr[M(Jax)R~R~] 

= ± (aa1rat[(tr M)(Jax)]. 

(4) [(!RaM);j,j] (x) = ±(aalra)8(R~)ip[Mpq.q(Jax)] 
+ 2(a~/r~)n~ [(tr M)(Jax)]. 

Proof 

[(!RaM );j.j ] (x) 

± (JIJx
j
) [(aa1ra )6( R ~ )ipMpq(Jax)(R ~)qj] 

= ± Mpq(Jax)(aIJxj) [(aa 1ra)6(R ~)iP(R ~)qj] 

± (aa 1ra)6(R ~)iP(R ~)qj [(JIJxj)(Jax)']Mp9,S(Jax) 

= + 2(a~/r~ )n~ [(tr M )(Jax)] 

± (aa1r a )8(R ~)ip [Mpq,q (Jax)]. 

From the last three properties it follows that, if Mij(x) is 
symmetric and tracefree, and if Mij,j = 0, then (!RaM) is 
also symmetric and tracefree, and (!R M) .. . = O. Thus if a I}.) 

Mij(x) is symmetric and tracefree, and satisfies the momen-
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tum constraints (11), then for any combination of!Ra 's, say 
!Rp ... !R", (!Rp ... !R"M) is also symmetric and tracefree, and 
satisfied the momentum constraints. 

A combination !R of!Ra 's can now be constructed such 
that !RM satisfies the symmetry conditions (10). First express 
these conditions as K (x) = (!RaK )(x) for all a = 1, ... , N. 
Then!RM must satisfy!RM = !Ra (!RM) for all a. So it suffices 
to find an!R such that!R = !Ra!R for all a. From the fact 
!R a Dta = ~, it is seen that the following definition of!R has 
that property: 

(13) 

where each index a i can take any of the values 1, ... , N, and 
the sum ~ I a, I extends over all finite sequences! ai' ... , amI of 
length m = 1,2, 3, ... , subject to the restriction a i + i #a i • 

To clarify the notation, I shall give explicit forms of!R in 
three special cases. First, if only one particle is present, i.e., 
for N = 1, 

!R=~+DtI' 

For the two-particle (N = 2) case, 

!R = ~ + Dtl + !Rl!R2 + !RI!R2!RI + .. . 

+ Dt z + !RZ!R 1 + !R2!Rl!R2 + ... . 

For the three-particle (N = 3) case, 

!R = ~ + !Rl + !R 1(!R2 + !R3) + !R I!RZ(!R3 
+ !Rtl + !R 1!R3(!R I + !Rz) + ... 

+ !R2 + !R2(!R3 + !Rtl + !R2!R3(DtI 
+ !R2) + !R2!R I(!R2 + !R3) + ... 

+ !R3 + !R3(!R I + !R2) + !R3!R I (!R2 
+ !R3) + !R3!R2(!R 3 + !RI) + .... 

Thus if M is a solution of the momentum constraints, so 
will !RM be. In addition, !RM will also satisfy the symmetry 
conditions (10). However, it must be shown that !RM is con
vergent on X'. To study this problem, I assume M to be a 
symmetric and tracefree solution of the momentum con
straints, and to be of the form 

B N 

M= I Ir,,-PbM~), (14) 
b~lA~1 

where Ph ;;.0 are constants, and the matrices M ~) are smooth 
functions in the region E 3 - u;: ~ 1 ! C a J with the bounded
ness property 

3 

I [(M~)(x))ij] z==tr(M~))Z(x) <A 2 < 00 
i,j~ 1 

for every xEE 3 - u;: ~ 1 ! Ca J, and for alIA's and b's. 
I write the operator !R as a sum of factors of a given 

order: 

(15) 

where @;l = ~Dta , @;2 = ~'!Ra !Ra , @;3 = ~'!R !R!R ... 
and 1;' is the sum 'over all ai 's ~ith'the restricti~'n;; + ~~a:. 
To determine the domain of convergence of!RM, I shall first 
examine each @;mM, (m = 1,2,3, ... ), and then the sum 
(~ + @;l + @;z + ... )M. 

I start with @;4' which consists of N (N - 1)3 terms ofthe 
form !Ra• !Ru , !Ra,!Ra, with a 4 #a3 , a 3 =/=aZ' and a 2 =/=a l • 
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These are the simplest terms that illustrate the arguments to 
be used for subsequent higher-order terms. Now consider 
some particular term in 6 4 , say lR)RJl lR{3lRa' with v#p, 
p#/3, /3 #a; v, p, /3, a fixed. From Definition (12) oflRu' for 
anyxEX', 

[lRylRJl lR{3lRaM ] (x) 

= ± (ajry)6R: [lRJllR{3lRaM] (Jyx)( R:) I 

= (av/rvl~(al'/r,JLR:R i,?' 

X [lR{3lRaM ] (Jl'yx)(R:R i,.x )', 

where Jl'yx==JJl (Jyx) and R i,?' means R I' evaluated at J"x. 
Similarly, (al'/rl')~'.x = a!/IJyx - CJlI6. I continue this pro
cedure and write 

(16) 

with the result 
B N 

[lR"lR" lR{3 lRaM ] (x) = I I (ajry)~(aJl/r!, )~,.x 
b~IA~1 

X (a{3/r{3 )~,,,.x (aa /r a )~",,,.x 

X (r,\ )J- P\RM'!:Va/3.,,,yx)R '. 
a{Jpl r 

(17) 

First consider the coefficient 

(ajry)~ (aJl/rJl )~,.x (a{3/r{3 )~!".x (au/r a )~",,,.x' 

Let 

D,\ = (pEE 3:0 < iP-C,\ I <a,d, ,1= 1, ... ,N. (18) 

Then the closure of D,\ is D,\ = D,\ uS,\ U( C,\ J. Now fix some 
xEX'. Either Ix - c" I;;.a" or Ix - Cy I <avo If Ix - Cy I>a y , 

then JyxED". Hence IJ"x - cp I > aJl since v#p; i.e., 
(al'/rl')},.x < 1. Furthermore, sincep#/3and/3 #a,JJl"xEJJl 
Dv CDy, J{3JlyxEJ{3DJl' and Ja{3Jl"xEJaD{3 (Fig. 3). Similarly, 
ifJx - c,. J <a", thenxEl,. = Jv[X]sincexEX'. HenceJvxEX, 
and thus IJyx - c!' I >al'; i.e., (al'/rJlb,.x < 1. Furthermore, 

Jl'vxElJl CDI" J{3I'"xEJ{3DJl' and Ja{3JlvxEJa_D{3' Thus for ~ny 
xEX', it follows that (al'/rl'b,.x < 1, Jl'vxEDI' , J{3JlyxEJ{3DJl' 
and Ja{3!,vxEJa D{3' 

Now observe that since the spheres S,\ (A = 1, . ." N) are 
nonintersecting, for any u, 7, U#7, 

(dar is the smallest distance between the surfaces of the 
spheres Sa and Sr') Then, for any pEDI' and for /3 #p, 

a{3 a{3 
--~--<----~----
iP - c{31 ICJl - c{31 - aJl 

where 

E = ;~;[ 1 + (daJar)] -I = [1 + ;:~(daJar)] - I, (20) 
a=;t.T C7¥-r 

Here (a{3/r{3)J!,,?' = E < 1, since JJlyxEDIl and p#/3. Similar
ly,(aa/ra)J ,<E<l. 

,,!,V-

Since X' is an open set and c,\EL¥' (A = 1, ... , N), there 
exists a constant p > 0 such that Ix - c" I > p for all A's. Ip 
will, of course, depend on x.) In view of these inequalities, let 
a = Taxa", so that 
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(ay/r,,)~ (al' /rl')L (a{3/r{3 )~",?' (aa/ra )~"",.x 
«a/p)6.1.(E6)2 < 00. (21) 

To o~tain a bound on the term (r,dJ~~:" note that for 
any pEJ aD r' U# 7, iP - c" I > 0 for all A (Fig. 3). In fact, 

E1 min(iP-c"l:pEJaDr' U#7, l<u, 7.A<NJ>0. 

Since Ja{3l'vxEJaD{3 for every xEX', 

(22) 

A bound on the matrix part of (17) can be obtained as 
follows: Since (R;f = I and tr(M~I)2(p) <A 2 < 00 for every 
pEE 3 - ~ = 1 (Co. J, it is seen that 

Hence, for every xEX' and for all i, is, 

I [RM~Va{3Jlvx)R' ];jl <A < 00. 

The inequalities (21 )-(23) are used in (17) to get 

I [lRvlRl' lR{3lRaM ];j(x) I <BNAE'(a/p)6(E6)2 < 00, 

where BN is the number of terms in (14). 

(23) 

The extension of this result to the higher-order terms is 
immediate. For the general term in 6 m , it is seen that 

I [ lRa ... lRa M] (x)I<BNAE'(a/p)6(E6r-2< 00. 
m I I) 

Thus every term in the series lRM is finite onX '. But 6 m 

= ~'lRa .,.Ra consists of N (N - l)m - 1 terms (since 
m , 

a i + 1 #a,). Hence 

I [6m M L(x)I<ABN2(N - I)E'(a/pt[(N - I)E6jm-2. 

From this inequality and the expression (15) for lR, it 
follows that the condition (N - 1 )E6 < 1 guarantees the abso
lute convergence of lRM. Also, if the series lRM is truncated 
beyond the first K + 1 terms, the remainder is seen to be 
smaller than 

f ABN2(N - I)E'(a/p)6[(N - I)E6]m-z 
m~K+ 1 

=ABNZ(N _ I)E'(a/p)6 [(N - I)E6]K~ 1 

1- (N - I)E 

This bound is an estimate of truncation error and should be 
kept in mind when the series is used in numerical work. 

In view of Definition (20) of E, the convergence condi
tion can be reformulated as 

moo 

u,7(dar /ar ) > (N - 1)1/6 - 1, (24) 
a#r 

where dar is the distance between the surfaces of the spheres 
Sa and Sr. Note that for N = 2, (24) is automatically satisfied 
(since all dar > 0). Hence for the problem of two black holes, 
the series lRM is always absolutely convergent. For N = 3, 
min(dar/ar ) > (N - 1)1/6 - 1 = .1225 guarantees the abso
lute convergence oflRM. In particular, if a l = a2 = a3, then 
the condition reduces to min(dur ) > a/8.166. For N = 4, 65, 
and 1000, the corresponding values of (N - )1/6 - 1 are 
0.201,1, and 2.162, respectively. The rate of growth of 
(N - 1)1/6 

- 1 is quite slow, and, thus, the convergence re
quirement (24) is not too restrictive. 

Anil D. Kulkarni 1032 



                                                                                                                                    

IV. APPLICATIONS AND THE CONFORMAL FACTOR 

So far I have not made any specific choice of M ~ I's and 
Ph'S in M. To represent black holes with arbitrary spins and 
momenta, the York solution '2 (in E 3) of the momentum con
straints may be used: 

(2Sa) 

where 

M~I = H Pan~ + naP~ + (nan~ - I)(P~na)] (2Sb) 

and 

M~I = - 3 [na(Sana)' + (Sana)n~). (2Sc) 

P a and Sa are constant vectors and antisymmetric matrices, 
respectively, and (Sana)i=(Sa);jnia. This solution repre
sents N particles at sites Ca (a = 1, ... , N) with linear and 
(spin) angular momentaP~ and Y~ = !€ijdSak Thus 
Sana = na X Ya, the cross product ofthe vectors na and Ya· 
Then M ~I takes the form 

M~I = - 3 [na(na X Ya)' + (na X Ya)n~). (2Sd) 

This choice of M does have the same form as (14), and 

tr(M~'f = (9/2)[ IPa 12 + 2(n~Pa)2] «27/2)IPa 1
2

, 

tr(M~I)2 = 18 [I Ya 12 - (n~ Yaf] <181 Ya 12. 

Hence 

tr(M~I)2<A 2 ").aX[(2712)IP", 12, 18IY",12] < 00. (26) 

Then, provided condition (24) is satisfied, the conclusion is 
that fRM is a smooth solution of the momentum constraints 
for the problem of N black holes with arbitrary spins and 
momenta. 

As a special case, let N = 1 and S, = 0 in (2S); that is, 
M = (3/2~ )[Pln\ + nlP~ + (nln~ - I)(P\ nJ!]. For N = 1, 
the operator fR is -0 + fR,. Thus 

fRM = (-0 + fR ,)M = M + (3a~ /2r~) 
X [Pin; +nIP\ +(I-Snln;)(P;n 1))· 

This solution is the same as the one-body solution (9) of Ref. 
8. If the minus sign is taken, it becomes the Bowen solu
tion, 10.11 which was found from a vector potential as in Ref. 
12. An explicit calculation of K = fRM for the problem of 
two black holes and a discussion of its physical properties 
will be presented elsewhere. 

The conformal factor rp: X' ---+R (R is the set of all real 
numbers) must satisfy the symmetry conditions (9) as well as 
the Hamiltonian constraint (6) withKij = (fRM)ij' Further
more, rp should be smooth, positive and asymptotically equal 
to unity. For the case of a single black hole, Bowen and 
York8 have formulated a boundary-value problem on X (the 
region r,>ad which gives the same result and is convenient 
for obtaining numerical solutions. Its generalization to the 
problem of N black holes is immediate. But I will out line it 
here for the sake of completeness. 

One starts from the Hamiltonian constraint (6) on X' 
and sets up a boundary-value problem on X. Its solution is 
extended to yield rp on X' with the desired properties: Note 
that the spherical polar coordinates (r a' () a' CPa) with their 
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origin at ca can be used to express the symmetry condition 
(9) as 

rp (ra'(}a,CPa) = (aa/ra)rp (a~/ra'(}a,CPa)' (27) 

Differentiating this equation with respect to r a and setting 
ra = aa yields [(arp/ara) + (2aa )-Irp ] ru = aa = O. These 
equations are used as the inner boundary conditions in the 
fomulation of the following boundary-value problem on X: 

8(..::1J) = -KijK i1-7, J>O, 

limJ= 1 (28) 
r (7--- 00 

and 

[(aJ /ara ) + (2aa )-1] ru = au = 0 for all a. 

Conditions which ensure the existence and uniqueness of 
solutions have been discussed by Bowen and York8 and 
York 13. The inner boundary conditions show that the 
bridges Sa are extremal area surfaces. Explicit calculations 
over a wide range of momenta and spins have shown that 
surfaces to be minimal for the one-body problem, 14 and it 
would be interesting to show that they are minimal in gen
eral. The apparent horizons's associated with the data will 
not, in general, coincide with the extremal surfaces Sa, but 
will lie outside them, each with an image on the other sheet. 
This topic is treated for the one-hole problem in Bowen and 
York.8 

To extend the solutionJ of (28) to X', first define 
g: ~= ,Ja[X]---+R by 

g(Jax) = (ra/aa}f(x) (29) 

for every xEX and a = 1, ... , N. Note that g = J on ~ = I Sa' 
Also, g satisfies the Hamiltonian constraint on ~ = 1 J a [X]: 
Choose some point (Jax)EUf = I J", [X]. Then, Eq. (8) implies 

(a/a xl) [g(Jax)] = (aa/ra)2(R ~)ji [ag(s )las i]s= J,,x' 

Since R ~R ~ = I, it follows that 

[ag(s )las i]Ja'< = (ra/aa fiR ~)ij(a/axj) [g(Jax)]. 

From this equation, one obtains 

[..::1g]Ja'< = (ra/aa)4..::1 [g(Jax)] 

- 2(~/a!)n~(a/axi)[g(Jax)]. 

Thus, from Definition (29) of g, one finds 

[..::1g]Ja'< = (ra/aaf[..::1f]x· 

SinceJsatisfies the Hamiltonian constraint, and since the 
Kij's have the symmetry property (10), it is seen that 

8[..::1g]Ja'< = 8(ra/aa)S[..::1JL 

= - (ra/aa)S [KijKij) (x}f-7(X) 
S 12 [ .. 

= - (ra/aa) (aa/ra) KijK 'J) (JaX) 
X (aa/ra)-7g-VaX) 

= - [KijKijg-7ba'<' 

Thus g satisfies the Hamiltonian constraint on u: = I Ja [X]. 
Hence define rp: X' ---+R by 

{
g(X) if xEX, 

rp(x) = . 
g(x) 1f X~=IJa[X]. 

(30) 

Then rp satisfies the Hamiltonian constraint on X' and also 
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has the desired symmetry (9): for xEX, 

lP(x) =f(x) = (aalra)g(Jax) = (aalra)IP(Jax). 

Thus the problem of obtaining the conformal factor IP 
on X' is equivalent to solving the boundary-value problem 
(28) and extending its solution to X' using (29) and (30). The 
advantages of this formulation are that the symmetry condi
tion (27) is automatically satisfied and the boundary-value 
problem (28) is convenient for obtaining numerical solutions. 
Such solutions have been obtained in the case of one black 
hole by York and Piran,14 who also, in this case, determine 
the location of apparent horizon and give estimates of the 
gravitational radiation that could be produced by the hole in 
its evolution. 

From Definition (29) of g expressed in spherical polar 
coordinates (ra' ea, <Pa)' it follows that the inner boundary 
condition in (28) is equivalent to the requirement af lara 
= aglara at ra = aa' Thus the functionsjandg, as well as 
their first radial derivatives, match on the boundary 
u;;~ ISa' 

v. CONCLUSIONS 

I have examined the time-asymmetric initial-value 
problem for N black holes. The spacelike hypersurface for 
setting up the initial data is taken to be the Einstein-Rosen 
manifold with N bridges. Thus the black holes are modeled 
as bridges between two asymptotically fiat universes (sheets). 
I assume the initial 3-geometry to be conformally fiat. Start
ing from any solution of the momentum constraints in three
dimensional Euclidean space, I have given an explicit proce
dure to construct solutions of the momentum constraints 
that preserve the symmetry between the two sheets of the 
Einstein-Rosen manifold. These solutions are in the form of 
infinite series. I have obtained a sufficient condition (which is 
not very restrictive) for the absolute convergence of a wide 
range of these solutions. This analysis also gives an estimate 
of the error involved in truncating these series. The problem 
of specifically representing N black holes with arbitrary 
spins and momenta is discussed. Finally, for completeness, 
the extension to the case of N black holes, of the formulation 
of the Hamiltonian constraint as a boundary-value problem 
is presented. 

The symmetry between the two sheets of the Einstein
Rosen manifold, apart from being of aesthetic value, is also 
of practical importance, for the data on one sheet can be 
deduced from that on the other. Thereby it suffices to evolve 
the data on just one sheet, the evolution of the other sheet 
being identical to the first. It makes the numerical integra-
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tion of the evolution equations particularly convenient. Con
sequently, the initial data representing black holes with lin
ear and angular momenta (spin) can be evolved on the 
computer to study, with a greater reliability, processes such 
as the scattering of black holes, the collapse of the orbit of 
two black holes going around each other, and so on. Since 
these processes are expected to be strong sources of gravita
tional waves,l their study is also important in the program of 
the detection of gravitation waves. Thus the formulation of 
the time-asymmetric data on the Einstein-Rosen manifold 
makes it possible to study a large class of astrophysically 
interesting phenomena. 
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The stationary Einstein-Maxwell equations are rewritten in a form which permits the 
introduction of (Geroch-) multipole moments for asymptotically flat solutions. Some known 
theorems on the moments in the stationary case are generalized to include Einstein-Maxwell 
fields. 

P ACS numbers: 04.20.Jb 

I. INTRODUCTION 

Geroch has given a definition of multi pole moments for 
a static, asymptotically flat solution of Einstein's equations. 1 

His work was generalized to the stationary case by Hansen2 

and to the electrostatic case by Hoenselaers. 3 The present 
paper provides a generalization to the stationary Einstein
Maxwell (SEM) case. 

Geroch's results and conjectures on this subject have 
stimulated a lot of interesting work (see, e.g, Refs. 4 and 5) 
which so far culminated in the proof that a given space-time 
can be uniquely characterized by its moments.6-8 There is 
another paper9 which shows that "in principle," (i.e., modu
lo convergence) a space-time with a given set of moments can 
be found. 

Most of the above-mentioned approaches start with dif
ferent assumptions and use different mathematical tech
niques to establish their special result; a unified description 
is lacking. 

Moreover, it is not yet seen whether any of these ap
proaches can be wedded with the "Theory ofthe axially sym
metric case" (see Ref. 10 for a review) or with nonstationary 
expansions near spatial infinity. 11,12 

On a stationary 4-manifold, the timelike Killing vector 
induces a preferred 3-manifold (the trajectories) of the Kill
ingfie1d), and potentials (the norm and the twist potentiaI13

). 

The introduction of multi pole moments, as described in Ref. 
1, requires the existence of a compactification of this 3-space, 
such that, after a suitable conformal transformation, the 3-
metric and the potentials become analytic in suitable coordi
nates. For the static and stationary gravitational fields one 
already knows that a delicate choice of variables must be 
made to meet these requirements. If moreover, an electro
magnetic field is present, one should, of course, look for 
some "natural" generalization of the stationary variables. 
What "natural" means in this case is the following. 

The variables should be well behaved near spatial infin
ity for every asymptotically flat or NUT stationary Einstein
Maxwell metric (called AFSEM).1t is well known that there 
are general methods for transforming such solutions into 
each other. 10 Accordingly, the potentials must be chosen 
such that the good behavior is preserved under these trans
formations. If there are potentials that transform linearly, 

.) Research supported by "Fonds zur Forderung der wissenschaftlichen 
Forschung in Oesterreich," Project No. 4069. 

they seem to be favorable candidates, since linear combina
tions of well-behaved functions are also well behaved. 

Of particular interest in the present case are Kinners
ley's SU(2, 1) transformations, 14 since they preserve a certain 
3-metric which can be used as "background geometry." 

(The choice of the background is not unique. One might 
be led to use just this one because of the existence of such a 
group.) It is, however, not desirable to linearize the whole 
SU(2, 1) since some of their transformations destroy asymp
totic flatness. In this paper we arrive at a formulation of the 
SEM equations where a U(I,I) group acts linearly on the 
AFSEM solutions. There is not a unique choice of variables 
with this property. Indeed, since U( 1,1) has a quadratic in
variant, one can choose suitable functions of the linearizing 
variables and of this invariant to obtain a new set oflineariz
ing variables. This observation can be used to reduce the 
algebraic complexity of the field equations. The variables 
which are used in this paper are new and seem to be simplest. 
They are members of a one-parameter family of potentials 
which comprises, as special cases, most of the existing multi
pole fields. 

Having obtained an appropriate form of the field equa
tions, one must choose one of the above-mentioned ways4-9 
to deal with the multi poles. The present work provides the 
generalization of Ref. 9, enjoying, of course, the particular 
strengths and weaknesses of this approach. Weare, in es
sence, performing a 1/ r expansion of the potentials in some 
suitable coordinates by counting powers of r and the parity 
of spherical harmonics. The procedure, which is outlined in 
Sec. III (see Ref. 9 for details), is rather easy to handle and 
works with a "weak" definition of asymptotic flatness in 
terms offall-off conditions on the potentials and on the 3-
metric. The drawback of the approach is that we obtain C k_ 

variables, for arbitrary k, near spatial infinity, and no proof 
of analyticity. This means that we do not have access to the 
"uniqueness proofs" as obtained by the more geometric 
method in Refs. 6-8. There should, however, be no funda
mental difficulty in applying also these approaches to the 
SEM equations in the form of Sec. II. 

II. THE FIELD EQUATIONS 

Greek indices take the values 0, 1, 2, 3, Latin indices 
1,2,3. We consider a manifold X, which is topologically 
I X N where lis the t axis and N is diffeomorphic to R3 minus 
a ball. On X we are given a stationary metric 
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(2.1) 

and a stationary electromagnetic field F = a A - a A 
•• JlV v J.L J.l. v' 

AI' = (e, Aj) which satisfy the SEM equations (without 
sources). A, (Ti> e, Ai> and Yjj (the metric on N) are smooth 
functions of x jon N. Tensor indices will be moved with y .. 
and its inverse (y ij). Indices on coordinates will be moved 1J 

with 8ij = 8ij = diag (1, 1, 1) (x j = x j). The covariant deriva
tive with respect to Y ij will be denoted by Di> the covariant 
Laplace operator by Ll (y) = DjD j. The Ricci ten'sor of Y ij is 
defined by D 'Dpj - DjD jaj = Rjdy)a\ where a j is an ar
bitrary vector, and the permutation symbol by 
Eijk = E[ijk J = 0, ± Idet Yij 11/2

• 

The source-free Maxwell equation implies that the vec
tor field 

/; = AE/(DjAk + (TjDke) 

is curl-free, i.e., 

(2.2) 

(2.3) 

It follows that there exists a scalar fieldf such that.lj = D j f 
In terms of the complex potentiallJl = e + if, the source-free 
Einstein equations imply that 

UJ j = -AzE/Dpk +i(IJI*DjlJl-IJIDjlJl*) (2.4) 

is also curl-free: 

DljUJj J = 0 (2.5) 

and gives rise to the existence of another field UJ (UJ j = DjUJ). 
(The detailed calculations leading to (2.2)-(2.5) can be found 
in Israel and Wilson 15). 

Next, we define the Ernst potential 

'f} = A + iUJ - IJIIJI * (2.6) 

and the fields v and w by the ansatz 

1- w v 
'f} = --, IJI= --. 

I+w l+w 
(2.7) 

These fields become identical with the potentials intro
duced by Kinnersley 14 if u is put equal to 1 there. Finally, we 
introduce a complex 2-space whose elements are denoted by 
yA, A = 1,2 with a metric and an E-tensor 

(2.8) 

Capital Latin indices are moved with 1/AB' 
The manifold N with metric Y ji' together with the 2-

vector y A = [v,w] at every point of N, form the arena for the 
subsequent discussion. We arrive at the following form of the 
SEM equations: 

Ll (y)yA = 20 -1(Y~Djyc)DjyA, (2.9) 

where 

and 

These equations can be derived from the Lagrangian 
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2' = Idet YII/Zy ij[ R,j(y) - 20 -Z(ZuZ;r 

-D(iycDil y~)] . (2.13) 

The Lagrangian and the field equations are invariant under 
the replacement 

yA' =LAByB, (2.14) 

where L is a 2 X 2 Lorentz matrix with constant coefficients 

L + 1/L = 1/, DjL =0. (2.15) 

This is true because the vector Zi> whose norm enters the 
Lagrangian (2.13), transforms as Z; = (det L )Zj' Clearly, 
the in variance group is V(I,I). The field equations (2.9) and 
(2.10) are (modulo misprints in Ref. 14) identical with the 
Kinnersley equations if we set u = 1. However, this is an 
incidence; one must not, in general, impose constraints on 
the Kinnersley equations. 

We write some known solutions in the present varia
bles. 

(1) The Kerr solution reads 

yA = [O,m(p + ia cos {} )-1], (2.16) 
Z Z Z Z .'1 

dsz = p - m + a cos v d 2 (2 2 
2 2 2 P + P -m 

p -m +a 

+ a2 COS
Z 

{} )d{) 2 + (p2 _ m 2 + a2 ) sin2 {} dcp z, 
(2.17) 

where (t, P + m,{},cp) are the Boyer-Lindquist coordinates. 
(2) The generalized Papapetrou-Majumdar class 15 

reads 

yA = [w,w], 

ds2 = d"z + "z(d{} 2 + sin2 
{} dcp 2), 

(2.18) 

(2.19) 

where w is an arbitrary Newtonian potential (Llw = 0). 

III. THE ASYMPTOTIC EXPANSION 

In order to state our requirements and our results, we 
start with the following definitions. The latter two are based 
on the "Geroch compactification" of a static space-time. 1 

Definition 1 (asymptoticjlatness): A solution of(2.9) and 
(2.10) is called AFSEM if there exists a coordinate system x j 
on N such that 

(3.1) 

[a field cp(x) is said to be 0 00 (f(r)) ifit is Coo and if there is a 
C'" functionf(r) such that 

Icp(xi)I<lf(r)l, lajcp(xi)I<la~~)1 '''., (3.2) 

where"z: = x jx j .] 

Definition 2 (asymptotic solution): C "'-functions yA Ik I 

(complex) and Yij(k l (real) on N are called asymptotic solu
tions of the SEM equations if there is a coordinate system 
where they fall off like (3.1) and where they satisfy (2.9) and 
(2.10) modulo remainder terms of order OOO(r - (k + 31), i.e., 

Ll (y)yA _ 20 -l(Y~DiyC)DTA = O"'(r-(k +31), (3.3) 

Rij(Y) - 20 -Z(Z(iZA - D(jycD
J
) y~) = 0"'(r- 1k + 31). 

(3.4) 
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Definition 3 (C k -compactification): The manifold AT is 
called C k -compactification of N, if AT consists of N plus a_ 
pointA and if there is a COO-function n and a C k-metric Yij 
on AT such that 

rij = n 2Yij' (3.5) 

n I II = Din I II = (DiDi n - 2rij) I II = O. (3.6) 

Definition 4 (multipole moments)l: Assume thatN has a 
Ck-compactification, and that yA = n -1/2yA extend to 
C k - I-functions on N. 

From yA, sets PAa, ... a (m<.k - 1) of trace-free, sym
metric tensor fields can be defined by (Y denotes the trace
free part with respect to rii) 

pA = yA, (3.7) 

PAa, ... antl =Y[Da,P~, ... an+, 

- !n(2n - l)Ra,a, (r)P~, ... an+ I ]. (3.8) 

Their values at A are called multi pole moments: 

(3.9) 

Our main results read as follows: 
Theorem 1: Let k be an arbitrary integer (;;;>0). Every 

AFSEM solution has a Ck-compactification AT = NuA, 
which admits C k - I-extensions of Y A = n - I/Z Y A to A. 

There exists a coordinate system x i on AT such that 
(a) A is located at Xi = 0, n = r 2; 
(b) r'j and yA have Taylor expansions up to order k and 

k - I, respectively, the remainders fall off like 0 00 (,."+ I), 
0 00

(,." ); 

(c) The Taylor coefficients are uniquely determined by 
the multipole moments only. 

Theorem 2: Let k;;;>O be arbitrary. 
To every given set 1 k = !MA a, ... a,_ "I<.l<.k I ofsym

metric, trace-free matrices there exist a manifold N (R minus 
ball) with Coo fields Y ij Ik I, Y A Ik I which are uniquely deter
mined by the parameters 1 k such that 

(a) Yijlkl, yAlkl are asymptotic solutions of the AFSEM 
equations; 

(b) There is a C k-compactification of N, with C k - I 
fields Y A, whose multipole moments are 1 k' 

The proofs of these theorems are identical with those in 
the stationary case, which is described in detail in Ref. 9, so 
we give only an outline here. 

Outline of proofs of the theorems 

(1) Given some AFSEM solution, we proceed by estab
lishing l/rexpansions of yA, Yij inductively. Equations (2.9) 
and (2.10) can be rewritten in theform..1 y A = "',..1 Y ij = ... , 
with flat-space Laplacians on the left-hand side. We insert 
the known parts of the expansions into the right-hand side 
and invert the Laplacians. This works if we adapt the coordi
nate system in the k th step such that 

A -ail 1" "kl )-OOO( -lk+21) i - Yij - ZUiju Ykl - r . (3.10) 

It is shown in Ref. 9 that the required coordinate trans
formations exist, that they map a neighborhood of A into 
itself, that they do not destroy the forms of yA and Yij up to 
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the known order k, and that the Laplace operators can be 
inverted. Since we are interested in the general solution, we 
must admit a contribution from the homogeneous solution 
in yA and y .. of order r- Ik + II. In yA, these contributions 

lj 

involve the 2k-moments M A a, ... ak; in Y ij' it can be shown that 
they are "pure gauge." 

Having established the expansions, the Ck-compactifi
cation and the Ck-1-fields of Theorem 1 are obtained, as in 
flat space, by inversion on the unit circle (x i = r- 2x i). 

(2) If we are given the moments, we can construct fields 
y A (k I, Y ij Ik I by the prescription which was established in the 
proof of Theorem 1. They are asymptotic solutions of (2.9) 
and (2,10) if we can satisfy the gauge condition (3.10) simulta
neously. This can be shown with the help of the Bianchi 
identities. 

In the coordinate system (3.10), the asymptotic expan
sions of the fields in terms of the multipole moments (3.9) 
start as follows (we chose k = 3): 

(3.12) 

Y A will pick up trace terms in the higher orders. 
We remark that this method of obtaining a l/r expan

sion works (at least) for the following class offield equations. 
Let Y ij be a positive definite, real COO-metric in three dimen
sions and U A some Coo-fields (real or complex). Assume that 
they fall off as in (3.1) and that they satisfy equations of the 
type A (y)UA = FA, Rij(Y) = rij' The right-hand sides of 
these equations should be any finite or convergent infinite 
sum, where each term is some product of the U A, their first 
derivatives, the complex conjugates of these, and of the met
ric. For everyone of those terms, count the total number of 
fields and add the total number of derivatives which occur 
there. The numbers that are obtained in this way should be: 

For every term in FA: Odd and ;;;>5. 
For every term in 'I ij: Even and ;;;>4. 

Moreover, for Theorem 2 to be true, the Bianchi identities 
for yi should not impose constraints on the U A

, i.e., 
D ir ij = ~Dir should be satisfied by virtue of the Poisson 
equations for the U A (this is automatically true if the field 
equations can be derived from a Lagrangian). All these prop
erties can be easily verified for the SEM equations (2.9) and 
(2.10) (one has to expand the e -I in powers of yAy!). 

For any fields Yij and U A which satisfy equations with 
these properties, a treatment along the lines of Ref. 9 is 
straightforward; Definitions 1-4 can be applied, and Theo
rems 1 and 2 hold. 

We remark that [jA and rij are very likely not only 
C k - I (e k ) but, in suitably chosen coordinates, analytic near 
A. However, in the present approach, a proof of this seems to 
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require a rather unnatural procedure; a geometric way to 
establish analyticity as well as the identity of two solutions 
with the same moments would be, e.g., to proceed as in Refs. 
6-8, where these results have been obtained for static and 
stationary solutions. 

IV. THE MUL TIPOLE MOMENTS 

In this section we discuss briefly the Y A -fields and their 
moments. The real (imaginary) parts of v are called electric 
(magnetic) potentials, the real (imaginary) parts of ware 
called mass (angular, dual mass) potentials. There are the 
corresponding four sets of multi pole moments, defined by 
(3.9). For the monopoles and dipoles we employ a proper 
notation: 

Y A 1 A = [M + is, Q + iB ], 

D;yA 1,1 = [M; + iSo Q; + iB;]. 

(4.1) 

(4.2) 

Having established that yA are C k near spatial infinity, 
the same is, of course, true for any analytic function of the 
y A. In particular, the fields 

tPM + itPs = - w(l + vv* - ww*) - a, (4.3) 

tPE + itPB = v(l + vv* - ww*) - a (4.4) 

are, for a = !, ~, 1, generalizations of the potentials intro
duced by Geroch, 1 Hoenselaers,3 and Hansen,2 respectively. 

From the symmetry of the field equations (2.9) and 
(2.10) it is clear that they respect the presence of Band S. 
However, if we pass over to the four-dimensional description 
onXin termsofgpv and Fpv' our topological assumptions on 
X are incompatible with the existence of these monopoles. 
This can be seen from (2.2) and (2.4) which, together with 
Stokes' law, imply 

fA -~dS;=O, (4.5) 

f [A -2W; - i( 4JI * D; 4JI- 4JlD; 4JI *)] dS; (4.6) 

over any closed surface. Inserting the expansions (3.11) and 
(3.12) and taking the limit r-oo of the integrals, it follows 
thatB=S= 0. 

We will now analyze the U(l, l)-invariance of the Eqs. 
(2.9) and (2.10) in terms of the moments. Since Yij is not 
transformed, we can choose some compactification if k, and 
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study the action of a Lorentz matrix L AB on y B. The four 
parameters of U ( 1, 1) correspond, in general, to the four dif
ferent kinds of fields. In terms of the multipole moments this 
means that we may change the kind of the moments (e.g., 
charge a vacuum solution) but, since L is constant, the mo
ments of a certain order are shufHed among themselves only. 

The action of a U( 1, 1) transformation on the multipole 
moments can readily be understood in terms of invariants 
like y! yA, (D; yA )Y!, etc. and in terms of the vector 

Z; = EAByAD;yB = n -IEAByAD;yB = n -IZ; (4.7) 

(see 2.12) which transforms as Z; = (det L )Z;. 
Consider, as an example, the case where we start with 

an uncharged solution (i.e., v = 0) or with a nonmassive 
charge (i.e., w = 0). It follows that Z; = ° in both cases. Now 
apply any U( 1, 1) transformation. Clearly, we stay within the 
subspace characterized by Z; = 0, so the new solution Y ~ , 
has either again v' = 0, or w' = 0, or D;(ln v') = D;(ln w'). If 
we assume, in the latter case, that M' =1= ° and Q ' =1= 0, we may 
take the limit at A of this equation, and if, in addition, 
S' = B' = 0, it follows thatB; = M"IQ 'S;, i.e., the gyro
magnetic ratio is equal to 2. This result was obtained, in a 
nongeometric language, by Reina and Treves. 16 
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We study the motion of a test particle interacting with a class of external fields including torsion, 
curvature, electromagnetic and Yang-Mills fields, using the definition of total energy 
momentum, angular momentum, charge and isotopic spin introduced in a preceding paper. We 
define a set of reduced multipole moments and we show that they give a complete description of 
the density and the flow of the quantities mentioned above. We write explicitly the exact evolution 
equations in terms of the reduced multi pole moments and we show that they are the only 
consequences of the balance equations. 

PACS numbers: 04.20.Me 

1. INTRODUCTION 

The motion of an extended test particle has been studied 
in a preceding paper! taking into account its interaction with 
a large class of geometric fields, including gravitation with 
torsion and curvature, electromagnetic and Yang-Mills 
gauge fields. The approach of that work is inspired by the 
treatment given by Dixon2

•
3 of an extended body in general 

relativity and is based on the balance equations for energy, 
momentum, relativistic angular momentum, electric charge 
and isotopic spin. These quantities are treated in a symmet
ric way and called the components of the n-momentum. 

The componentsPa(s) of the total n-momentum of the 
particle measured with respect to the reference frame shave 
been defined exactly in Ref. 1 in such a way that a linear 
combination of them is exactly conserved whenever the geo
metric fields have a one-parameter symmetry group. In the 
same paper one can also find the exact equations which de
scribe the dependence of the quantities P a (s) on the reference 
frame s. These equations, together with some subsidiary con
ditions which define the center of the particle and some as
sumptions about its internal structure, can be used to de
scribe the motion of the particle. The pole-dipole 
approximation has been treated in detail. 

In the present paper we complete that investigation by 
deriving explicitly the whole multipole expansion. It is 
known2

•
3 that the balance equations imply an infinite set of 

relations between the multi pole moments. We give all these 
relations explicitly and we use them to define a set of "re
duced" multipole moments, which are independent, apart 
from the evolution equations which determine the deriva
tives of the quantitiesPa (s). We show that under very general 
conditions the reduced multipoles give a complete descrip
tion of the density and the flow ofn-momentum and that the 
information contained in the balance equations has been ex
ploited completely. A more detailed treatment can be found 
in Ref. 4. 

Since we are interested in the dependence ofPa on the 
reference frame s, we work in the space Y of all the reference 
frames. We include in the definition of reference frame the 
choice of the internal gauge at the origin; therefore the di
mension of the space Y is n = k + 10, where k is the dimen-

-) Associato all'Istituto Nazionale di Fisica Nucleare. 

sion of the internal gauge group. 
As it has been shown in Refs. 5 and 6, the gravitational 

and the internal gauge fields can be described geometrically 
by means ofn vectorfieldsAa in the space Y.A O, •.. ,A3 repre
sent infinitesimal parallel displacements, A4 , ... ,A9 represent 
infinitesimal Lorentz transformations, and the other fields 
represent infinitesimal internal gauge transformations. We 
also use the differential I-forms uf3 defined by 

(Ll) 
where ia is the internal product operator corresponding to 
the vector field Aa and the structure coefficients F~p (s) de
fined by 

[Aa,Ap] = -F~pAr' (1.2) 

The normal coordinates 5 a(s,s') of the point s with re
spect to the point s' are defined by! 

(1.3) 

where t ---+ exp(tB ) is the one-parameter group of mappings 
generated by the vector field B. They satisfy the differential 
equation 

(1.4) 

We have indicated by La the derivative in the direction of Aa 
with respect to the argument s. We consider also the matrices 
D !l (s,s') introduced to Ref. 1 defined by 

5 Y(s,s')LyD !lIs,s') = 5 Y(s,s')F :0 (s)D ~ (s,s'), (1.5) 

D !l(s',s') = D!l. (1.6) 

Both these quantities are defined if s belongs to a suitable 
neighborhood of s'. 

The density and the flow of the n-momentum of matter 
are described by n differential 3-forms ~ which satisfy the 
balance equations 

(1.7) 

The definition of the total n-momentum suggested in 
Ref. 1 is 

Pals') = ( D t(s,s')r'/, 
jyp(S') 

(1.8) 
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where a'(s') is a three-dimensional integration surface de
fined by 

S a(s,s') = ° for a =1= 1,2,3, 

Isk(s,s')I<1 fork = 1,2,3. (1.9) 

We assume that the parameter I can be chosen in such a way 
that a'(s') crosses the region CZt where the differential forms 
..r;: are not vanishing. A more precise discussion of these 
conditions can be found in Ref. 1. Note that the values 1, 2, 3 
of the indices, which correspond to space translations, playa 
special role in the definition (1. 9). In the following, the in
dices i, j, k take only these values. 

2. THE GENERALIZED MOMENTS 

In order to describe with more detail the density of n
momentum, we generalize the definition (1.8) by introducing 
the functionals 

Pa [ q?,s'] = J. D tis,s') q?rtf, 
:#(s') 

(2.1) 

whereq? is a Coo function of the variables S k (s,s') (k = 1,2,3). 
If the function q? is a monomial, we get the multipole mo
ments. Since we want to also describe the flow of n-momen
tum, we introduce the functionals 

jOa lx,s'] = J D t(s,s')D C(s,s')x 1\ ip rtf, (2.2) 
Bf(s') 

where X is a differential I-form built by means of the varia
bles S k. 

We consider an arbitrary line t ~ s; in the space Y 
parametrized by a variable t. The velocity of the point s; can 
be written in the form 

ds; 0 , 
-=v(t)Ao(s,). (2.3) 
dt 

It has been shown in Ref. 1 that the velocity of a point 

s=s(t,sk)=exp(skAk)s; (2.4) 

of the surface a'(s;) which corresponds to constant values of 
skis given by 

as = VO(t)D C(s,s;)Ap(s). (2.5) 
at 

We consider also the set 

'If/' = u a'(s;) (2.6) 
0<1<to 

and we assume that it is a 4-dimensional submanifold of Y 
parametrized by the coordinates S k and t. This implies that 
the vector field a lat is never tangent to the surfaces .9f(s;), in 
such a way that the vectors a las k and a I at form a basis in 
the tangent spaces of 'If/'. Under these assumptions, we show 
that: 

Proposition 1: The functionals 

(2.7) 

determine completely the restrictions rtflr of the differen
tial forms rtf to the submanifold 'If/'. 
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Proof It is sufficient to show that rtflr vanishes when 
the functionals (2.7) vanish. In fact, in this case from Eq. 
(2.1), since q? is arbitrary, we have 

(2.8) 

and from Eqs. (2.2) and (2.5), since the differential I-form X is 
also arbitrary, we have 

rtf (~, ~, ~) = 0, i,k = 1,2,3. 
at as' as 

(2.9) 

It follows that the differential forms rtf vanish when they are 
applied to three arbitrary vectors tangent to 'If/'. We call the 
functionals (2.7) the "generalized moments." 

Now we consider the derivative of the quantity (2.1) 
along the line t ~ s;: 

~ Pa [ q?,s;] = J VO (t)L 8[ D tis,s;) q?] rtf 
dt .'#(s;) 

+ ( VO (t)D C(s,s;)ip d [D tis,s;) q?rtf]. 
)",#(s;) 

(2.10) 

The last contribution, due to the displacement of a'(s;), has 
been obtained by means of Stokes' theorem and ofEq. (2.5). 
We have indicated by Lethe derivatives with respect to the 
point s'. From now on, we omit the arguments sand s; when 
there is no danger of confusion and we indicate by D t the 
inverse of the matrix D t. 

Since the function q? depends only on the variables S \ 
from Eqs. (2.3) and (2.5) we have 

(2.11) 

Ifwe use this formula, we see after some calculation that the 
condition 

J VO D C D t q?ip 1Jf3 = 0, (2.12) 
.&#(s;) 

where the differential4-forms 1Jf3 are defined by Eq. (1. 7), is 
equivalent to the equation 

:t Pa [ q? ] = VO! - F fa Pf3 [ q? ] + Pf3 [ q?¢%a] 

- jOf3 [ q?xt] - jOa [dq? lj, (2.13) 

where the functions ¢%a and the differential I-forms X tare 
the restrictions to a'(s;) of 

t/J%a = F fa (s') + D : LeD ~ 

+DCDf(Lp D~ -F;/J(s)D~), (2.14) 

xt=Df(LI'D~ -F;/J(s)D~)OJI'. (2.15) 

As a consequence, we have the following result: 
Proposition 2: The equation (2.13) is equivalent to the 

condition 
(2.16) 

Proof From Eqs. (2.12) and (2.5) since the function q? is 
arbitrary, we have 
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(
a a a a) 

'lJp at' as 1 ' as2' as 3 =0 
(2.17) 

and Eq. (2.16) follows. It is clear that Eq. (2.16) implies Eq. 
(2.12). 

In order to analyze with more detail Eq. (2.13), we need 
the following result: 

Lemma: A differential 1-form X in the variables S k can 
be decomposed uniquely in the following way: 

(2.18) 

where the differential form () is "transversal," namely it has 
the form 

()=akdsk with aksk=O. (2.19) 

Proof if we put 

X = bkdS\ (2.20) 

we have 

aksk=(bk - arp)sk=o. (2.21) 
ask 

This differential equation has the general solution 

rp(~) = f bk(a~)~kda + rp (0) (2.22) 

and drp is uniquely determined. 
If we interpret the variables S k as normal coordinates 

on the surface 9P(s;), from Eq. (1.4) we have 

Sk a;k = skAk (2.23) 

and the transversality condition (2.19) takes the form 

skik()=O. (2.24) 

As a consequence of the preceding lemma, we can split 
the functional (2.2) into two independent functionals which 
vanish when their argument X is, respectively, transversal or 
exact: 

j8a [xl = j8a [xl + Jea [xl, (2.25) 

j8a [xl = j8a [drp l, (2.26) 

J8a[Xl =jea[()l. (2.27) 

With this notation we have 
Proposition 3: If Eq. (2.16) holds, the functionals 

Pa [ rp, s;], v8(t )J8a (x,s;), O,t,,;to, (2.28) 

determine completely the differential forms ~11r and sa
tisfy the equation 

d _ 8( FP I' dtPa - v - lia Pp + J8a), (2.29) 

where 

(2.30) 

Proof The differential form i f: is transversal. In fact, 
from Eqs. (2.15) and (1.5) we have 

skik if: = skfj :(Lk D: - Fk<5D~)I8<'(s;) = 0. (2.31) 

As a consequence, we can write Eq. (2.13) in the form 
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v8 j8a [drp] = viii - F fa pp(rp) + Pp [ rp~a] 
- A d 

- j8P [ rpx,n J - d/a [ rp ]. (2.32) 

This equation, together with Eq. (2.25), shows that the func
tionals (2.28) determine the functionals (2.7) and therefore 
the differential forms ~I ?r'. Ifwe put rp = I, we get Eq. 
(2.29). We call the functionals (2.28) the "reduced general
ized moments." 

3. THE LOCAL CASE 

In the preceding section we have used a minimal set of 
assumptions, in order to get a simpler treatment. However, 
in all the physically interesting problems one deals with a 
more specific situation, in which our results can be made 
stronger. First, we take into account the fact that Y is a 
principal fiber bundle over the space-time manifold and 
therefore the structure coefficients have the property5,6 

(3.1) 

where we have indicated by F~p the structure constants of 
the product of the Poincare group and the internal gauge 
group. 

Then we assume that the differential forms ~ are "lo
cal," namely that 

(3.2) 

where the indices r,s,t,u take the values 0, 1,2,3 andeursl is the 
completely antisymmetric Levi-Civita symbol. The locality 
property can also be written in the form 

ia ~ = 0, a>4. 

If we indicate by 

(3.3) 

La = iad + dia (3.4) 

the Lie derivative corresponding to the vector field Aa , from 
the balance equations (1.7) and from Eqs. (3.1) and (3.3) we 
have 

(3.5) 

As a consequence of this equation, the quantities T ~ (s) 
which appear in Eq. (3.2) transform tensorially under Lor
entz and internal gauge transformations of the reference 
frames. 

If the differential forms ~ are known on a given set 'lr', 
Eq. (3.5) permits one to compute them on the larger set 'Jr, 
which is the union of all the fibers which intersect 'lr'. Equa
tions (3.3) and (3.5) show that the differential forms ~ are 
the components of a tensorial form. 7 More briefly, we shall 
say that the differential forms ~ are tensorial. 

If we assume that ~ are the components of a tensorial 
form, even if they do not satisfy the balance equations, after 
some calculation we see that the differential forms 'lJa de
fined by Eq. (1.7) satisfy the conditions 

La 7Ja = - F~a 'lJp, a>4, 
namely they are tensorial too. 

(3.6) 

(3.7) 

It is natural to assume that the line t __ s; has the prop
erty 
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VO(t) > O. (3.8) 

Since at the points s; we have 

a -A 
ask - k, 

(3.9) 

from Eq. (2.3) we see that the n vectors 

i., ~, A, k = 1,2,3, a;;;.4 
at ask a 

(3.10) 

are linearly independent at these points. If the external fields 
are sufficiently weak and the parameter I which appears in 
Eq. (1.9) and depends on the size of the particle is sufficiently 
small, we can assume that the vector fields (3.10) are linearly 
independent at all the points of the set 'Jr defined by Eq. 
(2.6). Under this assumption, the propositions of the preced
ing section can be stated in the following stronger form. 

Proposition 1': If the differential forms r':: are local (re
spectively tensorial), they are completely determined on 'Jr 
(respectively on Jil by the generalized moments (2.7). 

Proof if the generalized moments (2.7) vanish, from the 
preceding assumption and from Eqs. (2.8), (2.9), and (3.3) we 
see that r':: = 0 on 'Jr. If moreover Eq. (3.5) holds, these 
forms vanish also on fr. 

Proposition 2': If the differential forms r':: are tensorial, 
Eq. (2.13) is equivalent to the condition 

T/a = 0 on fr. (3.11) 

Proof From Eqs. (2.17) and (3.6) we see that T/a = 0 on 
'Jr. Then, using Eq. (3.7) we obtain Eq. (3.11). 

Finally, reasoning as in the proof of Proposition I' we 
have the following. 

Proposition 3': If the differential forms r':: are tensorial 
and satisfy the balance equations, they are completely deter
mined on fr by the reduced generalized moments (2.28). 

4. POWER EXPANSION OF THE GEOMETRIC 
QUANTITIES 

In order to find the explicit multipole expansion of Eq. 
(2.30), we have to find the expansion of the quantities (2.14) 
and (2.15) into powers ofthe normal coordinates S a:for a 
given fixed choice of s'. 

If we consider a functionf(s) and we put 

Sh = exp(hsI"A,Js', (4.1) 

we have 

(4.2) 

Note that the normal coordinates S I" of the point s) have to 
be considered as constant and the operators L I" do not act on 
them. Therefore, if we consider the Taylor series with re
spect to the parameter h and we put h = 1, we get 

f(s) = f J, S 1", ••• S I"nL~, ... L ~n f(s'). 
n~O n. 

(4.3) 

This series converges iff is an analytic function of the co
ordinates sl"; iff is only a C 00 function, Eq. (4.3) has to be 
considered as an asymptotic expansion. 

It is useful to introduce the vector field 
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(4.4) 

where the last equality is an immediate consequence of Eq. 
(1.4). The corresponding Lie derivative L R has the properties 

LR Sa = Sa, 

LRdSa = ds a, 

(4.5) 

(4.6) 

LRof = ds a + s(3 FpyOJ Y • (4.7) 

From Eqs. (4.5) and (4.6), we see that the operator LR when 
applied to a product of the quantities S a and ds a multiplies 
it by the number of factors. One can easily see that it has an 
inverse L R 1 in the space of the differential I-forms and in 
the space of the differentiable functions which vanish at the 
origin. 

Ifwe put 

F tIs,s') = s Y(s,s')F :a (s), 
Eq. (1.5) can be written in matrix form as 

LR D=FD. 

(4.8) 

(4.9) 

Its solution satisfying the condition (1.6) is given by the series 
00 

D = I (L R 1 F)n. (4.10) 
n~O 

It is convenient to introduce the notations 

{ ql - II E- [q} - E- 1", E-1"2 E-I"q - /-l1,/-l2""',-q' ~ - ~ ~ ... ~ . (4.11) 

Then, from Eq. (4.8) and the general expansion formula (4.3) 
we obtain 

00 

F tIs,s') = I s [q} if> fqla(S'), (4.12) 
q~1 

where 

(/> ~la(S') = (q ~ I)! L~, ... L ~q_1 F t.)a(s'). (4.13) 

The round brackets indicate the symmetrization with re
spect to the indices enclosed by them. If we substitute Eq. 
(4.12) into Eq. (4.10) we get the power expansion 

00 

D= I I C(ql,· .. ,qn) 
n = 0 q] ... qn>1 

m. m. E-iq,1 E-iqnl 
X'¥iq,I"''¥iqn}~ .... ~ , (4.14) 

where 

C(q), ... ,qn) = [(q) + ... + qn)(q2 + ... + qn)'" qn] -I. (4.15) 

In a similar way, from the differential equation 

LR'jjT= _FT'jjT 

we obtain the expansion 

(4.16) 

(4.17) 

and from Eq. (4.7), which can be written in matrix form as 

LROJ=ds+FOJ, (4.18) 

we obtain 

M. Toller and R. Vaia 1042 



                                                                                                                                    

00 

W = I (L i IF)"ds, (4.19) 
n=O 

namely 
00 

wa = I I C( ql,· .. ,qn,l) 
n~O q, ... q.>1 

X [ 
n" n,,] a t-I q,l t- I q.ldt-f3 (4.20) "'I q,J ... "'I q.1 f3 ~ ... ~ ~. 

From Eqs. (2.14) and (2.15) after some calculations we 
get 

LR tPta =Dts" D~ LyF;p(s)DC, (4.21) 

LR xt = D t s" D ~ LyF;p(s)w P
• (4.22) 

If we substitute Eq. (4.3) into the identity 

L ~ I(s) = 0 (4.23) 

and we use Eq. (4.8) of Ref. 1, we obtain the formula 

00 1 
D~(s,s')Lyl(s) = I -5 "' ... 5". 

n~O n! 

X L ~ L ~, ... L ~. I(s'), (4.24) 

which, in particular, gives 
00 

S" D ~ Ly F;p(s) = I Sill L ~ <PI/) p(s'). (4.25) 
I~I 

Finally, from Eqs. (4.21) and (4.22), using Eqs. (4.14), 
(4.17), (4.20), and (4.25), we obtain the desired power expan
sions 

00 

.I,f3 _ ~ .I,f3 t-Irl 
'f'Oa - £.. 'f'Oalrl ~ 

r= 1 

= I I I I [(-It 
m,n>O 1>1 q,,,.qm>l PI···p,,>1 

X(ql + ... +qm +1+ PI + ... + Pn)-I] 

xC( qW .. ,qm)C (PI"'" Pn) [ <PI qml "'<PI q,l L ~ <PIli 

X n,,1 PII n" ] f3 t-I q,J t- I qml t-1I1t-1 PII t- I p.I '" ... "'I p.1 0 ~ ... ~ ~ ~ ... ~ , 

(4.26) 
00 

X
f3 = ~Xf3 t-Irldf;-O 
a £.. alrlO~ ~ 

r= 1 

xCI ql, ... ,qm)C(PI,. .. ,Pn,l)[ <PI qml '''<PI q,1 L~ <Pili 

X <PIp,) ... <Plp•
J 
]:Slq,l "'5 1 qmlslllsIPII ... sIP.1 dS O' 

(4.27) 

5. THE MUL TIPOLE EXPANSION 

We define the multipo1e moments in terms of the gener
alized moments introduced in Sec. 2 in the following way 

p1rl = Pa[slrl], (5.1) 
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VO j~~i = vijoa [SlrldS i], r;;;'O. (5.2) 

The indices represented by ! rJ take the values 1,2,3. The 
reduced multipole moments are given by the quantities (5.1) 
together with the quantities 

VO J~i = vOJoa [SlrldS i ] 

= vljoa [slrJdsi - _l_d( SlrISi)] 
r+1 

(5.3) 

Since the polynomials form a dense set in the space of the test 
functions defined in the cubes (1.9), the multipole moments 
determine uniquely the corresponding generalized mo
ments. It follows that one can easily restate the results of 
Secs. 2 and 3 in terms of multi pole moments. 

If we substitute Eqs. (4.26) and (4.27) into Eq. (2.30) we 
obtain the multi pole expansion 

I' _ ~ (.I,f3 IrJ f3 -:Irli) JOa - £.. 'f'Oalrl Pf3 - XalrliJOf3 . 
r~ I 

(5.4) 

Complete multi pole expansions of this kind have been ob
tained by Yasskin and Stoeger. 8 Due to the particular defini
tions we have adopted, the formalism presented here has two 
features whose importance has been emphasized by Dix
on. 2

,3 One of them is the introduction of the reduced multi
pole moments, which are not constrained by the balance 
equations. 

The other feature appears when the space Y has a one
parameter symmetry group generated by the vector field 

B=baAa, (5.5) 

which has the property 

[B,Aa] = O. (5.6) 

From this condition we obtain I 

Loba=F~f3bf3, (5.7) 

b aLa <Pili = 0 (5.8) 

and from Eqs. (4.26), (4.27), and (5.4) we obtain 

b a loa = O. (5.9) 

Note that all the terms of the multipole expansion of this 
quantity vanish separately. From Eq. (2.29), (5.7), and (5.9) 
we obtain immediately the conservation equation 

(5.10) 

corresponding to the symmetry group we have considered. 
We see that the conserved quantity is a linear combination of 
the components of the n-momentum. 

If we use Eq. (3.1) and we assume that there is no gravi
tational field, namely that 

F':s = 0, a.;;;;9, r,s.;;;;3, (5.11) 

Eq. (5.4) takes the much simpler form 

I' _ ~ (~ k , ... k/ 8r +_1_ k, .. k,i pr 
J Oa - £.. I Pb 0 I 1 Pb iO 

1>1 + 
__ 1_ -.kl ... k,r) __ l_L L L Fb 

1+1 JOb (I-I)! a k,'" k/_ I k,r' 
(5.12) 
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where the index b takes the value 10, ... , (n - I) and the quan
tities F~s are the strengths of the gauge fields. Note that the 
expression (5.12) is linear in these fields. 

For a general external field, considering only dipole and 
quadrupole terms, Eq. (5.4) can be written in the more ex
plicit form 

I" - kL F (3 1 ':ik L F{3 
JOa - P{3 a kO - '2iO{3 a ik 

+ !pt(LaLi F to + La F fa Ff(J - F faLaFffi) 

- O~~(LaLi F t +! La F faF'fo - F,~La F'fo). 
(5.13) 

Note that this expression is not linear in the gravitational 
fields. 

These formulas, as well as the more general ones given 
above, are written with an unusual compact notation, but it 
is easy to translate them into the familiar tensor language 
based on anholonomic components. It is sufficient to take 
Eq. (3.1) into account and to remember that the quantities 
Fe;. for r,s = 0, ... ,3 and for various values of the index a are 
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the components with respect to the orthogonal frames s; of 
the torsion tensor, the Riemann tensor [see Eq. (2.7) of Ref. 
1], and the strength tensors of the gauge fields. The operators 
L, (r = 0, ... ,3) acting on these components can be interpreted 
directly as covariant derivatives, while the operators La 
(a;?4, ... ,n) are linear transformations of the components 
which represent the infinitesimal generators of the Lorentz 
and the internal gauge groups [see Eq. (2.8) of Ref. 1]. 
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In this paper, we deal with material sources in the nonsymmetric Kaluza-Klein theory. We 
consider phenomenological sources with nonzero fermion current, nonzero electric current, and 
nonzero spin-density tensor. From the Palatini variational principle we find equations for the 
gravitational and electromagnetic fields. We also consider the geodesic equation in the theory and 
the equation of motion for charged test particles. 

PACS numbers: 04.50. + h 

INTRODUCTION 

In this paper, we consider material sources in the non
symmetric Kaluza-Klein theory, i.e., the energy momentum 
tensor of external sources, the fermion current, the electric 
current, and the spin-density tensor of external sources. 

The non symmetric Kaluza-Klein theory) unifies Mof
fat's theory of gravitation2

-4 and electromagnetism. In Ref. 
1, we find vacuum equations in this theory. Here, we work 
with the phenomenological Lagrangian for such a theory. 
The paper is organized as follows. 

In Sec. I, we briefly describe elements of the nonsymme
tric Kaluza-Klein theory. In the second section, we intro
duce material sources and find equations for the gravita
tional and electromagnetic fields in the presence of matter 
with nonzero fermion current and nonzero electric current. 
In the third section, we define a new geometrical degree of 
freedom (a generalized contortion tensor) in a similar meth
od as in the Einstein-Cartan extension of Moffat's theory 
(Einstein-Cartan-Moffat theory, see Ref. 5). Simultaneous
ly, we introduce spin sources. We find equations for the gra
vitational and electromagnetic fields and the Cartan equa
tion in this case. In Sec. IV we deal with the geodesic 
equation in the nonsymmetric Kaluza-Klein theory and 
consider the equation of motion for a charged test particle 
without spin in the theory. 

I. ELEMENTS OF THE NONSYMMETRIC KALUZA
KLEIN THEORY 

Let f be an electromagnetic fiber bundle over space
time E with a projection 1T and a typical fiber U( 1), and let a 
be an electromagnetic connection defined on f. 

We introduce on f a natural frame 

(1.1) 

where A = 2.JG le2 (G is a gravitational constant and e is the 
velocity oflight in a vacuum). For every local section of P, e; 
we have 

e*a =AJl 1-', (1.2) 

where e: P-E and AI-' is a four-potential of electromagnetic 
field in a gauge e. For a curvature of a we have the following: 

fl = da = ~1T*( Fl-'vO I-' A 0 V), (1.3) 

-IOn leave of absence from the Institute of Philosophy and Sociology of 
Polish Academy of Sciences, 00-330 Warsaw, Nowy Swiat 72, Poland. 

where 

FI-'v = al-' Ay - a,AI-' , 

and we have Bianchi's identity 

dfl=O. (1.4) 

Due to (1.4), the four-potential exists. It is, of course, the first 
Maxwell equation. On the space-time E we define a nonsym
metric metric tensor ga (3 such that 

ga(3 =g(a(3) +g[a(3l' 

g g y(3 = g g /3y = oy a/3 /3a a' (1.5) 

where the order of in~ices is important. We define on E two 
connections wl3 and W13 , where 

WI3 = (1' I3Y )0 Y 

and 

(1.6) 

(1.7) 

where W = WyO y = ! [ W~" - W" uy ] 0 y. For the connec
tion wa 

(3' we suppose the following condition: 

(1.8) 

where Q I3Y (f) is the torsion of w13 . In Ref. 1, we also assume 

(1.9) 

where D is an exterior covariant derivative with respect to 
=a 
(i) (3' 

Condition (1.9) is satisfied in Moffat's theory of gravita
tion if the fermion current is zero (see Ref. 4), and (1.9) is 
satisfied by the other connection called A 13 = A I3Y 0 Y if the 
fermion current is not zero. In Refs. 1 and 6, we introduce a 
natural nonsymmetric metrization of the fiber bundle: 

y = 1T*g - (J5 ® (J5 = 1T*(g(a(3) 0 a ® 0/3) - (J5 ® (J5, 

r = 1T*g = 1T*(g(a(3 )oaAO /3), (1.10) 

or 

(
ga(3 I 0) 

rAB = 0 _ 1 . (1.11) 

We introduce, in Ref. I, two connections on P, iiJA B' and 
wt, invariant with respect to the action of the group U(I). 
Now the connection wt does not satisfy the compatibility 
condition for r AB' but a different connection A ~ = A teo e 
satisfies the condition 
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(1.12) 

(1.12a) 

where jj is the exterior covariant derivative with respect to 
the connection A ~, and Q ~c (A ) is the tensor of torsion for 
the connection A ~. One easily finds 

AA = (1T*(A p)+gyaH yp(PI Hpy(jy), (1.13) 
B gaP(Hyp + 2Ppy )(jy ° 

where we have, for A PY' 
= 

gl'v.a - gpvA:;a - gl'pA;" = 0. (1.14) 

For W~ we have, in a similar manner as in Ref. 1, 

W~ = (1T*(WP) +gyaH yp (j51 Hpy(jY). (1.15) 
~P(Hyp + 2Ppy )(jy ° 

Hpy = - H yp is a tensor on E and satisfies the following 
condition: 

g6Pgy6H ya + ga6~YHpy = 2ga6~YPpy 

(see Ref. 1). 
For the connection {jj~, we have the following: 

{jj~ = p y p ~. 
(

1T*(Wa ) +gyaH (j51 H (ja) 

~ p (Hyp + 2Ppy )(j y ° 

(1.16) 

(1.17) 

Thus we have on I! all five-dimensional analogs of quantities 
from Moffat's theory of gravitation (see Refs. 2-4), i.e., W~, 
-A A- A d 
W B, B' an YAB' 

In Ref. 1 we calculate the Moffat-Ricci curvature sca-
lar for W~: 

R (W) = yAB (R CABdW) +!R CCAB(W)), (1.18) 

where R ~CD (W) is the tensor of curvature for the connection 
W~, and we get 

R (W) = R (W) + 8;G (8~ (2(g[I'VlPl'v)2 - H l'aPl'a)). 

(1.19) 

In (1.19), we come back to a normal system of physical units 

and we put in the place of A = 2, A = 2jG-fc2
• We use, in 

Ref. 1, the system in which G = c = 1. R (W) is the Moffat
Ricci curvature scalar for the connection Wp (see Refs. 2 
and 4) and 

= p= = = = 
R =~ (R YaPy(W) + ~R yyaP(W)) 

- R (F) + ~,,[aPl W: 
- )0 [a.p l' (1.20) 

wher~ R ata:6 ( W) is th~tensor <1 curvature for the connec
tion W p, W[a.p 1 = !(Wa.p - Wp,a)' and 

R (F) =gap(R Yapy(F) + ~R yyap(F)) 

i~the M2ffat-Ricci curvature scalar for the connection wp 
[R a py6 (f') is the curvature tensor for the connection wp]. 

II. MATERIAL SOURCES. PALATINI VARIATIONAL 
PRINCIPLE AND FIELD EQUATIONS 

Let us introduce material sources: a tensor of energy
momentum r I'V, a fermion current ~ 1', an electric current 
r, and a phenomenological Lagrangian of material sources 
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L = - (81TG)gl'vT + (81Ta
2)W S I' + 41T j"A (21) 

m c4 - I'V 3 I' - C _ 1" • 

where 

S I' _ ( 3 ) bLm 

- - 81Ta2 bW ' 
I' 

'1' _ ( C ) bLm 

1... - 417' bAI" 

(2.2) 

and AI' is a four-potential of an electromagnetic field. We 
assume that Lm is gauge invariant. This means thatj" is 
conserved: -

(2.3) 

Let us define the Palatini variational principle on the 

manifold I! for the density (,Jr R (W) + Lm) as 

b 1(,JrR(W)-Lm)d 5x=0, vel!, (2.4) 

where y = det(y AB) = - det(ga p) = - 8.: We vary with re
spect to the independent quantitiesgaP ' Wpa , andAfL' After 
simple calculations one gets 

Rap(W) - !gapR (W) = 8;G( i:p + Tap). (2.5) 

~[I'Vl,v = 41Ta2 ~ 1', (2.6) 

gv I'.a - gpvA :;a - g I'pA ;" = 0, (2.7) 

Jl'lfal'= 417' (f+4a2c~a(g[I'VlPl'v) 
C -

(2.8) 

where 

and 

(2.11) 

A :;a is the connection from Moffat's theory of gravitation 
(see Ref. 4) and 

A:;a = F :;a + D :;a(S), (2.12) 

where 

gpv D :a + gl'P D !:v 
= (~1Ta2)S P(gl'a gpv - gl'Pgav + gl'vg[up l)' (2.13) 

Equations (2.5) and (2.6) are equations for the gravitational 
field in the presence of material and electromagnetic sources. 

em 

Ta p plays the role of an energy-momentum tensor for the 
electromagnetic field. Equation (2.7) is a compatibility con
dition for the metric on space-time, and it is usually satisfied 
in Moffat's theory of gravitation (see Ref. 4) if the fermion 
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current is not zero. Equation (2.8) plays the role of the second 
Maxwell equation. Now we have, on the right-hand side of 
(2.8), a sum of three currents:t, (ChT~laPlap(g1 PVlFpv )' and 
41Ta2sa(g1 pvlF/-,v)' The first is a current of external sources, 
the second is that known from the nonsymmetric Kaluza
Klein theory (see Ref. 1), and the third is induced by the 
fermion current. The total electric current 

tot t = t + (C/1T~laPlap(g1 pVlFpvl + 41Ta2sa(g1 PVlFp,,) 

(2.14) 

is conserved: 
tot 

(2.15) 

In a similar manner as in Ref. 1, we have 
em 

If'P Tap = O. (2.16) 

HaP plays the role ofthe second tensor of the electro
magnetic strength, and Eq. (2.11) expresses the relationship 
between both tensors Fa P and H a 8 (see Ref. 1 for more de
tails). 

Let us define the tensor of the electromagnetic polariza

tion MaP' 

HaP = Fap - (41T/c)Ma8' 

It is easy to see that 

Q!p(F) = Q!p(A) = (81T/C)Ma8' 

(2.17) 

(2.18) 

where Q ! p (F ) is a tensor of torsion in the fifth dimension for 
the connection w~ and Q ! p (A ) is a tensor of torsion in the 
fifth dimension for the connection A ~. For the connection 
A ~ we have the compatibility condition (1.12). Thus we get 
(as in Ref. 1) the compatibility condition for A ~ and an inter
pretation of the electromagnetic polarization as the torsion 
in the fifth dimension for the connection A ~. If ~ a = 0, we 

-A A- A get (J)B = B' 

III. SPIN SOURCES 

Let us introduce spin sources to the phenomenological 
Lagrangian (2.1). To do this, we define on E (as in Ref. 5) two 
connections Wand I': 

Wpr = Wpr + "Pr , 

I'Pa = rpr + "Pr' 

(3.1) 

(3.2) 

where "Pr is a tensor field such as 

"Pa = 0, "Pr = - ~8' (3.3) 

"Pr plays the role of a generalized contortion tensor from 
Einstein-Cartan theory. 

It is easy to see that 

(3.4) 

where Wv = ~(W"v" - W:;") = !(W"v" - W" av) = Wv' 
We have 

QAjlA(I') = QAjlA(F) = 0, (3.5) 

where Q A uv (I' ) is a tensor of torsion for the connection I' ~v 
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and Q ~v (f') is a tensor of torsion for the connection F ~v' 
(See Ref. 5 for more details.) 

Let us define connections W ~ and (J)~ on P such that 

W A _ P rP ~ (3.6) 
(

1T*(w
a

)+graH 051H or) 

B - If'P(Hrp + 2FPr)O r 0 ' 

where 

W a wa or ~ -ra or P = 8r ' (J)p = Pr . 

We also define the third connection 

A ~ = (1T*(fl p) + graHrpe 51 H8rO r), 
If' 8 (H rP + 2Fpr )O r 0 

(3.7) 

(3.8) 

(3.9) 

where fl P = fl pre r is a connection on space-time E such 
that 

gpv,,, - gpv fl ::." - gppfl:" = O. (3.10) 

It is easy to see that A ~ satisfies the compatibility condition 
(1.12). Using formulas from Refs. 1 and 5, one easily finds the 
Moffat-Ricci curvature scalar for the connection W~. 

R(W)=R(W)+ 8;G [8~ (2(gIPVlFpvl2_HpaFpa)] 

= R (F) + gPaJll p+ +a-;8 - gPaJllraKrpp 

+ 2 Ipal~ 3 g Ip.al 

+ 8;? [8~ (2(gIPvlFpv)2 - H paFpa ) ], (3.11) 

whereR (W)istheMoffat-Riccicurvaturescalarforthecon
nection Wpr and R JF) is the Moffat-Ricci curvature scalar 
for the connection l' pr' Let us define the Lagrangian for 
material sources such that 

L' =L + (81TG) W" SP" m m c3 /-tv _ u (3.12) 

[see (2.1)], wher~we put in place of Wp, a vector Wp which is 
really equal to Wp. We have (2.2) for L'm and 

( 2) oL' SP"= _c_ ~ SP"= -SP". 
- " 8 G oW'" - " - " 1T pv 

For S P, we have 

( 3 ) oL ' m (3) oLm 
S p = 81Ta2 8Wp = 81Ta2 8W . 

p 

(3.13) 

(3.14) 

Let us define the Palatini-variational principle on the 
manifoldf: 

o i (L'm - [YR (W))d 5x = 0, vCP. (3.15) 

We vary with respect to the independent quantities gpv' 
W~", and A p' After some calculations one gets 

(3.16) 
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~I Itv],v = 41T( a2S It - ~~ S :V) = 41Ta2~ It, 

gvlt,u - gpvA tu - gltpA :" 

= (g pv Ktu + gltP K:" + 8~G g pvg Ity S t'Y). 

alt/falt = 4; (r + 4a2c4"a(glltv]Fltv ) 

+ : ~Iatnatl(gl ItV]Fltv )). 

em 

(3.17) 

(3.18) 

(3.19) 

where Tltv is defined by (2.9), /fait by (2.10), and A ~v by 

(2.12) and (2.13). To be in line with the usual interpretation of 
the Moffat compatibility condition, we suppose that 

gvlt,u - gpvA tu - g ItpA :" = 0, 

and we get 

(3.20) 

gpv Ktu + glt p K:" = - (81TG / c3 )gpvglty S t'Y, (3.21) 

i.e., a generalization of the Cartan equation from the Ein
stein-Cartan-Moffat theory (see Ref. 5). 

Equations (3.17) and (3.19) differ from the analogous 
equation of Sec. II [(2.6) and (2.8)]. The tensorial density S ;:v 
is a spin density, and for a microscopic spin density (of a 
Dirac field or Rarita-Schwinger field), we have 

Sltv=o. _ v (3.22) 

In the case of Mathisson spin (hydrodynamic macroscopic 
spin) one easily checks that 

(3.23) 

where S;:v = uuS It", uvS ltv = 0, S ltv = - SVIt, Uu is a 
four-velocity offtuid, and S ltv is a spin-density tensor in the 
rest frame. Thus we get 

tot 

wherer is defined by (2.14). 

(3.24) 

(3.25) 

Using Eqs. (1.10) and (1.13) from Ref. 5, one transforms 
(3.16) into 

= = 1 = = 81TG ( em eff ) 
Rlta(W) - "2gltaR (W) =""7" Tlta + Tlta ,(3.26) 

where 

eff _ ( C
4

) tI + tI y 
Tlta - Tlta - 81TG (K a ~ It + ; tI - K ay K It tI 

-~ltagYV(KtI: ~y+;tI-Ktlv.5~ytl)), (3.27) 

and ~ tly is defined by (3.21). Thus we get spin-spin interac
tion corrections from Einstein-Cartan-Moffat theory. 

Now it is easy to see that 

{} " A=" 
J.lV = IlV 

(3.28) 

and 

(3.29) 

and the connection A ~ satisfies the compatibility condition 
for r AB on the manifold e· For the polarization tensor Mati' 
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we have the same geometrical interpretation as in Sec. II [see 
Eq. (2.19)]. 

IV. GEODESICS 

In the nonsymmetric Kaluza-Klein theoryl we have 
the following equation for geodesics: 

Du
a 

+ 2U5(~YF +glaY]H )u tl = 0 (4.1) dr ytl ytl ' 

u5 = const (2u5 = q/mo), 

~here q is a charge and mo is the rest mass of a test particle. 
Jj / dr means covariant derivative with respect to wp along a 
curve to which ua(r) is tangent. 

The usual interpretation of the geodesic equation in the 
Kaluza-Klein theory is that (4.1) is an equation of motion for 
a test particle in the gravitational and electromagnetic fields. 

If we have nonzero fermion current sat 0, it is neces
sary to put in the place ofwp the connection A p and we get, 
in the holonomic system of coordinates, 

( 
d 2Xa 

= a dx tl dXY
) 

mo ------:::2 + A I tlYI ----
dr dr dr 

+ q(g'YF + glaYlfl ) dx
tl 

= 0 (4.2) ytl ytl dr . 

Connection A ~ is compatible with the metric r AB' In Mof
fat's theory, this kind of geodesic is called a nonextremal 
geodesic. However, in Moffat's theory, particles move along 
different geodesics (see Ref. 4), i.e., 

d 2x a dx tl dxY 

df2 + (pyJ Tt"dt = O. (4.3) 

Thus we should put in place of A a l tlyl the Christoffel symbol 
(py J for gla til' Finally we get 

( 
d 2Xa dx tI dxY) 

mo df2 + (pyJ Tt"dt 
dx tl 

+ qlrPYF + glaY]H ) -- = 0 
15 ytl ytl dr . (4.4) 

We will consider Eq. (4.4) the equation of motion for a test 
particle in the nonsymmetric Kaluza-Klein theory. The 
connection 

@A = (1T*{!PyJ(/Y) +gyaHytl051 HtlyOY) 
B ~tI(Hyti + 2Ftly )O y 0 

(4.5) 

is not compatible with the metric rAB on e, just as connec
tion wp = (py JOY is not compatible with ga tI on E. In the 
theory with spin sources, particles without spin and fermion 
charge move along geodesics in @~ (as was supposed in Ref. 
5). The problem of motion for spinning particles with fer
mion charge demands more investigation. 
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We stud ~ some properties of the generator of a diffusion process describing the red uced dynamics 
of a .classlCal syste.m weakly co.uple~ t~ an external reservoir. We show that such processes may be 
eqU1v~len~ly .obtamed as classical hmlts of quantum dynamical semigroups derived in the weak 
couphn.g ~lI~lt. We prove that the stationary state is independent of the coupling if and only if the 
reserVOlr IS 10 a state of thermal equilibrium. 

PACS numbers: 05.20.Gg, 02.50.Ga 

1. INTRODUCTION 

In a preceding paper, I a definition of detailed balance 
for a dynamical semigroup was investigated. For the case of 
a quantum dynamical semigroup describing the reduced 
evolution of a spatially confined open quantum system S in 
the weak coupling limit, it was shown that the property of 
detailed balance is closely related to the condition that the 
reservoir R to which S is coupled be in thermal equilibrium 
(the KMS condition). Precisely, if the reference state Pref of 
the reservoir R is such that the reduced dynamics of any 
spatially confined quantum system S weakly coupled to R 
satisfies detailed balance with respect to some faithful nor
mal statep (depending, a priori, on the coupling of S to R ) for 
any admissible coupling, then Pref satisfies the KMS condi
tion at some inverse temperature /3, and P is the canonical 
state e - /3H'/tr e - /3H'. It was also shown that, if detailed ba
lance is not assumed, but the stationary state P is required to 
be independent ofthe coupling of S to R, then detailed ba
lance follows,Pref is KMS, andp is canonical (see also Ref. 2). 

In this paper we are concerned with the problem of the 
extent to which analogous results hold for classical systems 
weakly coupled to classical reservoirs. "The idea of the weak 
coupling limit is that, by some central limit effect, very 
many, but weak collisions should lead to a diffusion type 
evolution" (quoted from Spohn,3 p. 574); i.e., to what is 
called a Fokker-Planck equation in the physical literature 
(see, e.g., Ref. 4). However, a diffusion semigroup always 
satisfies detailed balance (in the sense of Ref. 1) with respect 
to any of its stationary states (up to technicalities; see Sec. 2); 
this circumstance has been also noted by Graham.5 Hence 
detailed balance in the weak coupling limit cannot discrimi
nate between equilibrium and nonequilibrium stationary 
states. 

A more restrictive definition of detailed balance has 
been given in the literature with reference to transformation 
properties of the Fokker-Planck equation under time rever
saI6

•
7

; this is indeed a condition, and not a general property, 
but it may be also satisfied in certain stationary states far 
from thermal equilibrium (Refs. 6, 7 and Sec. 5 below). 

On the other hand, we still expect on physical grounds 
that the requirement of independence of the stationary state 

a) Postal address: Dipartimento di Fisica, Sezione di Fisica Teorica, via Ce
loria 16, 20133 Milano, Italy. 

p of the coupling of S to R will imply the KMS condition for 
R also in the classical case. This requirement can be regarded 
as the condition that R behaves as a heat bath with respect to 
S (compare Ref. 2), and is indeed a stability condition for the 
statepPref of S + R; stability (plus some technical assump
tions) is known to imply the KMS condition both in the 
quantum and in the classical case. 8

-
1O 

In order to substantiate our claim that the heat bath 
property should imply the KMS condition in the classical 
case, we ought to give a rigorous treatment of the weak cou
pling limit for classical system + reservoir models. The diffi
culty of this problem can be appreciated by comparison with 
the amount of technical apparatus which was needed to deal 
with the simpler problem of a classical particle in a weak 
stochastic force field (Kesten and Papanicolaou II). SO we 
have confined ourselves (Sec. 3) to a formal application of the 
weak coupling limit theory of Davies, 12 which is rigorous in 
the case of bounded perturbations. This not being the case 
for classical systems, we have overlooked all the problems of 
convergence of series and interchange of limits; we believe, 
notwithstanding, that our result is essentially correct. We 
feel comforted in this by the fact that the same result is ob
tained by taking the formal classicallimit Ii --+ 0 ofthe gener
ator of a quantum dynamical semigroup obtained in the 
weak coupling limit (Sec. 4). 

We should warn the reader that our results hold only 
for classical systems for which the Liouville operator { .,H S J 

has a pure point spectrum; we suspect that this property may 
be true only for those systems which can be identified with a 
system of independent harmonic oscillators by a canonical 
transformation (possibly up to physically pathological 
cases). 

With all these qualifications, we compute the stationary 
state P of the reduced dynamics of a one-dimensional har
monic oscillator weakly coupled to a reservoir, and we prove 
that it is independent of the coupling if and only if the refer
ence state Pref satisfies the classical KMS condition (Sec. 6). 

2. DETAILED BALANCE FOR DIFFUSION PROCESSES 

We begin by recalling the definition of detailed balance 
for dynamical semigroups on W *-algebras, which was given 
in Ref. 1. 

Let vk be a W *-algebra, I ifJ t: t E R + J a dynamical se-
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migroup on J/, p a faithful normal state on J/, which is 
invariant under { tPt J. Let % be the Hilbert space comple
tion of J/ equipped with the inner product (A,B ) = piA * B ), 
A, BE J/ (the GNS space); then { tPt:t E lR+ l.}xtends to a 
strongl~ continuous contraction semi group {tPt 
= exp Lt:t E lR+ I on %. 

We say that { tPt: t E R + I satisfies detailed balance with 
respect topl (cf. Ref. 13) ifthere exists a self-adjoint operator 
Ls and a skew-adjoint operator Lh in % such that 

(i) Lif; = Ls if; + Lh if; for all if; in a common core for L, 
A "" 

L s , L h ; A 

(ii) {exp Lh t: t E R I maps J/ ~ % into itself and de
fines a weakly. continuous group {at: t ElR I of *-automor
phisms of J/; 

(iii) {expLst:tER+1 mapsJ/ ~ % into itself and de
fines a dynamical semigroup (r t : t E lR;- I o~ J/. A 

If a decomposition (i) exists, with Ls = Ls *, Lh 
- Lh ., then it is unique, and it can be shown that (iii) is 

actually a consequence of (i) and (ii). 1 The statep is stationary 
under {at I and (rt I, and satisfies the symmetry condition 
p(rt(A )*B) = piA *rt(B)) for alIA, B inJ/, tin R+. 

Now we consider diffusion in Rd. We do not aim at full 
generality; in particular, we avoid the consideration of 
bounded regions and boundary conditions. 

We denote Rd by X and the Lebesgue measure on X by 
dx. We let off be the *-algebra C O'(X) + CI and by J/ the 
W *-algebra L 00 (X); for any strictly positive function p in 
L 1 (X ), L 00 (X) coincides with L 00 (X, p); both off and J/ are 
dense in the Hilbert space % = L 2(X, pl. 

We shall be concerned with diffusion processes, i.e., 
Markov processes with almost everywhere continuous 
paths, 14 whose associated Markov semi groups ( tPt: t;;;.O I on 
J/ are dynamical semigroups [i.e., satisfy also tPt(1) = I and 
not just tPt (1)< 1 for all t]. Then typically, the weak * deriva
tive 

(2.1) 

exists for all A in off, and one has 

d d 

L (A ) = I aij aA A + I bj aj A, (2.2) 
j.j~ 1 j~ 1 

where aij' bj , i,j = 1, ... ,d, are real-valued functions on X, 
(ajj(x)) is a positive matrix for almost all x in X. 

The adjoint equation to (2.1), (2.2), governing the time 
evolution of states pIt ) in L I(X), is given by 

add 
- p(t) = I aA(aij p(t)) - I aj(bj p(t)), (2.2') 
at j.j~ 1 j~ 1 

which is called the Fokker-Planck equation in the physical 
literature.4--7 

We cannot summarize here the enormous literature 
concerning the characterization of the generators of the 
Markov semigroups associated with diffusion processes. 14 

Given a map L of the form (2.2), with some continuity condi
tions on the coefficients aij' bj , we want to find conditions 
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under which there exists a dynamical semigroup ( tPt: 
t E lR + J satisfying (2.1), and a state p which is invariant un
der { tPt I, and show that ( tPt J satisfies detailed balance with 
respect to p. 

Lemma 2.1: LetL be of the form (2.2), and assumeaij 
E C 2(X), bj E C I(X), i,j = 1, ... ,d. Letp be a strictly positive 

function in L I(X InC 2(X), with f x p dx = 1. Then there is a 
unique decomposition 

(2.3) 

where Ls' Lh are linear maps from off into J/, satisfying 

L Ls(A )*Bpdx= LA *Ls(BJpdx for all A, Bin off,(2.4) 

d 

Lh(A) = I Vjaj A for all A in off, (2.5) 
j~ 1 

where vi,j = 1, ... ,d, are real-valued functions in C I(X). 
Proof Ls must have the form 

d d 

Ls(A) = I aij aA A + I (bj - Vj)aj A 
j,j~ 1 j~ 1 

for all A in off; 

then 

L Ls(A )*Bp dx = j.~ 1 L (aj A )*aij(aj B)p dx 

+ jtl L { - jtl [(ajaij) + (p-1aj p)aij] 

(2.6) 

where we have used integration by parts and the symmetry 
of the matrix (aij) (whenA and B are multiples of I, we might 
not be allowed to use integration by parts, but then the above 
equality reduces to 0 = 0). Similarly, 

( A *Ls(B)pdx = -± ((ajA)*aij(ajB)pdx 
Jx I.J~ 1 Jx 

+ itl L { - jtl [(ajaij) + (p-1aj p)aij] 

+ bj - Vj}A *(aj B)pdx. 

Then condition (2.4) determines Vj uniquely to be 

d 

vj = -I [(ajaij) + (p-1ajp)aij] +bj , (2.7) 
i= 1 

which is indeed a C 1 function for allj = I, ... ,d; then 

d 

Ls(A) = I {aijaA A + [(ajaij) + (p-1aj p)aij ]aj A I 
i,j~ 1 

for all A in .r1'. (2.8) 

By the continuity of the coefficients, Ls and Lh map off into 
J/ .• 

Lemma 2.2: Let L and p be as in Lemma 2.1. Then the 
following conditions are equivalent: 
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(i) 1 L (A)p dx = 0 for all A in d; 

d d 

(ii) L aj aj(aij p) - L aj(bj p) = 0; 
i.j~ I j~ I 

d 

(iii) L aj(vj p) = 0; 
j~l 

(iv) iLh(A)PdX=O foralIAind; 

(v) 1 Lh(A )*Bp dx = -1 A *Lh(B)p dx 

for alIA, B, in d. 

(2.9) 

(2.10) 

Proof (i) <=> (ii) and (iii) <=> (iv) are proved by using inte
gration by parts for A E C O'(X) (for A = Ii 1, there is nothing 
to prove). Taking into account (2.7), we see that (ii) is just the 
explicit expression of (iii). From (2.5), we get 

Lh(A )*B +A *Lh(B) = Lh(A *B) for alIA, B in d; 

so it is clear that (iv) and (v) are equivalent .• 
Corollary 2.3: Let ( tP,:t E R+ I be a dynamical semi

group on J( satisfying (2.1) and leaving some state p invar
iant; let Land p satisfy the conditions of Lemma 2.1. Then 

L =Ls +Lh' 

whereL, L" L h , defined on d, are dissipative, negative sym
metric, and skew-symmetric, respectively, as operators in 
% = L 2(X, pI, and Lh is a *-derivation (a first-order differ
ential operator with real coefficients). 

Proof Invariance of p under ( tP,) implies (2.9), which 
in turn implies (2.10), by Lemma 2.2. Then the statement 
follows, by Lemma 2.1. In particular, Ls is negative by (2.6) 
and (2.7), and L is dissipative since, by (2.10), 
Re Sx L (A )*Ap dx = Sx Ls(A )*Ap dx for alIA in d .• 

The conclusion of Corollary 2.3 amounts "almost" to 
detailed balance. A precise statement is: 

Theorem 2.4: Let L, p be as in Lemma 2.1 and satis!): 
the equivalent conditions of Lemma 2.2. Denote by L,Ls ,0 
the closures of L, L s' Lh as operators in % = L 2(X, pl. If L, 
Ls , and Lh are maximal dissipative, self-adjoint, and skew
adjoint, respectively, then there is a dynamical semi group 
I tPt;t E R +) on J( such that (2.1) holds, and I tP,) satisfies 
the detailed balance condition with respect to p. 

Proof The closures of L, L s' and Lh are dissipative, 
negative symmetric, and skew-symmetric, respectively. Un
der the assumptions of the theorem, there exist contraction 
semi groups IT,:t E R + ), I V,:t E R + ) ~dAa g~oup of unitar
ies I U,:t E R +), whose generators are L, L s' L h, respective
ly, and T t is the Lie-Trotter product of V, and Ut • 

By assumption, Ls is essentially self-adjoint on sff; 

hence Ls coincides with the Friedrichs extension of L" 
which is the generator of a positivity-preserving semigroup 
of self-adjoint contractions, by the general theory of sym
metric Markov semigroups.14 Theny, = ex;> Lst preserves 
positivity, V,1 = 1 [since 1 E Dom(Ls) and Ls(l) = 0], and 
Vt maps J( into itself for all (;;.0; the restriction of I V,: 
t E R + J to JI is a dynamical semigroup. 

Similarly, Lh is essentially skew-adjoint on d by as-
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sumption, and is a *-derivation by (2.5). Then it follows from 
Ref. 15 that U, = exp L h t maps J( into itselffor all t in R, 
and the restriction of ( U,:t E R J to JI is a group of *-auto
morphisms of JI. 

Finally, also T, = limn ~ 00 (U, In V, In r maps JI into 
itself for all t>O, and the restriction ofl T,:t E R + I to J( is a 
dynamicalsemigroup I tPI:tER+) onJ((cf.Ref.l,Appen
dix B). The existence of the weak * derivative (d Idt) 
tP I (A ) I I - 0 for all A in d follows from the existence of the 
derivati~e(d Idt )Tt(A )lt~O = L (A) = L (A ) in %; then also 
(2.1) holds. 

By collecting the above results, we see that I tPll satis
fies detailed balance with respect to p .• 

We have seen that a dynamical semigroup on 
JI = L 00 (X) which is the Markov semigroup of a diffusion 
process in X satisfies detailed balance with respect to a faith
ful normal state p "if and only if' (up to technicalities) it 
leaves p invariant; in other words, detailed balance (in the 
sense of Ref. 1) is not a condition for diffusion processes, but 
a property. On the contrary, it is well known that detailed 
balance is indeed a condition for jump processes. Indeed, if 
L, defined by 

L (A )(x) = L W(y,x)[A (y) -A (x)] dy [W(y,x»O] 

(2.11) 

is the (formal) generator of the Markov semigroup ( tP,: 
t E R + 1 of ajump process, a statep is invariant under I tP,) if 
and only if 

i [W(x,y)p(y) - W(y,x)p(x)] dy = 0 for all x in X, 

(2.12) 

in which case the adjointL + ofL as an operatorinL 2(X, p) is 
(formally) given by 

L +(A )(x) = L W(x,y)p(y)p(x)-I[A (y) -A (x)] dy. (2.13) 

Then 

(L -L +)(A )(x) = i [W(y,x) - W(x,y)pty)p(X)-I] 

X [A (y) -A (x)] dy, (2.14) 

and L - L + is not the generator of a dynamical semigroup, 
since the sign of W (y,x) - W (x, y) p( y) pix) - I is not definite, 
unless, of course, L = L +, or, equivalently, 

W(x,y)p(y) = W(y,x)p(x) forallx,yinX, (2.15) 

which is the familiar form of the detailed balance condition 
for a jump process. 

If W(x, y) is vanishingly small for large Ix - yl, so that 
SSW (x, y)(x - yIn dx dy may be neglected for n > 2, then L 
is approximated by a second-order differential operator and 
L - L + is approximated by a first-order differential opera
tor: 

1 d 
- (L - L +)(A ):::; L Vj aj A, 
2 j~l 

(2.16) 

where 
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Vj(X) =! L {[ W(x + !Y,X - !Y) - W(x - !Y, x + !Y)] 

and 

- W(x + !Y,X - !y{tl (P-1Ji P)(X)Yi]) Yj dy, 

(2.17) 

d 

!(L+L+)(A):::; L [aijJAA 
i.j = I 

(2.18) 

where 

aij(x) =! L W(x + !y,x - !y)y,. Yj dy. 

(2.19) 
Then detailed balance holds, in this approximation, be

cause L - L + becomes a *-derivation up to this order of 
approximation. 

If L, given by (2.11), already satisfies detailed balance 
with respect to p, then its approximate expression is just 
(2.18), and contains no antisymmetric part. Detailed balance 
for a jump process means that, in the stationary state p, for 
any pair E, F of measurable subsets of X, there are as many 
transitions (jumps) per unit time from E to F as from F to E: 
this is the property of "balancing in detail. " For a diffusion 
process, there can be transitions in an infinitesimal time in
terval only between adjacent regions: hence, in any station
ary state, there are as many transitions from E to F as from F 
to E, in an infinitesimal time interval, if the boundary 
between E and Fis a closed (d - I )-dimensional surface in X; 
one has "balancing in detail" only for transitions across a 
closed surface. It would be too restrictive to give a definition 
of detailed balance for a diffusion process, which would in
volve balancing in detail for transitions between any pair of 
regions, because this would rule out evolutions induced by 
flows; however, such a condition would be satisfied for a 
diffusion process without antisymmetric part.5 

Given Land p which satisfy the equivalent conditions 
of Lemma 2.2, the mathematically hard part of the detailed 
balance condition is to check whether Ls is essentially self
adjoint, L h is essentially skew-adjoint, and the closure of L is 
the generator of a contraction semigroup on %. For appli
cations in Sec. 5, we shall just suppose that this is the case, 
without going into the problem of proving these properties. 

We remark here that this is the reason why we have 
excluded the consideration of bounded regions. For in
stance, let J be an open bounded interval of R, and Ls (A ) 
= J2A for alIA in C ({'(J) + Cl. Then Lshas at least two self

adjoint extensions (with Neumann and with periodic bound
ary conditions). In order to have a unique self-adjoint exten
sion, it would be necessary to choose a domain d for Ls 
which is strictly larger than C ({' (I) + C I, and this would 
force us to go into details which we wish to avoid here. 

On the other hand, when X is the whole ofRd
, there are 

cases in which it is possible to prove that Ls and Lh are 
essentially self-adjoint and essentially skew-adjoint, respec
tively, with the aid of known theorems. Under certain condi
tions of differentiability and boundedness for the coefficients 
aij' bj , the diffusion equation may be integrated and the do-
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main of the generator of ¢, may be found 16; in some cases it 
might be possible to check the core condition. 

Suppose instead that a stationary state p can be found 
explicitly, and consider the unitary mapping A 1---+ Apl/2 of 
% ontoL 2(X). ThenL"Lh areunitarilyequivalenttoopera
tors S, H, respectively, given by 

d 

S/= L [(J,.aijJj /)_(p-1I2J,.aijJjp l/2)/], (2.20) 
i.j= 1 

d 

H/= L [vjJj/+!(JjVj)/] (2.21) 
j= 1 

[we have used ~f = I Jj (Vj p) = 0] for allfin Dom(S) 
= Dom(H) = [C (('(X) + C] p1l2. Ifp E C oo(X), it is suffi

cient to prove that S, H are essentially self- (skew-) adjoint on 
C ({' (X). Now - S looks like a Schrodinger operator and is a 
Schrodinger operator if aij(x) is constant, whereas H looks 
like the generator of a classical Hamiltonian flow and is so if 
d=2n,vj = -JhIJxj _ n for}=n+ 1, ... 2n,vj 
= Jh I JXj + n for} = l, ... n, where h is the Hamiltonian. 
Theorems giving sufficient conditions for the essential self
(skew-) adjointness of such operators on C ({' (Rd

) may be 
found, for instance, in Ref. 17. 

In the physical literature, the detailed balance condi
tion is often related to the behavior under time reversal. Sup
pose that there is a time reversal operation Yon JI, defined 
by 

(2.22) 

where Ej = ± I,) = 1, ... ,d. Then the detailed balance condi
tion as formulated by Graham and Haken6 amounts, in our 
notation, to the condition that S x L (A ) P dx = 0 for alIA and 

YLsY = Ls' YLhY = - L h, (2.23) 

i.e., that the symmetric and anti symmetric parts of L are, 
respectively, the even and odd part of L under time reversal; 
this is indeed a condition. When [ ¢, l describes the reduced 
dynamics of a subsystem of a Hamiltonian system, detailed 
balance in the form (2.23) is generally "derived" as a conse
quence of time reversal in variance of the global dynamics6; 

we shall come back to this point in Sec. 5. 

3. THE WEAK COUPLING LIMIT FOR CLASSICAL 
SYSTEMS 

In this section we are concerned with the derivation of a 
diffusion equation in phase space as describing the reduced 
dynamics of a classical Hamiltonian system weakly coupled 
to classical Hamiltonian reservoirs. To our knowledge, there 
are no rigorous results concerning this problem. The only 
related results that we are aware of are the proof of the con
vergence of the weak coupling limit for a particle in a sto
chastic force field (Kesten and Papanicolaou II) and of the 
Brownian motion limit for a heavy particle in a gas ofmutu
ally non interacting light particles (Holley, 18 and Durr, 
Goldstein, and Lebowitz I9

). Hence we shall confine our
selves to a formal application of the weak coupling limit the
ory of Davies. 12 The price we have to pay is that we have to 
restrict our consideration to classical systems whose Liou
ville operator has pure point spectrum; we suspect that the 
only physically interesting systems enjoying this property 
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are canonically equivalent to systems of uncoupled harmon
ic oscillators. 

To be specific, we consider a particle with position q and 
momentum p, which interacts with particles with positions 
qj and momentapj. We assume a total (formal) Hamiltonian 

(3.1) 

which is of the form H;. = H S + AH SR + H R, the super
scripts Sand R denoting "system" and "reservoir," respec
tively. Let x = (q,p) andy = (!q],.··,qn,···), [p], ... ,Pn, ... j). 
The equations of motion for the system variables, with initial 
conditions x(O) = xo, y(O) = Yo, are 

d 1 
-d q(xo, Yo,t ) = - p(xo, Yo,t ), 

t m 
(3.2) 

-A L V'( q(xo,Yo,t) - qj(xo,Yo,t)) 
j 

(we are using a one-dimensional notation). These equations 
are insufficient for the determination of q,p, since also 
qj (xo, Yo,t ) are dynamical variables. Only in the limit of infi
nitely heavy reservoir particles do Eq. (3.2) determine q and p 
as a function of the initial conditions xo, Yo and of time. 
When Yo is treated as a random variable, we are led back to 
the problem of a particle in a random force field. ] I 

Here we shall consider the same kind of weak coupling 
limit as was studied by Davies in Ref. 12 for the quantum 
case. We letA - 0, with constant rescaled time 7 = A 21, and 
we pass to the interaction picture in order to remove the 
effects of the uncoupled motion. So we study the limit as 
A _ 0 of a probability distribution 

x [ p(q, p,O) Pref(! qj), [ Pj ),0)] II dqj dpj' 
j 

(3.3) 

where cz,: is the solution of(d Idt) cz,: f = [H;., cz,:f), 
cz, ~ f = J, and P ref is chosen to be in varian t under cz, ~. Since 
A [H SR,.) is not a bounded perturbation of [Ho,')' the esti
mates of Ref. 12 do not apply. For harmonic oscillators cou
pled to harmonic reservoirs by a bilinear interaction, the 
problem can be reduced to a problem of bounded linear oper
ators on an underlying "test function space," and precise 
estimates can be given (see Ref. 20.). 

A formal application of the techniques of Ref. 12 leads 
to the following statement. For any function A = A (q, p) in 
L 00 (R2f) and any P = p(q, p,O) in L 1(R2f), we have, for all 
7;;.0, 
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lim ff p;'(q,P,7)A (q,p) dq dp 
A~O 

= J J p(q, p,O) tPT(A )(q, p) dq dp, (3.4) 

and [ tPT:7 E R+) is a dynamical semigroup, whose formal 
generator L is given by 

1 IT L(A)= lim - ~o-s 
T~oc 2T -T 

(3.5) 

whereHSR(t) = cz,0 _, H SR (cf. Refs. 12and21). In order to 
ensure the existence of the time average, we assume that 
[H s,' J has a pure point spectrum. Specifically, we assume 
that there are smooth functions Vk = Vk (q,p), k E 'l, such 
that 

(3.6) 

with (U _ k = - (Uk' V _ k = Vt, and that H SR may be ex
panded as 

(3.7) 

where Vf are functions of the reservoir coordinates (and 
momenta), satisfying V~k = Vf*; then 

HSR(t)= L e-iWk'VkVf(t). (3.8) 
keZ 

We put 

,pkk,(t) = J f V~k' Vf(t)Pref I} dqj dpj 

=( V~ k' Vf(t ), (3,9) 

ipkk,(t) = f f [V~k"Vf(t)J Pref I} dqj dpj 

-([ V:" Vf(t)j), (3.10) 

and we assume (V f) = 0; then we obtain 

L(A) 1" 
(3.11) 

Remark: Although we have used a notation appropri
ate for reservoirs of finitely many particles, we should really 
think of the reservoir as being infinitely extended. This does 
not constitute a problem for such model reservoirs as infinite 
harmonic crystals or gases of particles interacting through 
suitable potentials, for which the time evolution oflocal ob
servables relative to certain stationary states, can be de
fined. 2o

,22 Note that the definition of the Poisson bracket in 
(3.10) actually involves only a finite sum, if vf is assumed to 
depend only on a finite number of reservoir coordinates and 
momenta. 

Proposition 3.1: Suppose that there is only a finite num-
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ber offunctions rPkk' , fPkk" which do not vanish identically, 
and that these functions are in L I(R). Then L (A ), given by 
(3.11), exists for aHA in d = CO'(R2/) + Cl, and 

L(A) = !A,8H) 

+ ~ I (¢kk' (wd( V -k"( Vk,A )} 
2 k,k' 

+ ~kk'(Wk)V-k,(Vk,A j) 

for all A in d, where 

(3.12) 

(3.13) 

~kk'(W)= L+oooo e-iw'fPkk,(t)dt= -fP-k',-d -wi, (3.14) 

and 

oH = ~ foo L e - iWk' 
2 Jo k,k' 

X(rPkk,(tHVk,V_ k,) - fPkk,(t)VkV_k,)dt. (3.15) 
Proof We have, using the invariance of Pref under o//?, 

rPkk,(t) = (V~k' Vf(t) = (V~k'( - t)Vf) 

= (VfV~k'( - t) = rP -k',-d - t), (3.13') 

fPkk,(t) = <I v~k"Vf(t)j) = <I V~k'( - t),Vf» 

= -<lVf,v~k,(-t)j)= -fP-k',_k(-t), 
(3.14') 

from which (3.13), (3.14) follow. Then we introduce the for
mal generator I of the reduced dynamics for negative times, 
given by 

I(A)= 100 1.;, e-iWk'(rPkk,(t)(V_k,,(Vk,A)} 

+ fPkk,(t)V_k,!Vk,Aj)dt 

and compute L as ~(L + I ) + !(L -I ). Clearly, 1(L + I ) 
yields the second term on the right-hand side of (3.12). We 
also have 

~ (L -1)(A) 

= + 1"" '&' [(e -iWk'rPkk,(t) - eiWk'rPkk'( - t)) 

x ( V _ k" ( Vk,A ) } 

+ (e - iWk' fPkk,(t) - eiWk'fPkk' ( - t)) 

X V _ k' ( Vk,A J ] dt. 

In the part containing I we operate the replacements 
k ...... - k, k' ...... - k', we use w _ k = - Wk and relations 
(3.13'), (3.14'), to get 

~ (L -1)(A) 

=-2
1 fooo I e-iWk'(rPkk,(t)[(V_k,,(Vk,A)} 

Jo k,k' 

- (Vk,(V_k,,A)}] +fPkk,(t) 

X [ V _ k' ( Vk,A J + Vd V _ k',A }]) dt. 
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Using the formal properties of the Poisson bracket and the 
definition (3.15) of oH, we finally obtain 

~(L -L)(A) = [A,oH). • 
2 

Remark: Of course, the expression (3.12) of L is formal
ly valid also when there are infinitely many functions rPkk" 
fPkk' which do not vanish identically. 

Remark: L commutes with { ·,H J and (oH,H J = O. 
Proposition 3.2: L has the form (2.2) 

2J 2J 

L (A ) = I aij ai aj A + I bj aj A 
i,j= 1 j= 1 

for all A in d, (2.2) 

where the positive symmetric matrix (aij) is given by 

1 A _ 

aij = - I rPkk' (WdUk'iUkj' i,j = 1, ... ,2J, (3.16) 
2 k,k' 

and the real vector bj is given by 

2J 1 A 

bj=Iaiaij+- I fPkk,(Wk)V __ k'Ukj+Wj , 
i= 1 2 k,k' 

j = 1, ... ,1J, (3,17) 

and where 

(3.18) 

W. = {-aj_JOH, j= f+ 1, ... ,2J, 
J aJ+ J oH, j= 1, ... ,/ 

(3.19) 

Proof By (3.18), (3.19), we have for all A in d 

2J 

(Vk.A) = L ukj aj A, 
j= 1 

2J 
(A,oH) = L Wj aj A, 

j=1 

hence (3.12) can be rewritten as 
2J 

Now 

L (A ) = L Wjaj A 
j= 1 

1 21 "-
+ - L L [t/tkk,(Wk)Uk'iai(ukAA) 

2 i,j= I k,k' 

A 

+fPkk,(wdV_k,UkjajA ]. 

Uk'i ai(Ukj aj A ) = Uk'iUkj aA A 

+ ai(Uk'iUkj)aj A - (aiUk,JU kj aj A, 
and 

2J 

+ I aiaj _ JV -k' = 0; 
i=J+ I 

hence (2.2) follows, upon defining aij and bj by (3.16) and 
(3.17), respectively. 

By construction, L maps real functions into real func
tions; hence aij and bj are real. Moreover, (aij(x)) is a positive 
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matrix for all x, since 

is a positive matrix, by the stationarity ofpref'. 
Now we introduce time reversal invariance. For a clas

sical Hamiltonian system, the time reversal operation Y 
consists in leaving all coordinates q unchanged and reversing 
the signs of all momenta p. 

Proposition 3.3: Suppose that the global dynamics OJ-: is 
time reversal invariant, i.e., YOJ-:Y = OJ-~ t' for all A, and 
thatalsoYpref = Pref' Then hoH ) is precisely the odd part 
of L under time reversal. 

Proof We have seen that! ',oH ) = ~(L - I ). When OJ-: 
andpref are time reversal invariant, we have I = YLY; 
hence the result follows (see Ref. 21) .• 

4. THE CLASSICAL LIMIT OF QUANTUM DYNAMICAL 
SEMIGROUPS 

As an independent check of the results of the previous 
section, we consider here the classical limit of the generator 
of a quantum dynamical semigroup obtained in the weak 
coupling limit. We perform the classical limit in a formal 
sense, according to the prescriptions 

(ili)-I[A,B] ---+ !A,BJ, HA,B]+ ---+ AB=BA, (4.1) 
~~O ~~O 

where A, B are linear operators on the Hilbert space 
JY = L 2(W), expressed as Ii-independent, sufficiently 
smooth functions of the operators Qj = xj " Pj 
= - iii alaxj,j = 1, ... ,/ 

We shall not be concerned here with the difficult prob
lem of the precise meaning of the limits (4.1) for large classes 
of operators. A method to tackle this problem involves the 
use of the Weyl correspondence Q: 

Qf= 2~ f f /(u,v) exp[i(uQ + vP)] du dv, (4.2) 

where/is the Fourier transform of! See Ref. 23 for some 
classes of operators which are of the form Qf for suitable 
functions or distributions! A situation in which the limits 
(4.1) can be shown to hold rigorously with the help of (4.2) is 
A = Qf, B = Qg, wheref,g are in Y(R2f): then A and Bare 
trace class operators, and 

(4.3) 

where 

h~(q,p) = (2~)2 f f f f ! sin[ ~ (u'v - UV')] 

Xei(uq + VP)/(u,v)eiIU'q + v' p) g(u',v') du dv du' dv', 
(4.4) 

and k,,(q,p) has a similar expression, with sin replaced by 
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I 
cos. When Ii---+O, hfi (q,p), andkfi(q,p) tend to !f,gJ( q,p) 
and to (fg)( q,p), respectively. 

We point out that this is not the kind of classical limit 
that was studied by Hepp in Ref. 24 and applied to the gener
ators of dynamical semigroups by Pule and Verbeure25

: the 
latter limit consists ofletting Ii ---+ 0 in the expectation values 
off unctions of 1i1/2xj , - ili l/2alaxj in coherent states cen
tered around positions 1i- 1

/
2qj and wave numbers 1i- 1

/
2 Pj, 

respectively. 
Let JY be the Hilbert space L 2(W). We consider the 

limit as Ii ---+ 0 of an expression 

Lfi(A) = ~[H,A ] + ~2 I/,.(Ii) 
Ii Tr, 

(4.5) 

where A is a bounded operator on JY, H is a self-adjoint 
operator on JY, V, are linear operators on JY, and/,.(Ii) are 
positive numbers, depending continuously on Ii. When H, V, 
are bounded operators and the series converges ultraweakly, 
(4.5) in the general form of the generator ofa norm-contin
uous dynamical semigroup on fj) (~ (Lindblad26

; see Da
vies27 for what is known for unbounded operators H and V,). 
Here we shall disregard all domain problems and proceed 
formally. The explicit Ii dependence appearing in (4.5) is 
what occurs in applications to open systems. We assume that 
H and V, are Ii-independent smooth functions of QI, ... ,Qf' 
PI"'" Pf (for example, that they are obtained from ii-inde
pendent smooth functions by means of the Weyl correspon
dence). We put 

and we get 

L (A) - J.-[A H] _1_ '" /, (Ii) 
fi - iii ' + 2(ili)2 7' ' 

X([X"[X,,A]] + [Y"[Y,,A]]) 

1 1 
+ 2ili ~ "i /,.(Ii)( [X" [Y,,A ] ] + 

- [Y" [X,,A ]] +). 
(4.6) 

The formal classical limit of (4.6), according to the prescrip
tions (4.1), is 

LcdA ) = !A,HJ + J.- If,(O) 
2 , 

X({X"!X,,A J) + (Y,,! Y,,A J)) 

+ lim I J.-/,.(Ii)(X,! Y,,A ) - Y, I X,,A)). (4.7) "_0 , Ii 
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When all V, are self-adjoint (i.e., all Y, vanish identically), 
we have simply 

In general, when the Y, and/,.(O) do not vanish identically, 
the third term on the right-hand side of (4. 7) is divergent. We 
discuss here a meaningful situation in which a finite limit is 
obtained. 

Proposition 4.1: Let LII be of the form (4.5) 

LII(A ) = ~ [H,A ] + 22 L J,.(Il) 
Il Til ,eZ 

X (V,*AV, - ~ [V,*V,,A ]+), 

where 

/,.(Il) - 1- ,(Il) = 0 (Il), r € 'l, 

(4.9) 

(4.10) 

and where H, V, are smooth functions of QI, ... ,Q/, PI, ... ,p/, 
not depending explicitly on Il. Then the formal classical limit 
of LII is given by 

LII (A) -- LedA), 
II~O 

where 

00 

+ L /,.(O)({ X"{X,,A l} + {Y,,{ Y,,A l}) 
,= I 

00 

+ L lim [1l-1(f,(Il) - 1_,(Il))] 
,= III~O 

X(X,{Y,,A J - Y,{X,,A J), (4.11) 

and Lei is the formal generator of the Markov semigroup of a 
diffusion process. 

Proof: By assumption (4.9), the expression (4.7) becomes 
(4.11), where li~~o Il-I (f,(Il) - 1- ,(Il)) is finite, by as
sumption (4.10). Now we put Lei in the form (2.2). Define 

Then, we get 

j= 1+ 1, ... ,2/ 

j = 1, ... ,f, 

j= 1+ 1, ... ,2/ 

j = l, ... ,f, 

j= 1+ 1, ... ,2/ 

j= 1, ... ,/ 
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(4.12) 

(4.13) 

(4.14) 

00 2/ 

+ ll'i a;('1J'j aj A )] + L L lim [1l-1(J,.(Il) 
'=lj=III~O 

- 1- ,(Il))] [X, ll'j - Y,S'j ]aj A 

2/ 2/ 

= L aij aA A + L bj aj A, 
i,j= I j= I 

where 

1 00 

aij = "2/0(0)SOiSOj + '~I /,.(0)( S'iS'j + ll'i ll'j) (4.15) 

and 
2/ 

bj = L aiaij +;j 
;= I 

(we have used l'.i-C I aiS'i = l'.i-C I ai ll'i = 0 as in the proof 
of Proposition 3.2). Then (aij) is a positive matrix and bj in a 
real vector, and Lei has the form (2.2); hence it is the formal 
generator of the Markov semigroup of a diffusion process .• 

The generator of a dynamical semigroup describing the 
reduced dynamics of a quantum open system in the weak 
coupling limit l2 is indeed of the form described in Proposi
tion 4.1. Let S be a quantum system coupled to a reservoir R, 
let H;. = H S + H R + AH SR be the total Hamiltonian, and 
assume that the Hamiltonian H S of the uncoupled system S 
has a pure point spectrum. Expand the interaction Hamil
tonian AH SR as 

AH SR =A L Vk ® Vf 
keZ 

(possibly, only a finite number of Vk may be different from 
zero), where 

[HS,Vd = -Wk Vk , kE'l, 

and where 

W_k = -Wk, V_ k = Vk*,V~k = Vf*, kE'l. 

Let (Vf) = 0, and let 

(4.17) 

where Vf(t) is the time evolution of Vf according to the 
dynamics ofthe uncoupled reservoir, and ( ... ) denotes ex
pectation value in a stationary reference state, and put 

A 1 A A 

r/{k' (W) = "2(hkk , (w) + h _ k', _ k( - W)) 

= ~f+ 00 e- iw
, ([ V~k"Vf(t)] +) dt, (4.18) 

2 - 00 

(4.19) 
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We have to assume that the functions t ~ 1< V~ k' Vf(t) I 
are integrable; this requires the reservoir R to be infinitely 
extended. 

Then the reduced dynamics of the system S, in the inter
action picture, is approximated, in the limit A _ 0, 7 = A 2t 
constant, by a dynamical semigroup ! rPr = exp LT:T E H+ 1 
(see Ref. 12 for the proof when the Vk , Vf are finitely many 
and bounded, and the reservoir correlation functions satisfy 
appropriate conditions). 

Proposition 4.2: The generator L of the reduced dynam
ics in the weak coupling limit is given by 

i 1 A 

L (A) = - [8H,A ] + ",,2 L hkk,(liJk) 
fz n k,k' 

where 

1 1'" 8H=-
2 0 

L e-i<ukt «(ifz)-ltPZk,(t)[Vk,V_ k,] 
k,k' 

(4,21) 

L satisfies the assumption of Proposition 4.1, and its classical 
limit is exactly (3.12). 

Proof The expression (4.20) is just a way of writing the 
well-known result of the weak coupling limit theory ofDa
vies l2 (see also Ref. 21); it is of the form (4.5), as one can see by 
diagonalizing the positive matrix (hkk' (liJ)): the dependence 
on fz is of the type (4.10), since 
A A .A~ 

hkk , (liJ) - h _ k', _ k ( - liJ) = I'Fup kk' (liJ) = 0 (fz). (4.22) 

Then, by Proposition 4.1, the classical limit of (4.20) exists 
and is finite. In order to compute it, we rewrite (4.20) as 

i 1 A~ 
L(A)=-[8H,A]--2 L tPkk,(liJk) 

fz 2fz k,k' 

and we notice that 

A A Ali A 

tPZk,(liJ) - tPkk,(liJ), lP kk,(liJ) - lPkk,(liJ), 
~_o Ii_O 

A A 

where tPkk' (liJ), lPkk' (liJ) are defined by (3.13), (3.14). The out-
come is (3.12) .• 

Remark: In taking the classical1imit of (4.20), we have 
tacitly assumed that the eigenvalues liJk(fz) of the Liouville
von Neumann operator (ifz) - I [ .,H S ] have finite limits liJ k (0) 
as fz _ 0, and that the corresponding eigenvectors Vk (fz) can 
be chosen to be such as to have limits Vk (0) which are smooth 
functions of q and p. In the case of a harmonic oscillator, the 
eigenvalues liJk are the integral multiples of the frequency liJ, 
independently of fz, and the eigenvectors can be chosen to be 
the fz-independent smooth functions (liJ I 12Q + iliJ - 1/2 p)m 
X (liJ 1/2Q - jliJ - 1/2 P)" , by exploiting the infinite degeneracy 
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of the spectrum of the Liouville-von Neumann operator. In 
the generic case, since a quantum system with potential U (q) 
tending to + 00 as Iql- 00 has pure point spectrum, 
whereas the corresponding classical system has, typically, 
continuous spectrum, some of the above tacit assumptions 
break down. For instance, for the case U(q) = Iql, theeigen
values liJdfz) all collapse to zero as fz - O. 

Finally, we spend a few words on the integrability of the 
correlation functions < V R 

_ k' Vf(t) and on their classical 
limits. One may take R to be a (finite collection of) infinitely 
extended harmonic crystal(s), and Vf to be suitable linear 
combinations, or series, of coordinates (and momenta) of the 
reservoir particles; the reference state may be taken to be a 
(tensor product of) thermal state(s). Then the multitime cor
relation functions can be explicitly computed, both in the 
quantum and in the classical case, and are expressed in terms 
of the two-time functions hkk , (t - s) = < V ~ k' (s) V f(t). 
The quantum correlation functions contain Ii explicitly, and 
their classical limit fz _ 0 gives exactly the classical correla
tion functions. The evolution of the uncoupled reservoir has 
a Lebesgue spectrum on the orthogonal complement of the 
cyclic vector, under very general conditions20

•
22

; then it is 
possible to choose suitable combinations Vk of the coordi
nates (and momenta) which make the functions 
< V ~ k' V f(t) integrable. For nearest-neighbor coupling 
and in v space dimensions, the correlation functions 
(qk' qk(t) decay as It 1- v/2 (and are integrable for v;>3) 
both in the classical and in the quantum case. 

5. STATIONARY STATES AND DETAILED BALANCE 

In this section we deal with the problem of determining 
the stationary state p of a dynamical semigroup ( rP t 1 de
rived in the weak coupling limit for a classical system, or 
equivalently in the classical limit from a quantum dynamical 
semigroup obtained in the weak coupling limit. We also dis
cuss briefly the detailed balance condition of Graham and 
Haken and its relationship to microscopic reversibility. 

We rewrite the formal generator (3.12): 

1 A 

L (A) = !A,8H 1 + - L (tPkk·(liJk) 
2 k.k· 

(5.1) 

for all A in d = C O'(X) + Cl, X = H2!. Let p be a strictly 
positive function in L I(X )nC 2(X), with f f x p dq dp = 1. 
Then L can be uniquely split as Ls + L h , where Ls is sym
metric as an operator in % = L 2(X, p) andLh is a first-order 
differential operator, by Lemma 2.1. 

Lemma 5.1 : We have explicitly 

1 A 

Ls(A) = - L tPkk,(liJk) 
2 k,k' 

x({V -k',{ Vk,A l} + p-I! V -k',PJ{ Vk,A j), 
(5.2) 

and 

A. Frigerio and V. Gorini 1058 



                                                                                                                                    

for all A in .2/. 
Proof We construct Ls through the quadratic form 

E(A,B) = - IlA*Ls(B)dqdP, A,BE.2/, (5.4) 

associated with it; E must be positive and symmetric. The 
only positive symmetric form which gives rise to a second
order differential operator whose second-order part is the 
same as for - L is given by 

E(A,B) =..!.. L ¢kk'(Wk) Ii ! Vk,,A j*! Vk,B j pdq dp 
2 k,k' X 

j,% 1 I 1 (J j A )*aij(Jj A)p dq dp, A,B E.2/, 

(5.5) 

where the positive matrix (aij) is given by (3.16); the operator 
Ls associated with E is indeed (5.2). Then Lh is obtained as 
L - Ls, and the result is (5.3). Note that Lh may be also 
written in the form (2.5), with 

1 "'-
Vj =- L (jikk,(wdV_ k, ukj 

2 k,k' 

2[ 

- 2: (P-1Ji p)aij + Wj, j = 1, ... ,2f, 
i= 1 

(5.6) 

where Uj, Wj are defined by (3.18), (3.19) .• 
Taking into account Lemma 2.2, we have 
Lemma 5.2: Let p be a strictly positive function in 

L I(X)nC 2(X),withfSx p dq dp = 1. Then the following con
ditions are equivalent: 

(i) ILL (A )p dq dp = 0 for all A in .2/; 

2/ 
(ii) 2: Jj(Vj p) = 0; 

j~ 1 

1 "'-
(iii) !8H,pj +- L ! [(jikk,(Wk) 

2 k,k' 
liJk = Wk' 

"'-

X V -k' P - tPkk,(wkH V -k', PJ],Vk j = O. (5.7) 

Proof By Lemma 2.2, conditions (i) and (ii) are equiva
lent, and are also equivalent to f f x L h (A ) P dq dp = 0 for all 
A in.2/. Upon inserting (5.3) in the above, and integrating by 
parts, we obtain (5.7) .• 

As a special case, we consider the situation in which the 
reservoir is in thermal equilibrium at inverse temperature 
fl> O. This is expressed by the classical KMS condition28,15 

~kk'(W)= -i/3w¢kk'(w), wER, k,k'EZ. (5.8) 

Proposition 5.3: If the reservoir satisfies the classical 
KMS condition at inverse temperature /3 > 0, the canonical 
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statep = Ne - PHs(N = [f f x e - PHs dq dp] - 1) is stationary 

under the reduced dynamics. 

Proof Ifp=Ne-PHS,thenp-l!V_k"pj = -i/3wk' 
X V _ k" Inserting this and (5.8) into (5.3), we find Lh 
= ! ·,8H j. Now 8H has vanishing Poisson bracket with all 

functions of HS, and (5.7) follows .• 
It may not be easy, in general, to find the stationary 

state (or states) for arbitrary reservoirs. We shall solve this 
problem in general for the case of a one-dimensional har
monic oscillator, in the next section. Under certain condi
tions, it may be easier to find a stationary state such that Lh 
= {·,8H j . The following construction is due to Graham and 

Haken.6 

Proposition 5.4: Suppose that the matrix (aij(q,p)) is 
strictly positive for all (q, p) in ]R2.t: Put 

2[ 1 "'-
Fi = 2: (a-1)ij - L (jikk,(Wk)V _k'U kj , 

j~ 1 2 k,k' 

i = 1, ... ,21 
Suppose that the Fi are C 1 functions satisfying 

Jj Fi = J i Fj for all i,j = I, ... ,~ 

and 
2[ 

L (JjWj + Wj Fj) = O. 
j~ 1 

Let tP be the C 2 function such that 

Fi = - Jj tP, i = 1, ... 2f, 

and suppose that e - '" is in L I(X). Then 

p = Ne-"', 

(5,9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

where N is a normalization factor, is a stationary state such 
that 

Lh(A) = !A,8H j for alIA in.2/. (5.14) 

Proof If(aij) is strictly positive, we can defineFi by (5.9). 
If (5.10) holds, there exists tP in C 2(X ) satisfying (5.12), unique 
up to an additive constant; then e - '" is in C 2(X), unique up to 
a multiplicative constant. If it is in L I(X) we may choose the 
constant N so as to have f f x Ne - '" dq dp = 1. Putting 
p = Ne - '" and inserting it in (5.6) gives 

Vj = wj, /= 1, ... ,21 (5.15) 

Then the stationarity condition (ii) of Lemma 5.2 becomes 

2/ 2[ 

0= 2: Jj(wje-"') = 2: (JjWj + wjFj)e-'" 
j~ 1 j~ 1 

which is (5.11). Finally, (5.14) follows from (5.15) .• 
It may be the case that no state satisfying the conditions 

of Proposition 5.4 exists (see the end of the section). How
ever, when such a state exists, it is the unique stationary 
state, and all normal states approach it under the action of tPt 
= exp Lt, under some technical conditions. We have 

Theorem 5.5: Let (aij (q, p)) be strictly positive for all 
(q, p), and p be a strictly positive function in L I(X )nC 2(X), 
with f f x P dq dp = 1, satisfying the e«;tuivals:.,nt conditions of 
Lemma 5.2; assume that the closures Land Ls of Land Ls as 
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operators in % = L 2(X, p) are maximal dissipative and self
adjoint, respectively. Then 

I ~n: eLI A = (f Ix Ap dq dP) 1 

for all A in~ =L "'(X). (5.16) 

Proof If L is maximal dissipative in %, ! eLI: t ER + J is a 
contraction semigroup on %, and IIA II~ - IleLIA II~»O for 
all A in ~, t in R +. Let 

ff = !A E ~:IIA II~ - IleL'A II~ = 0 for all tin R+ J. 
It can be shown as in Ref. 29, Theorem 3.1, that the condi
tionsff = Cl implies (5.16). We show here that an element 
A of JY must be a constant, under the assumptions made. Let 
L +betheadjointofL;wehavealsoL + =L +.ForallA,Bin 
sY' we have 

(LA,B) = (Ls A + Lh A,B) = (A,LsB - LhB) 

since Ls is symmetric and L h is skew-symmetric with respect 
to the ~ner pr~uct given by p (see Lemma 2.2). Then sY' ~ 
Dom L + andL + B = Ls B - Lh B forallBin sY'. ForallA 

in sY' we have therefore 

LA + L + A = 2LsA 

and sY' is a core for Ls; then, by the Lie-Trotter product 
formula, 

eZL"A = lim (eL +llneL'ln)nA 

for all A in %,t in R+. 

Let A be in ff. Then, by the Schwarz inequality, 

(B,A ) - (eL'B,eL'A ) = 0 for all B in %; 

(5.17) 

henceA = ~ "eL'A for all t»O. From (5.17), it follows that 
Lt A ~ 

e 'A = A for all t; hence A E Dom Ls and Ls(A ) = O. Then 
A is in the domain of the form closure E of E and 

E(A,A) = J Ix (a; A )*aij(aj A)p dqdp = 0, 

where (a} A )j~ ' ..... 2/ is the distributional gradient of A. Since 
(aij(q,p)) andp(q,p) are strictly positive for all (q,p) in X, it 
follows that A is constant .• 

When the global dynamics 0;;; and the reference state 
Pref of the reservoir are time-reversal-invariant, [·,DH J is 
precisely the part of L which changes sign under time rever
sal, by Proposition 3.3. Then the condition thatLh = ! ·,DH J 
for the stationary state P amounts to the detailed balance 
condition of Graham and Haken. 6 If P is the only stationary 
state, it must be time-reversal-invariant: then the two terms 
in the left-hand side of (5.7), {DH,pJ and~}; k.k· {[~kk' 

Wk=Wk' 

X (Wk )Vk' P - ¢kk' (wk){ V _ k', P J ], Vd are odd and even, 
respectively, under time reversal; hence they must vanish 
separately if(5.7) holds. With the notation (5.6) stationarity 
ofp becomes 

2/ 
I aj{wjp) =0 
j~ , 
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and 

(J),,=(uJ.... 

(5.18) 

whereas the detailed balance condition of Graham and Ha
ken is 

2/ 
L aj(wj p) = a 
j~' 

and 

(5.19) 

Hence the detailed balance condition of Graham and Haken 
seems stronger than the condition of time reversal invariance 
of the global dynamics and of the reference state. A compari
son of Eqs. (5.18) and (5.19) is not conclusive, since it has not 
been shown that (5.18) is equivalent to time-reversal invar
iance plus existence of a stationary state. However, the fol
lowing counterexample proves that the latter conditions do 
not imply detailed balance in the sense of Graham and Ha
ken. 

We consider a system of two harmonic oscillators, with 
Hamiltonian 

H S = H = H (pi + p~) + w2( qi + q~ )] 
(5.20) 

where 

aj = (lIv'2)(w'12qj +iw-'/2 pj ), j= 1,2. (5.21) 

We choose a time-reversal-invariant coupling of the form 

H SR = aTVf + aTVf + a,afVf + conj, (5.22) 

where V! are functions of the reservoir coordinates and mo
menta such that !TV! = VjR*. We assume 

(Vf* V!(t) = Dijt/J)(t) } .. 
R R ' I,} = 1,2,3 <! V; *,v) (t)l) = oijipj{t) 

(5.23) 

(the remaining two-point correlations vanish), 

~j(w) = i/3jw¢j(w), j = 1,2,3, W ER. (5.24) 

The above conditions express the fact that the system is cou
pled to three independent reservoirs at inverse temperatures 
/3). From Proposition 3.1 we get 

L{A) = {A,DHJ 

+! ¢,(W) [{aT,{a,,A j) - i/3,waT{a,,A I 

+ {aj,{aT,A I} +i/3,watiaT,A J] 

+ ! ¢z(w) [ { aT, {az,A J} - i/3zwaT {az,A J 

+ {a z, {aT,A j} + i/32waz { af,A J ] 

+ ! ¢3(0) [ {aTaz, { a ,aT,A J } 

+ {a1ai,{aTaz,A J}], 
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where 

~H=~ ('" (_i[e-iw'tPI(t)-eiw'tPI(-t)] 
2 Jo 
+ [e-iW'IPI(t) - eiW'IPI( - t)]ata l 

- i[ e - iW'tPZ(t) - eiW'tPz( - t)] 

+ [e - iW'IPZ(t) - eiw' IPz( - t )] ataz 

- i[ tP3(t) - tP3( - t)] [ataz - ata d 

+ [ IP3(t) - IP3( - t) ]ata lataz) dt. (5.26) 

We suppose ¢I(W) = aI' ¢z(w) = a 2, ¢3(0) = a3 to be strictly 
positive. Then the matrix (a ij) (3.16) is strictly positive for all 
(q,p). 

Proposition 5.6: tP, has a unique stationary statep. In 
spite of the time-reversal invariance of U?L: andpref' the de
tailed balance condition of Graham and Haken does not 
hold, unless {J I = {J2' 

Proof The stationary state has been explicitly con
structed in Ref. 30, as a convergent expansion in powers of 
{JI - (J2·1t is strictly positive, hence unique by Theorem 5.5, 
and is invariant under the gauge transformation 

a l f---+ e - i{j'a l, az f---+ e - i{j'a2, tJI,tJZ E [0,21T). 

Then, putting p = Ne - Q, we may write 

tP = tP (JI,J2), Jj = ajaj , j = 1,2. (5.27) 

The explicit form of p is not needed here; it suffices to show 
that there is no function tP (JI,J2) such that ! ~H, tP J = 0 and 
Lh(A ) = !A,~H J. Since ~H is a function of J I ,J2 , we have 
! ~H, tP J = 0 automatically. Taking into account (5.3), the 
condition L h (A ) = ! A ,~H J becomes 

I [~kk'(Wk)V -k' + ¢kk,(wkll V - k" tP J] 
k,k' 

a x- Vk = 0, j = 1,2, (5.28) 
aall 

) 

whereaJ = aj or aj. Using the explicit form of Vk , we obtain 
the two equations 

~I(w)at + ¢1(wlIat, tP J + ¢3(0)!ata2, tP Jat = 0, 

~z(w)at + ¢2(w)!at, tP J + ¢3(0)!a lat, tP Jat = 0, 

and the complex conjugate equations. More explicitly, we 
find 

al(~ tP - (Jlwat) 
aa l 

- a3(atat ~ tP - ata2 ~ tP ) = 0, 
aat aa l 

az(~ tP - (J2wat) 
aa2 

- a3(at at ~ tP - atal ~ tP) = O. 
aat aaz 

Since tP = tP (JI,J2), we have 

a~ tP = aj :'. tP, 
) ) 

a a 
tP a tP j = 1,2; 

aaj = j a~ , 

1061 J. Math. Phys., Vol. 25, No.4, April 1984 

(5.29) 

(~tP - (J2W) + a3 J I (~tP - ~ifJ) = O. 
aJz a z aJz aJI 

We add and subtract the two equations, obtaining 

(~+~)tP+~(a2JI-aIJ2) aJI aJ2 a la 2 

X C~I - a~J tP = ({JI + {Jz)w, 

[ 1 +~(a2JI +aIJz)] (~-~)tP=({JI- {Jz)w. 
a la 2 aJI aJ2 

We introduce new variables u = J I + J2, u = J I - J2 and 
parameters A = (a3/2a la2)(a I + az), 
f-l = (a3/2a la2)(a2 - a tl and get 

~ tP + (Au + f-lu) ~ ifJ = ~ ({JI + f32)W, 
au au 2 

(5.30) 

a 1 
(1 + AU + f-lu) - tP = - ({JI - {J2)W. 

au 2 

The solution of the linear system (5.30) is 
a 1 

- ifJ = - (/31 + {J2)W 
au 2 

- ~({JI - (J2)w(AU + f-lu)( 1 + AU + f-lU),-1 
2 

(5.31) 

~tP=~({JI- {J2)w(1 +Au+ f-lu)-I. 
au 2 

If {JI = {J2 = {J, the solution is ifJ = {Jwu, i.e., p = Ne - PH. 

If {JI i= {Jz, the compatibility condition 

2 a ZifJ a 1 

au 1 + AU + f-lU 

a AU + f-lU 

au 1 +Au + f-lu 
is violated [the above equality is equivalent to 
(A 2 - f-lZ)u = f-l - 1] .• 

(5.32) 

We remark that the usual "proof' of detailed balance 
from time reversal6 is reliable only in the case of a system 
coupled to a thermal reservoir, in that it tacitly assumes that 
PPref is at least approximately invariant under the coupled 
dynamics U?L: (cf. Ref. 21). In the case ofa system coupled to 
a reservoir at a given inverse temperature {J, this approxi
mate invariance follows from the stability of KMS 
states/l,lO but such an assumption need not be true for a 
system coupled to several reservoirs at different tempera
tures and is definitely false in the quantum case. 1,2 However, 
as we shall show in the following section, the detailed ba
lance condition of Graham and Haken holds as a conse
quence of time-reversal invariance alone for a one-dimen
sional harmonic oscillator weakly coupled to several 
reservoirs, possibly at different temperatures. Hence the de
tailed balance condition of Graham and Haken, in contrast 
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to the quantum detailed balance condition, does not have the 
role of singling out thermal reservoirs at the same tempera
ture. This was to be expected in view of the variety of exam
pIes (see Refs. 6 and 7) of Fokker-Planck equations (how
ever, not derived in the weak coupling limit a fa Davies) 
which often satisfy the Graham-Haken detailed balance 
condition also far from thermal equilibrium. 

6. STATIONARY STATE OF THE HARMONIC 
OSCILLATOR AND CLASSICAL KMS CONDITION 

Here we specialize the results of the previous section to 
the case of a single one-dimensional harmonic oscillator, 
coupled to several reservoirs. Taking advantage of the fact 
that there exists only one constant of the uncoupled motion, 
the Hamiltonian H, we are able to compute the stationary 
state p explicitly as a function of H. If the global dynamics 
and the reference states of the reservoirs are time-reversal
invariant, the detailed balance condition of Graham and Ha
ken holds. In conclusion, we prove that the stationary state is 
independent of the coupling if and only if all the reservoirs 
satisfy the classical KMS condition at the same inverse tem
perature (similarly to what occurs in the quantum case1,2). 
We let 

H S = H =! (p2 + u?q2) = wa*a, 

where 

a = (1/~)(Wl/2q + W- 1/2p). 

The eigenvectors Vk of I·,H J are of the form 

Vk = L Cmkam+n(kll2a*m-n(kll2, 
m>ln(k 11/2 

where n(k) E Z, n( - k ) = - n(k ) and where Cm, _ k 

(6.1) 

(6.2) 

(6.3) 

= Cmk , in order to have V _ k = Vt. The corresponding 
eigenvalues are 

- iWk = - in(k )w. (6.4) 

If n(k ) = n(k ') = n, we have 

VkV_ k· = L Cmk Cm'k,(w-1Ht+ m', (6.5) 

and 
m,m'>lnll2 

I Vk,V -k' J = - in L Cmk Cm'k,(m + m') 
m,m'>lnll2 

X(w-1Ht + m' - I 

= - iWk ~(Vk V -k')' 
dH 

(6.6) 

We shall frequently need in the following the expression 

2 

= L aij(J j H)(Jj H)=G(H»O, (6.7) 
j,j= 1 

where the matrix (a j;) is given by (3.16). 
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Proposition 6.1: If G (H) is strictly positive for all values 
of H # 0, then there exists at most one stationary state 
p = p(H), which is given by 

p(H) = N exp [ fH G(H/)-l L (- iWk ~kk,(wd 
Jo k,k' 

X Vk V _ k' )(H /) dH / ] (6.8) 

whenever the above expression defines a state. 
Proof If the stationary state is unique, it must be a con

stant of the uncoupled motion, since L commutes with 
I·,H J. Hence we look for a stationary state of the form 
p = p(H). Then I DH, p J = O. Upon defining 

b(H) = p(H)-1 ~p(H), (6.9) 
dH 

the stationarity condition (5.7) becomes 

0= L ![ ~kk' (wk) - iWk ¢kk' (wk)b (H)] 
k,k' 

x V _ k' p(H), Vk J 

= p(H) L (w~ ¢kk,(wdb '(H)Vk V - k' 
k,k' 

- [ ~kk,(wd - iWk ¢kk,(wk)b (H)] 

X [I Vk, V _ k' J - iw k b (H )Vk V - k' ]) 

= p(H) 1,;, (W~¢kk'(Wk)b '(H)Vk V - k' 

+ iWk [ ~kk' (w k) - iWk ¢kk' (wdb (H)] 

X [b (H)Vk V - k' + d~ (Vk V - k' )]), (6.10) 

where we have taken into account (6.6). Then, defining 

F(H) = L iW k 
k,k' 

X [ ~kk' (wk ) - iWk ¢kk' (wdb (H)] Vk V _ k" 

(6.11) 
we see that (6.10) is equivalent to 

~F(H) + b(H)F(H) = 0, 
dH 

whose solution is 

(6.12) 

F(H)=F(O)exp[ -SoH b(H')dH'] =0, (6.13) 

since (Vk V _ k' )(0) = O(Wk = wk,), by (6.5). Recalling the de
finition (6.7) of G (H ), and assuming G (H) to be strictly posi
tive for H #0 (for H = 0 it certainly vanishes), we find from 
(6.11) and (6.13) 

b (H) = G (H)-l L (- iWk ~kk'(Wk)Vk V - k')' 
k,k' 

(6.14) 
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from which (6.8) follows .• 
As a special case, we consider the situation in which the 

reservoirs are thermal, at possibly different inverse tempera
tures /3r' This means that there are index sets I" r = 1,2, ... , 
such that 
A A 

lPkk' = tPkk' = 0 if k E I r, k' E Is, r=/=s, (6,15) 
A A 

lPkk'(W) = -i/3rWtPkk'(W) for all W in lRifk,k' Elr. (6.16) 

Equation (6.16) is the classical KMS condition at inverse 
temperature/3r for therth reservoir, Eq. (6.15) states that the 
reservoirs are mutually independent. Then we may define 

(6.17) 

and we have: 
Corollary 6.2: For a one-dimensional harmonic oscilla

tor coupled to several reservoirs at inverse temperatures /3 r' 
the stationary state exists and is given by 

p(H) = N exp [ - 2;Pr(H) /3rH ], (6.18) 

where 

Pr(H) = ~ SoH G(H,)-IGr(H')dH', r= 1,2,.... (6.19) 

Remark: If G (H) vanishes at some H = H 0' then also 
Gr(Ho) vanishes for all r; thenpr is not uniquely defined and 
there exist more than one stationary state. For nonthermal 
reservoirs, it might happen that the denominator in (6.14) 
vanishes without the numerator vanishing; this is the reason 
why we have assumed G (H) > 0 for H> O. 

Now we consider the behavior under the time reversal 
operation Y. We choose the coefficients Cmk in (6,3) to be 
real, so that Y Vk = V _ k for all k; then the time reversal 
invariance of H SR is expressed by YV f = V ~ k for all k. If 
also the reference states of the reservoirs are time reversal 
invariant, this implies 

(V~k' Vf(t) = (Vf, V~k( - t) = (V~k Vf,(t), 
(6,20) 

({ V~k"Vf(t)J) = 

- ({ Vf"V~d - t)J) = ({ V~k"Vf,(t)J) 

(we have used {Yf,YgJ = - Y{ f,gj), from which it fol
lows 
A A A A 

tPkk'(W) = tPk'k(W), lPkk'(W) = lPk,dw) (6,21) 

for all W in lR and for all indices k,k '. 
Proposition 6.3: For a one-dimensional harmonic oscil

lator weakly coupled to several reservoirs, time-reversal in
variance implies the detailed balance condition of Graham 
and Haken. 

Proof For alIA in s;/, we have from (5.3) and (6.9) 

Lh(A) 
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hence the detailed balance condition of Graham and Haken 
amounts to 

I k,k' 

where all means a or a*, From (6.3) we get, for 
n(k) = n(k') = n, 

J 
V_k' - Vk Ja 

= a* I CmkCm'k,(m +! n)(a*at+ m'- 1, 
m,m'>\lnl 

= a I CmkCm'k,(m - ~ n)(a*a)m + m' - 1, 
m.m'>llnl 

(6.22) 

(6,23) 

where we have used the assumed reality of the coefficients 
Cmk = Cm. _ k' Inserting (6.23) into (6.22) and remembering 
F (H) = 0, with F given by (6.11), we see that the two equa
tions (6.22) reduce to the single equation 

I [~kk' (Wk) - iWk ¢kk,(wk)b (H)] 
k.k' 

x I mCmkCm'k,(w-1Ht+m' =0. (6.24) 
m.m'> In(k 1112 

We show that (6.24) indeed holds as a consequence of time 
reversal invariance. In the left-hand side of(6.24) we perform 
two relabellings of indices: 

(i) k----'> - k', k' ----'> - k, m -m' 

(then Wk ----'> - Wk' = - wk ); 

(ii) k-k',k'----'>k,m-m'. 

Under (i) the left-hand side of (6,24) becomes 

I [~kk'(Wk) - iWk ¢kk,(wk)b (H)] 
kk' 

x L m'CmkCm'k,(w-1Ht+m', 
m,m'> In(k 1112 

where we have used (3.13), (3.14), and Cmk = Cm. _ k' 
Under (ii), it becomes 

x I m'CmkCm'k,(w-1Ht+m', 
m,m'> In(k 1112 

where we have used (6.21). The above expressions are then 
equal and opposite, thus proving (6.24) .• 

Remark: The result of Proposition 6,3 was to be expect
ed, in consideration of a heuristic argument of Graham.7 

Finally, we prove that, if the stationary state is indepen
dent of the coupling, then the reservoir must be KMS (the 
converse result was obtained in Proposition 5.3). We let &t 
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denote the linear space of those reservoir observables A 
which satisfy 

L+",,"" I(A*A(t)ldt<oo, f-+",,"" I<lA*,A(t)J)ldt<oo. 

(6.25) 

We assume that for every win R there is anA", in f!J? such that 

We fix the reservoir R and couple it subsequently to various 
one-dimensional harmonic oscillators with different fre
quencies, by an interaction of the form 

AH SR =A L Vk Vf, (6.26) 
kEZ 

where the Vk are given by (6.3) and the Vf are in f!J? 
Proposition 6.4. If the stationary state of any one-dimen

sional harmonic oscillator weakly coupled to the reservoir R 
is independent of the coupling, then the observables in f!J? 
satisfy the classical KMS condition28

•
15 at some inverse tem

perature {3: 

L+",,"" e-;"'I <lA *,B(t)J) dt 

= - i{3w f-+ ",,"" e - ;",1 (A * B (t) dt (6.27) 

for all A, B in f!J?, w in R. 
Proof We fix A in f!J?, and we couple the reservoir to a 

harmonic oscillator with frequency WI' with an interaction 

AH sR = A (akA * + a*kA), kEN. (6.28) 

We let 

¢A(W) = f-+",,"" e-;"'I(A *A (t) dt, 

~ A (w) = f-+ ",,"" e - ;",1 <lA *,A (t)J) dt, 

and we choose WI such that ¢A (kwl)#O. Then the stationary 
state p(H) is unique and given by 

b (H) = - i~A (kwI)lkw I ¢A (kwtl. (6.29) 

By assumption, the stationary state is independent of the 
coupling; hence the left-hand side of(6.29) is independent of 
A and of k. The right-hand side is independent of HE (0,00). 

A 

If, for some A ' in f!J?, k' in N, tPA' (k 'WI) = 0 then also 
~A (k 'wtl = 0; otherwisep(H) could not be a stationary state 
for that coupling. Then there exists a (necessarily positive) 
constant {3 (WI) such that 

b (H) = -/3 (OJ I ), 

~A(kOJtl = - i{3 (wl)kOJI¢A (kwtl 

for all A in f!J?, k in N. (6.30) 

Now we prove that {3 (w I) does not depend on w I either. If we 
couple the reservoir to another harmonic oscillator with fre
quency OJ2 , we find, in analogy to (6.30), 
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~ A (kw2 ) = - i{3 (w2 )kw2 ¢ A (kw2 ) 

for all A in f!J?, kin N. 
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If WI andw2 are mutually rational, there exist k l , k2 EN such 
that kiWI = k2w2 = w#O. If we supJ>ose that for all win R 
there exists some A in f!J? such that tP A (w) # 0, we conclude 
that{3 (OJ I ) = {3 (w2 ) for any pair of mutually rationalfrequen
cies wl 'w2• By the continuity of ¢ A (w), ~ A (w), and by the 
density of the rationals in the real line, we find that {3 (w) is 
actually independent of OJ. SO we have 

~A(W)= -i{3W¢A(W) forallwinR,Ainf!J?, (6.31) 

where {3 is a positive constant. By polarization, we get (6.27) . 

• 
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A. Hernandez-Machado and M. San Miguel 
Departamento de Flsica Teorica, Universidad de Barcelona, Diagonal 647, Barcelona-28, Spain 

(Received 16 November 1982; accepted for publication 17 June 1983) 

We study nonstationary non-Markovian processes defined by Langevin-type stochastic 
differential equations with an Ornstein-Uhlenbeck driving force. We concentrate on the long 
time limit of the dynamical evolution. We derive an approximate equation for the correlation 
function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. 
Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the 
correlation function in cases in which it becomes independent of these parameters in the 
Markovian limit. Several examples are discussed in which the relaxation time increases with 
respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, 
the non-Markovicity of the process decreases the domain of stability of the system, and it can 
change an infradamped evolution into an overdamped one. 

PACS numbers: 05.40. + j, 02.50.Ey 

1. INTRODUCTION 
In this paper we study non-Markovian processes (NM) 

defined by Langevin-type stochastic differential equations. 
Several authors 1-8.37 have discussed the equation satisfied by 
the probability density of these processes. The knowledge of 
this quantity is not enough to decide about the Markovicity 
or non-Markovicity of a process. We focus our attention in 
quantities like the correlation functions and relaxation 
times, which give a characterization of the peculiarities of 
non-Markovian dynamics. These quantities cannot be ob
tained from the equation for the probability density. We also 
study non-Markovian effects in the time-dependent mo
ments and in the stability properties of the process. We con
sider Langevin-type equations without memory kernels and 
driven by an Ornstein-Uhlenbeck process. The processes so
lution of this type of equation is nonstationary besides being 
non-Markovian (NMNS). In the white noise limit of the Orn
stein-Uhlenbeck noise, the process becomes simultaneously 
Markovian and stationary. Nonstationarity is an additional 
complication which is not present in NM processes de
scribed by other equations of the Langevin type.3 This paper 
aims to study the dynamical characterization of those 
NMNS processes. 

The physical motivation of this work is that the type of 
equation mentioned above is the one used in the description 
of systems under the influence of external or parametric 
noise. This description is usually given in terms of pheno
menological equations,9 in which a parameter is substituted 
by a random process. This random processes is often mo
deled by an Ornstein-Uhlenbeck process or in a particular 
limit by a Gaussian white noise. 10,11 Such systems have been 
studied experimentally,1O and, in particular, dynamical 
quantities like relaxation times have been measured. 12 Our 
results in this paper describe the dynamical response to an 
external source of noise coupled to the system. They show 
the main differences in the dynamical behavior of the system 
with respect to the Markovian limit in which the Ornstein
Uhlenbeck process is replaced by a Gaussian white noise. 
The dependence of the stationary distribution on the param
eters of an Ornstein-Uhlenbeck noise has been determined 

experimentally. 13 In the same way it is possible to measure 
the dependence of a relaxation time on these parameters. 

A relevant aspect of this paper is that it gives a practical 
method that allows an explicit calculation of the dependence 
of the correlation function and the relaxation time on the 
parameters of the Ornstein-Uhlenbeck noise. This method is 
based on ideas similar to the ones used to calculate the prob
ability distribution of these processes5,I4, 15: It is based on an 
approximate calculation, by functional methods, of the re
sponse of the system to the stochastic driving force. This 
response function plays a central role in our development. 
We note that with this method we are able to deal with non
linear processes, while the practical usefulness of a direct 
application of more standard approaches based on cumulant 
expansions seems to be restricted to linear processes. 

A central result of this paper is the derivation of an 
approximate equation for the correlation function of a non
linear NMNS process. This equation shows that the dynam
ics of the process depends on the noise parameters in situa
tions in which it is independent of these parameters in the 
Markovian limit. This is, for example, the case for a process 
described by a single variable with "additive noise.6

" In this 
case, the Markovian limit of the equation for the correlation 
function is noise-independent. This also happens for a Brow
nian harmonic oscillator with stochastic frequency. Another 
interesting feature of this equation is the existence of a term 
which cannot be obtained from the equation for the prob
ability density of the process. This term becomes in some 
cases the dominant non-Markovian effect. We have found 
that the relaxation time is increased with respect to the Mar
kovian limit for the most general one-variable model with 
"additive" or "multiplicative noise6

" and for the Brownian 
harmonic oscillator with stochastic frequency. The origin of 
this common behavior is different in both cases. For the 
Brownian harmonic oscillator with stochastic frequency, we 
have also found important non-Markovian effects as the de
crease in the range of values of the intensity of frequency 
fluctuations for which the system is energetically stable and 
the possibility of a change of dynamic regime from an infra
damped to an overdamped mode. This possibility is due to an 
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effective reduction of the frequency of oscillation that also 
appears for a mechanic oscillator with stochastic frequency. 

The outline of the paper is as follows. In Sec. 2 we first 
discuss the peculiarities of the class of nonstationarity non
Markovian processes that we consider. This is illustrated by 
means of a simple example. Next we derive approximate 
equations for the moments and correlation functions of that 
class of NMNS processes. Sections 3 and 5 are devoted to 
several examples. We compare our results with those of oth
er approaches. We only consider linear processes (although 
with multiplicative noise) to concentrate on pure non-Mar
kovian effects independently of nonlinear complications to 
be studied in future work. Section 3 is devoted to a one
variable model which corresponds to the point reactor kinet
ic equation. 16.17 Section 4 considers a general N-variable 
model used in quantum optics. 18.19 A particular case corre
sponds to the mechanic oscillator with stochastic frequen
cy.20.21 In Sec. 5 we study the harmonic Brownian oscillator 
with stochastic frequency. 22-24 

2. CORRELATION FUNCTIONS OF NON-MARKOVIAN
NONSTATIONARY PROCESSES 

A. Non-Markovicity and nonstationarity 

Time-convolutionless Fokker-Planck equations for the 
probability density ofNM processes have been considered in 
Refs. 1-7. It has been pointed oue·5

-
7 that these are not bon

afide Fokker-Planck equations because the conditional 
probability of the process is not a fundamental solution of 
the Fokker-Planck equation for two arbitrary times. In gen
eral, for an NM process, the conditional probability 
a(q, t; q', t '), t> t " depends not only on t and t " but also on 
the previous history of the process. Only when t' = 0 is 
a(q, t; q', 0) a solution of the Fokker-Planck equation for 
the probability density P (q, t) with initial condition 
P(q', 0) = t5(q - q'). As a consequence, the Fokker-Planck 
equation can in general be used to calculate correlation func
tions like (q(t )q(O) but not (q(t )q(t ') for arbitrary t'. Here 
t = 0 is taken as the time in which the initial conditions of the 
NM process are specified. In Ref. 3 an explicit discussion of 
some of these facts was given considering a Gaussian NM 
stationary (NMS) process for which exact expressions can be 
obtained for a(q, t; q', t') and (q(t )q(t '). 

We are interested in the calculation of the correlation 
function and the relaxation time in the steady state of a pro
cess solution of a stochastic differential equation of the gen
eral form 

ij(t) = v(q(t)) + g(q(t ))s (t ), (2.1) 

where v(q) and g(q) are in general nonlinear functions of q. 
The stochastic force S (t ) is an Ornstein-Uhlenbeck process: 
A Gaussian process with zero mean and correlation function 

(s (t)S (t ') = r(t, t') = (D /1') exp( - It - t'I/1'). (2.2) 

A particular process is defined by (2.1) and a given initial 
condition at the preparation time t = O. Any solution of (2.1) 
is non-Markovian due to the fact that S (t) is not a white 
noise. 25 For whatever initial condition, the solution of (2.1) is 
also a nonstationary process. Therefore, Eq. (2.1) defines a 
class ofNMNS processes. These processes are characterized 
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by being a solution of (2.1) and differ from each other in the 
choice of initial conditions. The nonstationarity gives rise to 
some difficulties which are not present in the example dis
cussed in Ref. 3 for an NMS process. We note that in the 
limit 7 -+ 0, (2.1) defines a Markovian process which is also 
stationary when the distribution of initial conditions is cho
sen as the stationary distribution. This distribution is the one 
reached for t -+ 00 and arbitrary initial conditions. Never
theless, there do not exist two separate limits in which the 
process becomes NMS and MNS. Therefore, it is important 
to realize that, in the particular class of processes defined by 
(2.1), the effects of non-Markovicity and nonstationarity 
cannot be disentangled. Both have the same origin, which is 
the finite correlation time 7 of the stochastic force S (t). To 
clarify some features of this class of NMNS processes and 
the differences with NMS or MNS processes, we first consid
er a simple explicit example. This example is a Gaussian 
process defined by (2.1) with 

v(q) = - aq, a> 0, g(q) = 1. (2.3) 

Following the methods in Refs. 5, 14, and 15 one can imme
diately obtain the equation satisfied by the probability den
sity of the process P (q, t). This is a time-convolutionless 
Fokker-Planck equation with time-dependent diffusion co
efficient: 

a 
-P(q, t)-Lq(t)P(q, t), (2.4) at 

a a2 

Lq(t) = -aq +D(t)-2' (2.5) aq aq 
D(t) = .....!!....... {I - exp[ - (7- 1 + a)t J). (2.6) 

1 + 7Q 

The steady-state probability density Pst(q) is obtained as the 
limit for t -+ 00 of the solution of (2.4) with an arbitrary 
initial condition: Pst(q) = limt _ 00 P(q, t). This distribution 
corresponds to the stationary solution of (2.4) when D (t ) is 
replaced by D ( 00 ). 

The intrinsic nonstationarity of (2.1) is explicitly seen in 
this example: Whatever the initial condition P (q, t = 0), the 
solution of (2.4) depends on time during a transient. In parti
cular, even choosing P (q, t = 0) = P" (q), we obtain a nonsta
tionary process. In the example considered by FOX,3 the 
equation for P (q, t) also features a time-dependent operator 
Lq (t ). Nevertheless, the process is stationary when the sta
tionary distribution is chosen as initial condition.Mathema
tically this happens because the time dependence of Lq(t) is 
only given by a common factor a(t ), that is, Lq (t) = a(t )Iq. 
This does not happen in (2.5). The factorization of the time 
dependence of Lq (t ) follows from the assumption of a fluctu
ation-dissipation relation. In our case (2.1) has to be inter
preted as a phenomenological modeling of a system coupled 
to an external source of noise. This parametric noise is mo
deled by S (t). Therefore, the constant a in (2.3) and the noise 
parameters D and T are assumed to be independent. 

In passing, we note that there exists a Markovian non
stationary process (MNS) associated with the NMNS pro
cess (2.1), (2.2), and (2.3). It is defined by (2.1) and (2.3) and 

(S (t)S (t ') = 2D (t )t5(t - t ') (2.7) 
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and D (t ) given by (2.6). The bonafide Fokker-Planck equa
tion for this Markovian process is also (2.4). This explicitly 
shows that Markovicity cannot be decided in terms of the 
equation satisfied by the probability density. For r ---+ 0 and 
D fixed, (2.3) and (2.7) define an ordinary Markovian station
ary process which is also the Markovian limit of (2.2)-(2.3). 

The calculation of the steady-state correlation function 
of the example (2.2)-(2.3) is straightforward. Integrating 
(2.1 )-(2.3) with arbitrary initial conditions and using (2.2), we 
have 

(q(l )q(t /)SI = lim (q(t )q(t ')~ = Dr 
t,t'~ 00 (1 + ra)(ra - 1) 
t- t' =s 

(2.8) 

We can also consider the quantity (q(s) q(O) sl IC' This is de
fined as the correlation function of the process (2.3) with 
initial conditions at t = 0 given by Ps,(q). We have 

D 
(q(s)q(O)SIIC = exp( - as). (2.9) 

a(1 + ra) 

The two quantities (q(t) q(t /)SI and (q(s)q(O)stIC are two 
correlation functions which can be considered for the pro
cess defined by (2.1)-(2.3) and P(q, t = 0) = Pst (q). They are 
different because the process is not stationary. Nonstation
arity also implies that (q(t + s)q(t) sl IC =1= (q(s)q(O) sl IC for a 
finite t. 26 

The steady-state relaxation time TSI is given by 

TsI = lOOds(q(t)~(t')sl-~q);t =a-I+r. (2.10) 
o (q )st - (q)sl 

Similarly, a relaxation time can be defined for (q(s) q(O) sl IC 

T. = roo ds (q(s)q(O)stlc - (q);1 = a-I (2.11) 
o Jo ( 2) ()2 . o qSI-qsl 

In the Markovian limit of the process (r ---+ 0), TSI and To 
coincide. The dependence of TSI on r is a dynamical effect 
which we study in this paper for the class of NMNS pro
cesses defined by (2.1). To does not depend on r because 
(q(s)q(O) sl IC only depends on r through static quantities like 
(q2)sl' This dependence cancels in the calculation of To. 

The inequality of the two correlation functions defined 
above is an important difference with respect to the NMS 
example studied in Ref. 3. This inequality is a direct conse
quence of the intrinsic nonstationarity of the process. In fact, 
it is easy to see that, in general, this inequality holds for any 
nonstationary process regardless of its Markovian or non
Markovian character (see below27

). For NMS processes,3 the 
two correlation functions are equal. The existence of this 
inequality for the NMNS process precludes the use of the 
operator Lq(t) to obtain an equation for (q(t) q(t /)SI' In the 
following we will derive an approximate equation for this 
quantity for a general NMNS process specified by (2.1). Let 
us first summarize the situation for the different cases. We 
assume that the probability density obeys a Fokker-Planck 
equation of the form (2.4): 

(i) If the process is MNS like the one given by (2.1)-(2.3) 
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and (2.7), then (2.4) is a bonafide Fokker-Planck equation 
and the conditional probability obeys (2.4) for any t, t /. Thus 

d 
dt (q(t)q(t/) = «(Lq+q)(t)q(t'), (2.12) 

where L q+ (t) is the adjoint operator of Lq(t). This is, of 
course, true for any Markovian process. 

(ii) For an NM process, a(q, s; q/, 0) is in general a solu
tion of (2.4): 

:s a(q, s; q/, 0) = Lq(s)a(q, s; q', 0) (2.13) 

with initial condition a(q, 0; q', 0) = b(q - q'). Therefore, 

d 
ds (q(s)q(O) = «(L q+ (s)q(s))q(O)). (2.14) 

This equation is valid for arbitrary initial conditions. 
(iii) Consider now that we choose stationary initial con

ditions and that the process is then stationary (NMS). 3 For a 
stationary process we have that a(q, t; q/, t')' = a(q, s; q', 0) 
for arbitrary t' and t = t' + s. Therefore, from (2.13) 

:t a(q, t; q', t ') = Lq (s)a(q, t; q/, t ') (2.15) 

with 

a(q, t '; q', t ') = b(q - q'). (2.16) 

Thus, 

d 
dt (q(t )q(t ')~ sl = «(L t (s)q(t ))q(t 'I) sl 

= a(s)«(l q+ q)(t )q(t '),to (2.17) 

where we have used the relation Lq (t ) = aft )Iq • For station
ary initial conditions in (2.14), (2.17) and (2.14) coincide. This 
is in agreement with the fact that (q(s)q(O) sl IC and 
(q(t )q(t ')SI coincide for an NMS process. In the example 
discussed in Ref. 3 the non-Markovicity of the process is 
explicitly seen because the solution of (2.15)-(2.16) does not 
satisfy the Chapman-Kolmogoroff equation. 

(iv) For the NMNS process (2.1 )-(2.2) Eqs. (2.13) and 
(2.14) remain valid but the argument made above for an 
NMS process cannot be repeated here. Therefore, no general 
equation is known for (q(t )q(t ') sl up to now in this case. 

In conclusion, the steady-state correlation function 
(q(t )q(t ')SI cannot be identified with (q(s)q(O)sIIC for a 
nonstationary process. As a consequence, for an NMNS pro
cess we do not have an equation for (q(t )q(t ') sl expressed 
only in terms of the Fokker-Planck operator Lq (t ). From the 
point of view of the argument above, the difficulty is the 
nonstationarity of the process. But we remark that for the 
class of NMNS processes defined by (2.1), nonstationarity 
cannot be separated from non-Markovicity. Our goal is now 
to derive an equation for the correlation function 
(q(t )q(t ')SI of this class ofNMNS processes. 

B. Equations for the correlation functions 

In general it is not possible to obtain exact equations for 
the moments and correlation functions of a process defined 
by (2.1)-{2.2). Our strategy is then to look for systematic 
approximation schemes in which the zeroth-order approxi-
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mation is the Markovian limit 7 = O. We do that by consid
ering 7 as a small parameter. Our approximation essentially 
consists in an expansion in powers of 7. This program was 
already carned out for the equation satisfied by the probabil
ity density P(q, t) in Refs. 5, 14, and 15. From the approxi
mate equation for P (q, t) follows an equation for (q(t). This 
last equation can be directly obtained as follows: Averaging 
(2.1) we have 

:t (q(t) = (v(q(t))) + (g(q(t))S (t) 

= (v(q(t))) + Sa' dt , y(t, tt!( D:J~~:)). (2.18) 

In the last equality we have used the functional characteriza
tion of the Gaussian property of S (t ).14,15,28 Performing 
successive partial integrations over t I in (2.18) and using 
(2.2), we obtain an expansion in powers of 7. This amounts to 
an approximate calculation of the response function Dg(q(t ))/ 
DS (t I) by expanding around t I = t. 

We have 

f'dt , y(t, t l ) ( Dg(q(t))) = D exp( - t /r){ [7 exp(tl/r) 
Jo Ds(t l ) 7 

. ( Dg(q(t)) Dq(t))] I, = I _ [r exp( !.l) 
Dq(t) DS(t l ) 1,=0 7 

.( Dg(q(t)) d (Dq(t)))]"=' + ... }. (2.19) 
Dq(t) dt , DS(t l ) 1,=0 

Recalling that '4,'5 

Dq(t) I = g(q(t )) (2.20) 
Ds(ttl I, " 

~ Dq(t) I = v(q(t)) ag(q(t)) 
dt, Ds(tt! I, .1 aq(t) 

- av(q(t )) g(q(t ))_M (q(t)), (2,21) 
aq(t) 

we obtain 

f' dt r(t t )( Dg(q(t))) 
Jo I 'I DS(tt! 

"-' D ( ag(q(t)) g(q(t))) _ D7( ag(q(t)) M (q(t ))) 
aq(t) aq(t) 

_ D exp( _ ~)( ag(q(t)) Dq(t) I ) (2.22) 
7 aq(t) DS(tt! 1,=0 ' 

where the first terms neglected are proportional to Dr and 
D7 e - tIT. The last term in (2.22) contains the quantity Dq(t)f 
DS (t,) I t which is not immediately calculable in general. 

1_0 

Nevertheless, this is a transient term that can be safely ne
glected for t'~7. In this approximation and substituting (2.22) 
in (2.18), we obtain to first order in 7 

!!..- (q(t) = (v(q(t i)~ + D ( ag(q(t)) g(q(t i)) 
dt aq(t) 

- 7D ( ag(q(t )) M(q(t i)). (2,23) 
aq(t) 

The validity of keeping only terms to first order in 7 in the 
above 7 expansion depends on the value of 7, the range of 
values of q of interest and of the particular model. A discus
sion of this point in a related context is given in Ref. 15. A 
criterion of validity is obtained comparing the terms of order 
7 with the following term in the expansion of order r. Past 
experience with this type of expansion for the calculation of 
probability densities indicates that it gives good results for 
reasonably small values of 7.

14 

The equations for the correlation functions can be ob
tained along the same lines. Since q(O) is statistically indepen
dentofs (t ) the equation for (q(t )q(O) is derived with no extra 
complication: 

!!..- (q(s)q(O) = (v(q(s))q(O)) + D ( ag(q(s)) g(q(S))q(O)) 
ds aq(s) 

- 7D ( ag(q(s)) M(q(s))q(O)). (2.24) 
aq(s) 

In (2.24) transient terms have also been neglected. Therefore, 
this equation cannot be used to calculate To because, by its 
definition (2.11), To also depends on the time domain s S 7. 

The identical formal structure of (2.23) and (2.24) is a 
consequence of the fact that both can be obtained from the 
equation for P (q, t). The equation for (q(t )q(t ') requires 
more care: 

!!..- (q(t )q(t ') = (v(q(t ))q(t ') + (g(q(t))S (t )q(t '). 
dt 

(2.25) 

Proceeding as we did in (2.18) 

(g(q(t))s(t)q(t')) = f'dt , r(t, tt!( Dg(q(t)) q(t')) + (" dt , r(t, tt!(g(q(t)) Dq(t')). 
Jo DS(tt! Jo DS(t\) 

(2.26) 

The second term in (2.26) has no counterpart in (2.24) since Dq(O)f DS (t I) = O. The two terms in (2.26) can be calculated again by 
successive partial integrations. For the first term we have 

Sa'dt, r (t, tt!( D:J~~:) q(t ')) 

= f'dt , r(t, t l
)( ag(q(t)) Dq(t) q(t '))=D ( ag(q(t)) Dq(t) I q(t ')) 

Jo aq(t) DS (tt! aq(t) DS (tt! I, = I 

_ D7( ag(q(t )) (~ Dq(t)) I q(t ')) _ D exp( _ ~)( ag(q(t)) Dq(t) I q(t 'i), 
aq(t) dt , DS(t l ) 1,=1 7 aq(t) DS(tt! 1,=0 

(2.27) 

where the first terms neglected are proportional to Dr and D7 e - 1 IT. The last term in (2.27) is again a transient term that we 
neglect. Substituting (2.20) and (2.21), we have to first order in 7 
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f' dt 1 r (t, t d( 8g(q(t )) q(t ')) = D ( Jg(q(t)) g(t )q(t ')) - Dr( Jg(q(t)) M (q(t ))q(t ,)). 
Jo 8s(t l ) 8q(t) Jq(t) 

(2.28) 

For the second term in (2.26) we have 

- D exp( - ~)(g(q(t)) 8q(t ') I ), 
r 8s(t l ) t, ~o 

(2.29) 

where the first terms neglected are proportional to Dr e - It -- t ')IT and Dr e - t IT. Once again the last term in (2.29) is a transient 
term that we neglect. We remark that, given the definition (2.8) in which t, t' ~ 00, to neglect transient terms in the calculation 
of (q(t )q(t ')SI is not an approximation. In the definition (2.10) ofTs! we integrates = t - t' froms = 0 tos = 00, and therefore 
the first two terms in (2.29) cannot be neglected since we cannot assume that t - t ':>r. In an expansion in powers of r aimed to 
calculate Ts, ' the quantity e - It - t ')IT has to be regarded as being of zeroth order in r. Substituting (2.20) and (2.21) in (2.29), we 
have to first order 

(" dt l r (t, tl)(g(q(t)) 8q(t ')) = D exp [ - (t - t ')] f (g(q(t ))g(q(t '))) - r(g(q(t ))M (q(t '))) l. 
Jo 8s(t l ) r 

(2.30) 

From (2.25), (2.26), (2.28), and (2.30) we finally have 

~ (q(t )q(t ')SI = (v(q(t ))q(t ')SI + D ( Jg(q(t )) g(q(t ))q(t ')) - Dr( Jg(q(t )) M (q(t ))q(t ')) 
dt Jq(t) st Jq(t) st 

+ D exp [ - (t ~ t ')] I (g(q(t ))g(q(t')))st - r( g(q(t ))M(q(t')))st l. (2.31) 

This can be rewritten as 

where 

h (q) = g(q) - rM (q) 

and 

L q+ (r) = [V(q) + D J~~) h (q) ]Jq + Dg(q)h (q) J~ 

is the adjoint of the Fokker-Planck operator which appears 
in the approximate Fokker-Planck equation for the prob
ability density P(q, t ) of the process. 14.15 The comments made 
about the domain of validity of(2.23) apply also for (2.32). 
This question is further discussed for a particular example in 
Sec. 3 and in the Appendix. 

The two terms in (2.32) contain in a different way the 
effects of r being #0. The existence of the second term indi
cates that, as discussed in Sec. 2A, the equation for 
(q(t )q(t ') sl cannot be obtained from the equation for the 
probability density. This term dissappears in the limit r ~ O. 
The first term remains in this limit but with L q+ (r) replaced 
by the Markovian operator L q+ (r = 0). The second term in 
(2.32) is the main formal difference with (2.24). As seen in 
(2.29), it appears becauseS (t )andq(t ')arecorre1atedfort > t'. 
This correlation dissappears for r = O. Such a term vanishes 
in (2.22) since S (t ) and q(O) are uncorrelated because the sys
tem is prepared at t = O. 
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(2.32) 

(2.33) 

(2.34) 

Equation (2.32) is the starting point for the dynamical 
characterization of the steady state of the NMNS processes 
defined by (2.1) and in particular for the calculation of T,t . 
No general statement about the dependence of T,t in r can be 
made due to the nonlinear problem involved in the first term 
in (2.32). A point to remark is the importance of the contri
butions coming from the second term in (2.32). This is al
ready seen in the case of additive noise [g(q) = const]: The 
equation for (q(t )q(t ')st only depends on the noise param
eters D and 7 through those terms. Therefore, in the Marko
vian limit, the dynamics of (q(t )q(t ')st is independent of the 
noise parameters but it is not in the NMNS situation. In the 
Markovian limit (q(t )q(t ')st only depends on the noise pa
rameter D through the initial condition (q2)st. Therefore, in 
this limit, Tst is independent of the noise parameters. The 
importance of the second term in (2.32) is shown in the sim
pie example (2. 1)-(2.3). In that example, (g(q(t))5' (t )q(t ') can 
be calculated exactlv. and one obtains an eauation whose 
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solution is (2.8). Since Tst is linear in T [see (2.10)], the ap
proximate equation (2.32) leads to a correlation function 
which reproduces exactly the result (2.10). Explicitly, we 
have 

(g(q(t))S (t )q(t 'i) 

= (S (t )q(t 'i) 

= _D_ {exp [ _ (t - t'l] 
1 + Ta T 

- exp [ - ( ~ + at')]} 

~D(I-Ta)exp[ - (t~t'l (2.35) 

The approximate correlation function solution of (2.32) is 
the expansion of(2.8) to first order in T. In this simple exam
ple TSI is independent of D. The important point to remark is 
that the T dependence of TSI has its origin in (2.35) which is 
the term proportional to exp[ - (t - t ')IT] in (2.32). There
fore, this term originates the T dependence of TSI in this ex
ample, and it is the dominant non-Markovian effect. 

The equations above are easily generalized to the case of 
several variables q;, i = 1, ... ,N. We just quote here the re
sults. The generalizations of (2.1) and (2.2) are 

qi(t) = vAq(t)) + gij(q(t ))Sj(t), (2.36) 

(Si(t) = 0, (Si(t )Sj(t 'i) = D 0ij exp [ -
Ti 

It - t'l ]. 
Ti 

(2.37) 

We obtain 

:t (qi(t) = (v;(q(t))) +D (a~~~~;t/) gnj(q(t))) 

_ DT ( agij(q(t)) M .( (t i)) 
} aqn(t) njq 

- DT j ( a~~~~;t/) Kn/j(q(t ))S/(t)), (2.38) 

where29 

(2.39) 

(2.40) 

The last term in (2.38) has to be further elaborated in each 
particular case. The equation for (qi(t)q j(O) is formally 
identical to (2.38). For (qi(t)q j(t 'i) we have30 
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+ Dexp[ - (t - t ')]! (gidq(t ))gjk(q(t 'J) 
Tk 

- Tk (gidq(t)) [Mjdq(t 'J) 

+ Kjidq(t'))S/(t ')])I· (2.41) 

3. EXAMPLE I: ONE VARIABLE MODEL WITH 
MULTIPLICATIVE NOISE 

As a first application of the general equations derived 
above, we consider in this section the model defined by (2.1) 
and (2.2) with 

u(q) = - aq + e, (3.1) 

g(q) = - bq. (3.2) 

a, b, and e are constants, and a is chosen to be positive. This is 
a simple but nontrivial model because of the multiplicative 
character of the noise [g(q) being nonconstantl For e = 0 the 
model becomes mathematically much simpler, but it then 
has a degenerate steady state in the sense that 
P (q, t) ---+'-00 O. Besides its intrinsic interest as an illustra
tive example, this model is the point reactor kinetic equation 
used to describe the evolution of the number of neutrons in 
the presence of parametric noise in a n uc1ear reactor. 16.17 For 
e = 0 is a one-variable version of models describing the inter
action of an atomic system with a laser whose phase fluc
tuates. 18

•
19 The model admits a formal exact solution for 

(q(t), (q(t )q(t ').33 Here we concentrate in the calculation in 
first order in T which gives a more direct way of obtaining 
concrete information. In this approximation we obtain ex
plicit results which illuminate the general discussion of Sec. 
2B. 

To calculate Ts, we need to know (q)st' (q2)st' and 
(q(t )q(t ')s,' Specifying (2.23) to the model (3.1), (3.2) and 
setting (d /dt )(q(t) = 0, we have 

(q) = e(1 - TDb 2) + O(~). (3.3) 
sl (a -Db 2 ) 

An equation for (q2( t ) is obtained following step by step the 
method used to derive (2.23). We obtain 

~ (q2(t) = - 2a(q2(t) + 2e(q(t) 
dt 

+ 4Db 2(q2(t) - 4TeDb 2(q(t) (3.4) 
and therefore 

( 2) e
2
(1 - 3rDb 2) + 0 (~). (35) 

q st = (a _ 2Db 2)(a _ Db 2) . 

We then have to require that a > 2Db 2 to guarantee the exis
tence of steady-state values of (f) and (q(t )q(t 'i) .34 The 
equation for (q(t )q(t ')>'t follows directly from (2.32) and 
(3.1)-(3.2) (see the Appendix). Its solution can be written to 
first order in T as 
(q(t )q(t ')st = ({q2)st - (q);, )exp[( - a + Db L)(t - t ')J 

+ (q);, +rDb 2{I-exp[ _ (t~t')]) 
xexp[( - a + Db 2)(t - t ')J (q2)st 

_ TDb 2 exp [ _ (t ~ t ')] 

X [1 - expel - a + Db 2)(t - t ')]1 (q);t. 
(3.6) 
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A criterion for the validity ofEq. (2.32) for (q(t )q(t ')st can 
be given in this example by comparing the terms of order l' 
kept in (2.32) with the terms of order r, which are neglected. 
This comparison is made in the Appendix. We obtain for this 
model that to justify the approximation it must be 7Q < 1. 

From the definition of Tst> (2.10), (3.3), (3.5), and (3.6), 
we obtain to first order in l' 

1 
T,t = 2 + l' + 0 (r). 

a-Db 
(3.7) 

The quantity lI(a - Db 2) is the Markovian relaxation time. 
Therefore, we obtain the same result as that in (2.10): For a 
small 1'#0 a contribution l' is added to the Markovian value 
of Tst • It is easy to see that the terms proportional to 
l' exp[ - (t - t ')17] in (3.6) contribute in order r to Tst • The 
1'contribution comes from the term in (3.6) proportional to 1'. 
This term has its origin in the terms proportional to 
exp[ - (t - t ')17] in (2.32). Thus we conclude that for linear 
processes with additive or multiplicative noise Tst depends 
additively on l' (for small 1') and that this dependence is ob
tained from the second term in (2.32). For nonlinear pro
cesses the first term in (2.32) will also contribute to the l' 
dependence of Tst • 

In the simpler case with c = 0 it is possible to write 
explicit exact equations for (q(t) and (q(t )q(t 'I). From (2. 18) 
we have 

!!... (q(t) = - a(q(t) - b r'dt l ( 8
q
(t)) r (t, tl)' 

dt Jo 85'(td 
(3.8) 

The response function is calculated from the integral form of 
(2.1), (3.1), and (3.2) with c = 0: 

8q(t) = _ bq(t). (3.9) 
D5'(td 

Substituting in (3.8) (see also Ref. 35) 

:t (q(t) = - a(q(t) + Db 2[ 1 - exp( -;)] (q(t I)· 
(3.10) 

Similarly, substituting (3.9) in (2.25) and (2.26), we obtain an 
exact equation for (q(t )q(t '): 

!!... (q(t )q(t ') 
dt 

= - a(q(t)q(t') +Db 2
{ 1 - 2 exp( - t h) 

+ exp[ - (t - t')h]J (q(t)q(t 'I). (3.11) 

This equation is in agreement with the one obtained in Ref. 
36. 

4. EXAMPLE II. N-VARIABLE MODEL WITH 
MULTIPLICATIVE NOISE 

We consider here a particular example of (2.36) and 
(2.37) given by 

qi(t) = - IAijqj(t) - IBijqj(t)5'(t), ij= 1, ... ,N. (4.1) 
j j 

A and B are in general noncommuting matrices and 5' (t ) 
is the Omstein-Uhlenbeck process defined in (2.2). The 
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model is a generalization to N variables of (3.1H3.2) with 
c = O. The complications that appear in this generalization 
are due to the noncommutativity of A and B. As already 
mentioned, (4.1) is a general model used in quantum op
tiCS. IS.19 For a specific choice of A and B, (4.1) also describes 
the evolution in phase space of a mechanic oscillator whose 
frequency fluctuates around a mean value. 20

•
21 As we did in 

Sec. 3, we concentrate here on the calculation in first order in 
1'. 

An approximate equation for (q,(t) follows from 
(2.38): 

d 
- (q,(t) = I( - A'j + DB'kBkj 
dt j. k 

- 1'DB,dA, B ] kj )(q j(t) + 0 (r), (4.2) 

where [A, B] = AB - BA. It is interesting to note that the 
non-Markovian contribution proportional to l' only appears 
when A and B do not commute. If A and B commute, no 
contribution to any order in l' appears in the equation for 
(q,(t I). For [A, B] = Othe exact equation is a trivial general
ization of (3.10): 

d
dt (q,(t) = .2:( - Aij + DBjkBkj 

j. k 

X[I-exp( -;)])(qj(t). (4.3) 

A different approximation scheme than ours has been 
proposed in Ref. 18 to obtain an equation for (q,(t I). The 
first-order equation in such a scheme has been interpreted in 
terms of an approximation of Bourret's equation. 19 In com
parison with our scheme we wish to point out that the first
order approximation in Ref. 18 does not correspond to a 
first-order approximation in 1'. Indeed, when [A, B] = 0, the 
first-order equation of Ref. 18 still contains a correction to 
the Markovian equation (1' = 0). Such a term does not appear 
either in the exact equation (4.3) or in our approximation 
(4.2). On the other hand, Van Kampen's approximationS dis
cussed for this model in Ref. 19 reproduces the exact equa
tion (4.3) when [A, B] = O. For [A, B] #0 an expansion to 
first order in 7' of van Kampen's equation leads to our result 
(4.2). 

We now consider the equations for the correlation func
tion. The equation for (q,(t)q j(O) is formally identical to 
(4.2). An approximate equation for the correlation function 
(qi(t)q j(t ') follows from (2.41): 

!!... (qi(t)q j(t ') = I( - Aik + DBi/Blk 
dt k, I 

-1'DBi/ [A, B ]/d(qdt )qj(t ') 

+ I D exp [ - (t - t ')](BikB jl 
kl 7' 

+1'BidB,A ]jl)(qdt)q/(t'). (4.4) 

This equation is only valid for long times since transient 
terms have been neglected. In particular, if a steady state 
exists, (4.4) becomes an equation for (qj(t)q j(t ').t· 

A particular case of (4.1) is given by a mechanic oscilla
tor with position q, momentump, unit mass and stochastic 
frequency [n ~ + 5' (t)] 1/2 with mean value no: 
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q(t) = p(t), 

PIt ) = - [IJ ~ + S (t )] q(t ). 

The matrices A, B, and [A, B] are in this case 

A = (IJ ~ -~). B = (~ ~), 
(-1 0) 

[A, B] = 0 l' 

Equation (4.2) becomes 

!!...- (q(t) = (P(t I), 
dt 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

!!...- (P(t) = ( - n 6 + Dr) (q(t I)· 
dt 

(4.10) 

This means that for smallr and t:>rthe mean values oscillate 
with a frequency Q) = (IJ 6 - Dr) 1/

2. This effective reduction 
of the frequency of oscillation is a non-Markovian effect 
which disappears in the limit r _ O. For white noise fre
quencyfluctuations, (q(t) and (P(t) oscillate with the mean 
frequency no independently of the noise intensity D. 

The equations for the correlation functions are easily 
written from (4.4) and (4.7)-(4.8). 

5. BROWNIAN OSCILLATOR WITH FLUCTUATION 
FREQUENCY 

The stochastic differential equations that describe the 
evolution of the position q and momentum p of a Brownian 
harmonic oscillator of unit mass and fluctuating frequency 
are22-24,37 

q(t) =p(t), 

p(t)= -Up(t)- [IJ6 +S(t)]q(t)+77(t). 

(5.1) 

(5.2) 

Here IJo is the mean value of the frequency and S (t) the fluc
tuating part of IJ 2. This fluctuating part is modeled by the 
Omstein-Uhlenbeck process (2.2). The damping coefficient 
is U and 77(t ) is the thermal noise assumed to be Gaussian 
white noise with zero mean value and satisfying the usual 
fluctuation-dissipation relation: 

(77(t )77(t 'I) = 4AKB T <5 (t - t 'I. (5.3) 

The process (5.1) and (5.2) is NMNS due to the fact that S (t) is 
not a white noise. In the following we study non-Markovian 
dynamical effects (to leading order in the correlation time r) 
in the equations for average values, in the stability properties 
of the system, correlation functions and relaxation time. 
Equations (5.1 )-(5.2) are a particular case of (2.36) in which 
Sl = Sand S2 = 77 (r2 = 0). 

The approximate equation for the first moments follow 
from (2.38): 

:t (q(t) = (P(t I), (5.4) 

!!...- (P(t) = ( - IJ 6 + Dr) (q(t ) - U (P(t I). 
dt 

(5.5) 

The effective reduction of the frequency is the effect already 
found in (4.10) but here has an important consequence: The 
solution (q(t) of(5.4H5.5) decays to zero in aninfradamped 
oscillatory mode when A 2 < IJ ~ - Dr. It decays to zero in 
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an overdamped mode when A 2> IJ 2 - Dr. Therefore, 
changing the degree of non-Marko vi city measured by r it is 
possible to change the regime of the oscillator from the over
damped to the infradamped mode and vice versa when 
A 2~IJ6. 

The equations for the second-order moments are easily 
obtained by means of the r expansion used in Sec. 2B. We 
find 

(q(t )77(t) = 0, (5.6) 

(P(t )77(t) = UKB T, (5.7) 

(S (t )q2(t) = - 2Dr(q2(t) + 0 (r), (5.8) 

(S(t)q(t)P(t) = -D(1-Ur)(q2(t) +O(r). (5.9) 

Therefore, the approximate equations to first order in rare 

!!...- (q2(t) = 2(P(t )q(t I), (5.10) 
dt 

!!...- (P(t )q(t) = ~ (IJ 6 - 2Dr) (q2(t ) 
dt 

+ (P2(t) - U (P(t)q(t), (5.11) 

!!...- (P2(t) = 2D (1 - Ur)(q2(t) - 4,1 (P2(t) 
dt 

- 2IJ 6 (P(t )q(t) + 4AKB T. (5.12) 

If a stationary-state value exists for the second-order 
moments, this is given by the stationary solution of (5. 101-
(5.12) 

(Pq)st = 0, (5.13) 

(P2)st = (q2)st(IJ6 -Wr), 

2 UKBT 
(q)st= UIJ6- D (Ur+1) 

(5.14) 

(5.15) 

Equation (5.15) indicates that a finite stationary value of (q2) 
isnotreachedfort_ 00 whenUIJ~ - D(Ur + 1) <0. We 
then take the stability limit as D = Dc, where 

UIJ6 2 
Dc = ~UIJo(l- Ur). (5.16) 

Ur+1 

For D > Dc the oscillator is energetically unstable. It is easy 
to check that the condition D < Dc guarantees that the linear 
system (5.lOH5.12) has no real positive eigenvalue. The non
Markovicity of the process decreases the stability ofthe sys
tem in the sense that Dc is smaller than the critical value of D 
for r- O. 

We now consider the correlation functions in the steady 
state. From (2.41) we have 

:t (q(t)q(t')st = (P(t)q(t')sl' 

:t (P(t)q(t')st 

= {-IJ6 +Dr+Drexp[ _ (t~t')]} 

X (q(t)q(t')st - U (P(t)q(t')sl' 

:t (q(t )PIt ')st = (P(t )PIt ')81' 
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:t (P(t)P(t')SI 

=Dexp [ - (t~t')](I-Ur)(q(t)q(t')s, 

+ { -n~ +Dr-Drexp [ _ (t~t')]} 

X (q(t )PIt ') sl - U (P(t )p(t ') 51' (5.20) 

The position-position correlation function solution of 
(5.17)-(5.20) is given in the overdamped mode by 

(q(t)q(t')sl = (q2)sl exp[ -A (t - t')][coshw(t - t') 

+ (A 12UJ) sinh w(t - t ')], (5.21) 

where w2 = A 2 - (n ~ - Dr). In the infradamped mode we 
have an oscillatory decay of the correlation function 

(q(t )q(t ')SI = (q2)sl exp[ - A (t - t ')][cos wIt - t') 

+ (A 12w) sin wIt - t ')), (5.22) 

where w = (n ~ - Dr) - A 2. To obtain (5.21) and (5.22), we 
have neglected the term proportional to l' exp[ - (t - t ')/r] 
in (5.18), which gives a contribution to the correlation func
tion of higher order in r. 

Equations (5.21) and (5.22) exhibit an important non
Markovian dynamical effect: The correlation function de
pends on the frequency fluctuations not only through the 
static part (q2) sl but also through the effective frequency (w 
or w) which characterizes the dynamics. In the Markovian 
limit l' ---+ 0, the dynamical evolution of the correlation func
tion is independent of the frequency fluctuations. In this lim
it the evolution equations for the correlation functions do 
not depend on the frequency fluctuation. These only come 
into the expression of (q(t )q(t ') sl through the initial condi
tion (q2) sl' The same effect was already discussed in general 
after (2.32) for a single variable process with additive noise. 
Here we have a two-variable process with multiplicative 
noise such that the Markovian dynamics is noise-indepen
dent. Analogously to what happens in (2.10), this non-Mar
kovian dynamical effect manifests itself in a dependence of 
the relaxation time on the frequency fluctuations. This de
pendence does not exist in the Markovian limit: The relaxa
tion time of (q(t )q(t '» st as defined in (2.10) is, in the over
damped mode, 

T" = - + - KBTr + 0(72
) 

U ( 2,1)2 
n~ n~ 

(5.23) 

Here T~: is the Markovian relaxation time obtained in the 
limit 7 ---+ O. This result is qualitatively the same that we 
found in (2.10) and (3.7), that is, an increase of T" to leading 
order in 7 with respect to the Markovian limit. Nevertheless, 
this 7 dependence does not originate here in the terms pro
portional to e .. (I - I ')/', which have been neglected in the 
equations for the correlation functions. 

Finally, we wish to compare our results with other stud
ies of the problem of a Brownian harmonic oscillator with 
fluctuating frequency. In Refs. 23 and 24 the case 7 = 0 has 
been studied. Our results reduce to those of Refs. 23 and 24 
in this limit. For 1'#0 we have found that the dynamics de
pends on the frequency fluctuations and that the system is 
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energetically less stable. In Ref. 22, S (t) is taken to be a two
state Markov process instead of an Omstein-Uhlenbeck 
noise and in Ref. 21 thermal fluctuations modeled by 1]( t ) are 
neglected. Due to the simpler assumption for S (t ), an exact 
stability condition was obtained in Ref. 22. To first order in 
the correlation time of the noise, this condition coincides 
with our result (5.16). The stability condition of Ref. 21 is 
just the condition (5.16) with l' = O. The effect of a finite l' 
does not appear there due to the crudeness of the approxima
tion. There is no explicit expression for the relaxation time in 
Ref. 22 that could be compared with (5.23). 

ACKNOWLEDGMENTS 

We are indebted to J. M. Sancho and L. Pesquera for 
helpful comments. 

APPENDIX 

Equation (2.31) becomes, for the model (3.1 )-(3.2), 

~ (q(t )q(t ')'1 = ( - a + Db 2)(q(t )q(t '»51 
dt 

Integration of (AI) with (3.3) leads to (3.6) in first order in r. 
We now consider the first terms neglected in (2.31) for 

this case. The first nontransient terms neglected in (2.27) and 
(2.29) are, respectively, 

D~/ ag(q(t)) (~ Dq(t)) I q(t I)) (A2) 
\ aq(t) dti DS(t1) 1,=1 51 

and 

D~exp[- (t-t
'
) ] (g(q(t))( d: Dq(t

l
)) I ). 

l' dt 1 DS(t1) 1,=1' sl 

(A3) 
For the model (3.1 )-(3.2) we have 

Dq(t) = _ b exp { - (' dt' [a + bS (t 1)]q(O)} 
Ds(td Jo 

-cb fdtlex p{ - Idt" [a+bs(t"ll} 

= - bq(t) + cb J' dt I 

I, 

xexp { - I dt" [a + bS(t ")]}, (A4) 

and therefore 

d 2 Dq(t) I 
dti Ds(td 1,=' 

Substituting in (A2) 

- cb [a + bs(t)]. 
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(A2) = Drcb 2 [a(q),t + b (5 (t )q(t '),t] 

= Drcb 2[ a(q),t + b f' dt l y(t, t l ) 

x (bq(tl)) ] 
bs(tl ) st 

= Drcb 2{a(q)st 

_ D exp [ - (t ~ tl)]b 2(q),t + O(r)}. (A6) 

Substituting (A5) in (A3), 

(A3) = Dr exp [ _ (t ~ t 1)]Cb 2 

X [a(q)st +b (q(t)s(t')sd 

= Dr exp [ _ (t ~ tl)]Cb 2 

X [a(q),t +b (dt l y(t', tIl( bq(t)) ] Jo bs(t l ) st 

=Drexp [ - (t~tl)]cb2[a(q)st _Db 2 

X exp[( - a + Db 2)(t - t ')] (q)st + 0 (r)] ,(A 7) 

where (bq(t )lbs (tIl)st is calculated from (A4), recalling that 
5 (t ) is Gaussian and using a trivial cumulant expansion. The 
first terms neglected in (A 1) are given by the addition of (A6) 
and (A7): 

Wcb 2a(q)st +Drexp [ _ (t~tl)]Cb2 

X!a - Db 2(q) [1 + exp( - a + Db 2)(t - t')] I. (AS) 

Comparing these terms of order r with the corresponding 
ones of order r in (A 1) our criterion of validity for (A 1 ) gives 

1 >ra and 1 >1'(a - 2Db 2); (A9) 

since a > 2Db 2, we finally obtain r<a- I
• 

's. A. Adelman, J. Chern. Phys. 64, 124 (1976). 
2R. F. Fox, J. Stat. Phys. 16,259 (1977). 
3R. F. Fox, J. Math. Phys. 18,2331 (1977). 

1075 J. Math. Phys., Vol. 25, No.4, April 1984 

4p. Hiinggi, H. Thomas, H. Grabert, and P. Talkner, J. Stat. Phys. 18, 155 
(1978). 

sM. San Miguel and J. M. Sancho, J. Stat. Phys. 22, 605 (1980). 
6R. F. Fox, Phys. Rep. C48, 171 (1979). 
'p. Hiinggi and H. Thomas, Phys. Rep. 88, 209 (1982). 
8N. C. Van Kampen, Phys. Rep. 24,171 (1976). 
'If'or a microscopic approach to non-Markovian processes see: P. Hiinggi 
and H. Thomas, Z. Phys. B 26,85 (1977); H. Grabert, P. Talkner, P. 
Hiinggi, and Z. Phys. B 26,398 (1977); H. Grabert, P. Talkner, P. 
Hiinggi, and H. Thomas, Z. Phys. B 29, 273 (1978); S. Grossman, Z. Phys. B 
47,251 (1982). 

lOW. Horsthemke and R. Lefever, Noise-Induced Transitions, Series in Syn
ergetics (Springer, New York, to be published) . 

•• Stochastic Nonlinear Systems, edited by R. Lefever and L. Arnold (Spring
er, New York, 1981), papers by W. Horsthemke, R. Lefever, and M. San 
Miguel and J. M. Sancho. 

12S. Kabashima, S. Kogura, T. Kawakubo, and T. Okada, J. Appl. Phys. 50, 
6296 (1979). 

13J. M. Sancho, M. San Miguel, H. Yamazaki, and T. Kawakubo, Physica A 
116,5601 (1982). 

14J. M. Sancho, M. San Miguel, S. L. Katz, and J. D. Gunton, Phys. Rev. A 
26,1589 (1982). 

ISJ. M. Sancho and M. San Miguel, Z. Phys. B 36,357 (1980). 
16E. R. Quabili and M. Karasulu, Ann. Nucl. Energy 6,133 (1979). 
"K. Saito, J. Nucl. Sci. Tech. 17, 162 (1980). 
18S. N. Dixit, P. Zoller, andP. Lambropoulos, Phys. Rev. A21, 1289 (1980). 
lOp. Zoller, G. Alber, and R. Salvador, Phys. Rev. A 24,398 (1981). 
2OU. Frisch, in Probabilistic Methods in Applied Mathematics, edited by A. 

T. Barucha-Reid (Academic, New York, 1968). 
21R. C. Bourret, Physica 54, 623 (1971). 
22R. C. Bourret, U. Frisch, and P. Pouquet, Physica 65,303 (1973). 
23B. J. West, K. Lindenberg, and V. Seshadri, Physica A 102, 470 (1980); 

K. Lindenberg, V. Seshadri, and B. J. West, Phys. Rev. A 22, 2171 (1980). 
24N. C. Van Kampen, Physica A 102, 489 (1980). 
2SL. Arnold, Stochastic Differential Equations (Wiley, New York, 1974). 
261t is also possible to think of (q(t )q(t ')" as the correlation function of the 

process defined by (2.1H2.3) and arbitrary initial conditions in t = - oc). 

In this paper we consistently use t = 0 as the preparation time. 
21For the MNS process defined by (2.1), (2.3), and (2.7) the two correlation 

functions which we have defined coincide accidentally. This does not hap
pen for a general nonlinear MNS process. 

28E. A. Novikov, Zh. Eksp. Teor. Fiz. 47,1919 (1964) [Sov. Phys. JETP 20, 
1290 (1965)]. 

20M. San Miguel and J. M. Sancho, Phys. Lett. A 76,97 (1980). 
30Additionai contributions to (2.38) and (2.40) in first order in .,-31.32 vanish 

in the examples that we will consider. In these examples K = O. 
31H. Dekker, Phys. Lett. A 90,26 (1982). 
32L. Garrido and J. M. Sancho, Physica A 115,479 (1982). 
33M. A. Rodriguez and L. Pesquera, J. Nucl. Sci. Tech. 20,174 (1983). 
34The divergence for a = 2Db 2 is a typical feature of linear mUltiplicative 

stochastic processes. It reflects the importance of nonlinear terms in the 
stability properties. A term proportional to q3 in (3.1) would eliminate this 
divergence. 

3sH. Shibata, Y. Takahasi, and N. Hashitsume, J. Stat. Phys.17, 171 (1977). 
36S. Chaturvedi, Phys. Lett. A 90, 444 (1982). 
31For recent related work see B. J. West and K. Lindenberg, Phys. Lett. A 

95,44(1983). 

A. Hernandez-Machado and M. San Miguel 1075 



                                                                                                                                    

The generalized function solution of the Fokker-Planck equation for 
monoenergetic charged particle transport 
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The solution of the Fokker-Planck equation describing the motion of an isotropic burst of ions 
originating at the center of an infinite medium and undergoing small angle deflections is obtained 
in terms of generalized functions using the multiple collision approach. The resulting solution can 
be shown to define a functional on the test function space S~ for a>! and P<! and the space of 
polynomials specifying the dynamic moments. 

PACS numbers: 05.60. + w, 02.30. + g 

I. INTRODUCTION 

In many fields involving ion transport, the Fokker
Planck characterization continues to enjoy significant popu
larity.1-3 To date, however, surprisingly few analytical solu
tions to model Fokker-Planck transport problems exist. So
lutions of this nature, while serving to further our under
standing of the mathematical formulation of the physical 
processes involved, can also provide benchmarks against 
which numerical solutions can be compared in order to de
termine the accuracy of the numerical algorithms.4,6 The 
focus of this work, therefore, will be on the development of 
an analytical solution to a simplified problem concerning 
time-dependent monoenergetic ion transport in an infinite 
homogeneous medium. 

The multiple collision solution technique, which has 
proven to be very successful in other fields of transport the
ory,7.8 will be applied to the time-dependent Fokker-Planck 
equation for fast ions undergoing small angle scattering 
without energy loss. The basis for this technique lies in the 
decomposition of the ion density distribution into its colli
sional components resulting in a theoretical simplification 
due to a change in the mathematical character of the govern
ing equation. An expression for the angular density in the 
class of generalized functions is obtained which, when de
fined over appropriate test function spaces, defines a valid 
functional. 

II. MULTIPLE COLLISION FORMULATION 

For ions emitted isotropically at time t = 0 from a plane 
source located at the position x = 0 in a homogeneous infi
nite medium, the following Fokker-Planck formulation is 
appropriate if small angle scattering is assumed and energy 
loss is neglected: 

r~~ +fL~]f(X'fL,t) = r(v)~(l _fL2)~f(x'fL,t) l v at ax afL afL 

+~D(X)t5(t), (la) 

f(X,fL,t) =0, f<0, (lb) 

lim f(X,fL,t) =0, (Ic) 
Ixl~oo 

where 
f the ion angular density distribution, 

x the position of ions in the medium ( - 00 < x < 00 ), 

J.l the cosine of the angle between the ion direction of 
motion and the positive x direction ( - 1 <J.l < 1), 

t -the time after source emission (O<t < 00), 

v-the ion velocity, 

r(v)=N f~! a s ( fLo,v)(1 - fLo)dfLo' 

as (fLo,v)-the differential scattering cross section for angu
lar deflection, 

N number of scattering centers. 

When a series expansion of the form 
00 

fIx, fL,t) = L r'1n (x, fL,t) (2) 
n=O 

is introduced into Eqs. (1), and the coefficients of ~ are 
equated, there results the following infinite set of recursive 
equations: 

- - + fL- falx, fL,t) = ....:,5(x)t5(t), [ 
1 a a ] 1 
v at ax 2 

fn(X,fL,t) =0, t<O, n=O,I, ... , 

lim fn(x, fL,t) = 0, n = 0,1, ... . 
Ixl~oo 

(3a) 

(3b) 

(3c) 

(3d) 

Mathematically, the multiple collision formulation corre
sponds to the singlar perturbation approach where r is con
sidered a small parameter. Therefore, in general, the series 
solution representation given by Eq. (2) will not converge but 
will be asympototic to the solution. In the development to 
follow, however, it will be shown that Eq. (2) is actually an 
infinite series of generalized functions and will have, at 
worst, a finite radius of convergence in an appropriate space 
of test functions. 
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III. REDUCED EQUATIONS 

By integrating along the particle trajectory, Eqs. (3) are 
transformed into the following integral form: 

lo(x, p,t) = (1I2t )8( p - 77), 77==x/ut, t;;.O, (4a) 

In (x, p,t) = V r' dt' q n (x - pu(t - t '), p,t '), n = 1,2, ... , 
Jo+ 

(4b) 

with 

(4c) 

For the first and second collided contributions (n = 1,2), we 
have, for t> 0, 

II (x, p,t ) = uFI (p, 77), 

Iz(x, p,t) = uZtFz( P,77), 

where 

(5a) 

(5b) 

F
I
(P,77)-[ - (p/2)8(!)(P-77) + ((1 _pz)l6)8(Z)(p -77)]' 

(5c) 

Fz( P,77) = [(2/3!~(I)( P - 77) + (2/4!)(9 pZ - 4)8(Z)( p - 77) 

- W /5!),u( 1 - pZj8<3)( P - 77) 

+ (5.4/6!)(1 - p Z)28(4)(P_77)]. (5d) 

It is not surprising that the first and subsequent collided 
densities are generalized functions (derivatives of delta func
tions), since the uncollided contribution is a delta function 
and each scattering operation generates derivatives of the 
preceeding generation. In other words, the highly directed 
nature of the density distribution is due to the strongly for
ward peaked scattering assumed. 

Based on the forms oflo'/I' and/z, a natural conjecture 
for the form of In for t> ° is 

In (x, P,!) = u(uq - I Fn (P,77), (6) 

the proof of which follows by induction. Assume the conjec
tured form for In _ I : 

In - I (x, p,t) = u(ut r - 2 Fn _ I (P,77) 

yielding 

n 2 a z aFn_ 1 qn (x, p,t) = u(ut) - -(1 - p )--( P,77). 
ap ap 

Then, from Eq. (4b), 

i t 2a F n _ 1 In (x, p,t ) = u dt' u(ut 'in - -( 1 - pZ) __ ( P>77'), 
0+ ap ap 

where 

77'= [x - u(t - t')]It'. 

Upon a change of variable and the incorporation of the limits 
into the integrand using step functions (), we find that the 
conjecture holds for n with 

Fn (P,77)=(77 - pt - I f'" [() (77 - P~ - () (77 - 77')] 
- '" (77 - p)" 

X ~(1 - pZ)~Fn _ I (P>77'). 
ap ap 

(7) 

When Eq. (6) is introduced into Eqs. (3b) and (3d), we 
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obtain the following reduced equations for Fn, n = 1,2, '.' : 

[(P-77) :77 + n - 1 ]Fn(P,77) 

= ~(1 - pZ)~Fn -I (P,77), 
ap ap 

(8a) 

lim Fn (P,77) = ° 
1'11~", 

(8b) 

with 
Fo(P,77)=!8(p- 77)· (8c) 

These equations are singular and must admit generalized 
function solutions. In the next section, a transformation will 
be applied to Eqs. (8) in order to remove the singularity and 
generate the solution. 

IV. SOLUTION OF THE REDUCED EQUATIONS 

The reduced equations are most easily solved by intro
ducing the Cauchy representation of Fn in the complex z 
plane9 

E ( ) __ 1 f'" d Fn(P,77) 
n p,z 2' 77 , 

tTl - 00 77 - z 
(9) 

which defines a distribution on the test function space B of 
infinitely differentiable functions which, along with their de
rivatives, vanish as fast as 111771 as 1771 goes to infinity.9 
Moreover, En is a sectionally analytic function with the real 
axis as its boundary. Also, ak En/azk vanishes at least as 
rapidly as 1IIzlk + I asz tends to infinity. When this transfor
mation is applied to the reduced equations (8a), they remain 
operationally invariant with respect to En' 

[( p - z)~ + n - 1 ]En (p,z) = ~ (1 - p2) ~ En _ I (p,z); 

(10) 

and, futhermore, the singular nature has been eliminated 
since z is restricted to the cut plane ¢( - 00,00). Fn is recon
tructed using one of the Plemelj formulas where one need 
only form the difference of the boundary values of En as z 
approaches the cut9 

(11 ) 

A recursion relation for the nth derivative of En with 
respect to z is obtained when n - 1 derivatives ofEq. (10) are 
taken: 

anEn a 2 a an - lEn I 
(p - z)-( p,z) = -( 1 - p )- - (p,z) 

az" ap ap azn - I 

which is initiated by 

- 1 1 1 
Fo( p,z) = - -. -- , 

2 2m p - z 

where Eqs. (9) and (8c) have been used. By induction, the nth 
derivative of Fn can be shown to be 

anEn 1 3n A 7( p) 
-a n (p,z) =-2 . I ( )1+ I' 

Z tTl 1 ~" P - z 
for n = 0,1, ... , 

(12a) 

where (after some algebra) we have 
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(I2b) 

with 

Ag =!, 
A i=O for 1 <n, I> 3n, 

and, for n = 1, 

A:(fl)=O, Ai(fl)=fl, Aj(fl)=I-fl2. (I2c) 

Upon integrating Eq. (I2a) n times over the interval (Rei</> ,z), 
where 0 < ItP 1 < 1T and then taking the limit as R approaches 
infinity, we find 

1 2n k' 
P( )=-L . 

n fl,z 21Ti k ~ I (k + n)! (fl _ Z)k + I 
(13) 

Since the boundary values of (fl - z) ~ Ik + II are 

[ 
1 ] ± = P 1 + i1T( - I)k {jlkl(fl-1]), 

(fl-Z)k+1 (fl-1])k+ I
- k! 

Eq. (11) gives the following expression for Fn in terms of 
generalized functions: 

F ( ) ~ (- 1 )k A n (){jlk I( ) (14) 
n fl,1] = ~ (k )' k + n fl fl - 1] . 

k~O + n. 

V. FINAL SOLUTION AND CONVERGENCE 

From Eqs. (2) and (14), the angular density is given by 

j(X,fl,t) 
1 "" 2n ( I)k 

=- L [vrt]n L - A~+n(fl){jlkl(fl-1])· 
tn=o k=o(k+n)! 

(15) 

The angular density will therefore be a generalized function 
of the variable x if, for each element tP (x) of a test function 
space, the functional 

(J,tP) = f: "" dx' tP (x/)j(x/, fl,t) 

exists. 10 The following are two examples of common test 
function spaces where sufficient conditions can be found for 
the existence ofjas a generalized function. 

A. Initial value problem 

Ifjis considered as a Green's function, then the solution 
[g(x, fl,t )] to Eqs. (1) for the spatially distributed initial con
dition (or source) 

g(x, fl,O) = W (x) 

IS 

1 "" 2n ( 1 )k (vt )k + I 
g(x, fl,t) = - L (rut)n L ~---''-'---'---

t n=O k=O (k+n)! 

XA ~ +n(fl)Q1kl(X - flvt). (16) 
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The question to be addressed at this point is the following: 
Under what conditions will the series defining the functional 
g converge? To determine sufficient conditions for the con
vergence of Eq. (16), bounds must be specified for both 
A ~ + nand Q Ik I. Consider, therefore, that Q Ik I belongs to the 
space oftest functions S ~ which have the following proper
ties: 

-infinitely differentiable; 
-lxiQlkl(x)I<CB k kkfJ/u

; (17) 
-the space is nontrivial for a + /3;;. l,a > 0,/3> 0; 
-for /3 < 1, Q (x) is an entire function. 

Next a bound on A Z + n must be found. 
Since A ~ + n can be shown to be a k th degree polyno

mial infl, A Z + n is also an entire function whenfl is extended 
into the complex z plane. Therefore from Cauchy's inequa
lity, we have the bound 

IA ~+dz)l<x~+dR), 
where 

Izl<R. 
In addition, the bound x~ + k satisfies [from Eq. (I2b)] 

x~ + dR ) = ~[R + 1 + R 2 ]x~:;: L I (R ) 
'0 '0 

(18) 

+ 2(n + k - 1)[R + 1 ~oR 2 ]X~:;:L2(R) 

with 

+(n +k-l)(n +k-2)(I +R2)X~:;:k_3(R) 

X~+k-O, k<O, k>2n, 

X~ = !Dk •O ' 

O<c<,o<R -14 

(I9a) 

(I9b) 

By induction, one can show from Eqs. (19) that X~ + k and 
therefore IA ~ + k ( fl) 1 is bounded by 

IA~+dz)I«sn/2eS)nnrnk, n=O,I, ... , k=0,I, ... ,2n, 

(20) 

where 

,;;.0, 0<sq/2 

and 

S (R ) = ~(R + 1 + R 2) + 3eS(R + 1 + R 2 ) 
'0'0 '0 
+ 32

( 1 + R 2)e2S. 

Thus by choosing 

R = 1 + E, E>C, 

an '0> 0 can always be found such that the bound given by 
Eq' (20) is valid for 

Izl = Ifll<1. 
With Eqs. (20) and (17), the series representation given 

by Eq. (16), can be shown to have the majorant 

g(x, fl,t )<C / exp[b '(tvB )1I1S -PI]exp[b " (svrt )1/11 - rl] 

(21a) 
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for 

and 

for 

s-/3 (1) b'>--exp -- , 
e s-/3 

1-r (1) b">--exp --, 
e 1 - r 

C" 
g<---------------

(1 - esuyt)(1 - eutB) 

r=l, /3=~, 

ut < min[ l/eB,l/eSY)' 

(21b) 

In addition, for the S ~ spaces to be nontrivial, we must 
require 10 

a>!. 
The above analysis therefore indicates that the multiple col
lision solution has meaning as a generalized function in the 
test function space S~ for 0 </3<! and a>!. 

B. Dynamic moments 

Another class of test functions over which the distribu
tionf exists is the polynomials that define the dynamic mo
ments 

MZ1 ( p,t) = S: 00 dx( p - 'Tff1(x, p,t), 1= 0,1, ... (22) 

yielding the representation 
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(23) 

With the bound on A ~ + k given by Eq. (20), M21 has the 
majorant 

M21 <hi exp[b " (uyts )1/(\ - rl], (24) 

and therefore Mz, is convergent for 0<1 < 00. 

VI. CONCLUSION 

A generalized function solution of the Fokker-Planck 
equation has been obtained which is a valid distribution in 
the test function space S~ for 0 </3<~, a>~ and the space of 
polynomials which define the dynamic moments. The result
ing functionals can be used to generate exact expressions for 
the moments associated with the ion motion which can then 
serve as benchmarks for comparison to numerical solutions. 
The solution methodology has also been applied to the 
Fokker-Planck equation describing Brownian motion and 
will be the subject of a future paper. 
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~onsidering all representations S (A ) of the proper Lorentz group which are equivalent to the 
dIr~ct sum of three unspecified inequivalent irreducible representations, each occurring with 
arbItrary multiplicity, the question is investigated as to what representations of the above class 
can support first-order relativistic wave equations for unique-spin, unique-mass particles. An 
important requirement made from the outset is that the equation shall not be equivalent to any 
simpler one in the presence of arbitrary interactions. Strong restrictions which result on the 
irreducible representation content of S (A ) are identified by a consideration of the Jordan 
canonical form of the matrix {3 0 entering such equations. With parity invariance as an additional 
requirement, it is shown that only 0 and 1 can be physical spins; classes of S (A ) which can lead to 
new equations for these spins are determined. Finally, the restrictions which are needed to hold 
down the minimal degree of {3 0 to low values (..;; 6) are also determined. 

PACS numbers: 1 LlO.Qr, 11.30.Cp 

1. INTRODUCTION 

It has been known for a long time that the introduction 
of interactions into relativistic wave equations for higher 
spin particles leads often to problems of consistency. 1.2 The 
study of consistency problems received a powerful impetus 
from the work ofVelo and Zwanziger,3 which revealed the 
existence of a hitherto unsuspected fundamental type of dif
ficulty (noncausality of propagation) in some familiar higher 
spin theories with external field interactions. The extensive 
studies which have been made since then have not only re
vealed further new types of difficulties but also shown that 
pathologies of one type or another occur in practically all the 
known higher-spin theories. (References to much of the rel
evant work may be found in the papers by Wightman,4 
Seetharaman et al.,5 and Mathews et al.6

) 

These, as well as more recent developments in connec
tion with supergravity theories (see, for instance, the papers 
by Oeser and Witten 7 and Duff and van Nieuwenhuizen8

) 

have aroused considerable interest in the search for new rela
tivistic wave equations with a richer structure than the famil
iar ones. The main feature of such equations9--13 is the nontri
vial multiplicity (i.e., exceeding unity) with which one or 
more irreducible representations (IR) of the proper Lorentz 
group appear in the representationS (A) according to which 
the wave function transforms. However, most of these equa
tions have turned out to be "barnacled" versions l2.14 off a
miliar wave equations, and hence no different from them 
even in the presence of arbitrary interactions; the effort 
which went into their construction has thus been fruitless. 

Since there is an endless number of possibilities for the 
choice of the representationS (A )-l:a".D("') (A )accordingto 
which J/! is to transform-the D (".) being the IR of the proper 
Lorentz group, a". their multiplicities, and the summation 

a) Permanent address: Department of Theoretical Physics, University of 
Madras, Madras 600 025, India. 

being a direct sum-the process of construction and testing, 
one by one, the equations based on such representations is 
also endless. To make an appreciable dent on the fundamen
tal problem of determining all possible relativistic wave 
equations (inequivalent to one another in the interacting sit
uation), one has therefore to try to deal with large classes of 
equations from which admissible ones would be identified by 
a systematic application of suitable criteria. The recent work 
of Cox 15 is a step in this direction; it employs graphical tech
niques which are particularly useful when repeated IR are 
not present in S (A ). (Cox's proof of the impossibility of mas
sive spin equations without repeated IR appears to us to be 
much simpler than the proof given later by Berends et al. 16) 
However if arbitrarily high multiplicities a". are allowed, the 
problem takes on quite a different complexion. Our aim in 
this paper is to tackle this problem, which has hardly been 
attempted so far. 

The broad question that we wish to address is that of 
determining all relativistic wave equations in the first-order 
form 

(i{3l'al' - m)J/! = 0, 

which: 

(Ll) 

(i) describe particles of unique physical spin s and mass 
m (with no degeneracy), and 

(ii) are unbarnacled, i.e., will not be equivalent, in the 
presence of arbitrary interactions, to any simpler equation. 

We shall use the term "acceptable theory" to denote 
any wave equation which satisfies these two conditions; it 
will be expressly understood that nothing more is implied by 
this term. It may be mentioned here that the use of condition 
(ii) is the major new element in our treatment. 

We do not have a solution to the above problem in all its 
generality; indeed that might be too much to expect. But we 
do find that if the number of inequivalent irreducible repre
sentations (IIR) in S (A ) is limited to a small number, then one 
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can make considerable headway in determining the implica
tions of the requirements (i) and (ii). A rudimentary illustra
tion of this was given in an earlier workl7 wherein it was 
shown that a full determination of all acceptable theories 
involving just two IIR could be made in an almost trivial 
way. The present paper deals with the class of all S (A ) which 
involve three (unspecified) IIR with arbitrary and unspeci
fied multiplicities. The analysis of this case is not trivial, 
though the mathematical tools required are rather elemen
tary. (They consist of certain properties of nilpotent matrices 
which are basic, but which the authors have not seen applied 
in physics hitherto.) It is not clear whether the methods used 
here would by themselves enable exhaustive classification of 
equations involving n = 4,5, ... IIR; but large subclasses of 
these also can undoubtedly be dealt with. (A summary state
ment of a few such results including part of those of the 
present paper have been published without proofs in a recent 
note. 18

) It is our hope that most classes of practical interest 
can eventually be analyzed and any new equations which 
emerge tested for consistency in the presence of interactions. 
In any case, we believe that even the present work by itself 
constitutes a breakthrough in this decades-old field: Never 
before had a way been found to impose the important phys
ical requirements (i) and (ii) on an infinite class of equations 
and to determine as end results the values of the physical spin 
possible in acceptable equations, the sets of Lorentz IR 
which can occur in them, and the mUltiplicities with which 
the IR can enter. (In earlier treatments of classes of equa
tions, such as those of Bhabhal9 and Hurley and Sudar
shan,20 algebraic conditions had been in the foreground, and 
one had to be content with whatever mass-spin content 
emerged from the postulated algebra.) 

We begin by summarizing in Sec. 2 the basic features of 
the structure of the matrix P ° (following from invariance 
requirements) which are central to our treatment. Most of 
these are well known, but a few do not seem to have been 
displayed explicitly or in precise form before. Next, in Sec. 3, 
we translate our acceptability conditions (i) and (ii) into 
mathematical requirements on the constituents of po. The 
manifestations of these requirements in the case of theories 
with three IIR and some of their consequences are dealt with 
in Sec. 4. Some restrictions on S (A ) which arise from these 
are deduced in Sec. 5, and the further restrictions which 
would follow if invariance under space inversion were also 
required are exhibited in Sec. 6. Section 7 is devoted to an 
enumeration of all representations S (A )-whether or not 
they would permit space inversion invariance-which 
would need to be considered if it were demanded that po 
should have a minimal equation of degree <6. Reasons for 
the special interest of such cases are mentioned at the end of 
Sec. 3. The closing section presents a discussion of the results 
obtained and some comments in relation to other work. A 
summary of certain properties of matrices (especially nilpo
tent ones) which are essential for our treatment is given in an 
appendix. 

This paper does not deal with the procedures for deter
mination of possible inequivalent skeleton matrices when an 
admissible S (A ) is given. The execution of that stage of the 
general program will be illustrated in a separate paper 
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wherein a spin 1 equation belonging to a class newly identi
fied in the present work will be examined in detail. It will be 
shown that the new equation (which involves repeated IR) 
will, with minimal electromagnetic interaction, be equiva
lent to the conventional (Proca)20 equation with a specific 
type of nonminimal interaction. 

2. INVARIANCE CONDITIONS AND THE STRUCTURE 
OF{3° 

A. Invarlance under the proper Lorentz group 

The mathematical constraints into which the require
ments (i) and (ii) of Sec. 1 translate can be expressed most 
conveniently as conditions on the matrixp ° in the canonical 
representation. The basis states of the representation are la
beled by r,j, and A. which identify the Lorentz IR and the 
quantum numbers of J 2 and Jz to which a state belongs. 
(When the IR r occurs with a multiplicity a'T > 1, an addi
tionallabel a identifies a particular one of these.) Lorentz 
invariance ofEq. (1.1) requires that the matrix elements of po 
should have the following structure: 

(r'a'j'A. '1,B°lrajA.) = c~:)t;T'T)8/j8A.'A.' (2.1) 

Here, the c~a'T) are the reduced or skeleton matrix elements, 
which may take arbitrary (possibly complex) values. The t;T'T) 
are Lorentz group Clebsch-Gordan coefficients. With 
r = (m,n) and r' = (m',n'), pJT'T) can be nonvanishing only 
if either 

(m' + n') = (m + n), (m' - n') = (m - n) ± 1 

and 

max(lm - nl,lm' - n'l)<j«m + n), 

in which case 

(2.2a) 

t;T'T) = [j(j + 1) - (m - n)(m' - n')] 1/2 (2.2b) 

or 

(m' - n') = (m - n), (m' + n') = (m + n) ± 1 

and 

1m - nl <j<min((m + n),(m' + n'l) 

in which case 

(2.3a) 

t;T'T) = [(m + n + l)(m' + n' + 1) - j(j + 1)] 112. (2.3b) 

It may be noted that 

t;'TT) = t;T'T) = t;rr') = t;T''r). 

[If r:=(m,n), its conjugate IR is 1"==(n,m).] A pair ofIR r, r' is 
said to be linkable if and only if there is at least one j for 
which t;T'T)#O. Whenever a particular pair r,r' is not linka
ble, the parameters c~';') associated with this pair may be 
taken to vanish without any loss of generality, and it will be 
understood that this is always done. 

According to Eq. (2.1), po is block-diagonal: 

(2.4) .. 
Each term in the direct sum here pertains to a particular spin 
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j; l.i is the (2j + I)-dimensional unit matrix (elements D,t"t!; 
andP~J)' which is called thespin:iblock or just thej-block, is 
made up of an array of sub blocks CIT'T)gY'T) associated with 
all those IR pairs 7',7 for which gjT'T);¢=O: 

(2.5) 

C IT'T) is an aT' X aT matrix, where aT is the number of times 
the IR 7 appears in S (A ); and the skeleton matrix Cis consti
tuted by the array of blocks CIT'T) [with 7',7 ranging over all 
the IIR contained in S (A )]: 

C = IICIT'T)II. (2.6) 

It will be noted thatp~J) for a givenjmay be obtained from C 
by deleting all ClrT) corresponding to every 7 (and every 7') 
which does not contain}, and then multiplying the remain
ing ClrT) by the respective gY'T). 

As has been observed by COX,21 it is always possible to 
separate the IR in S (A ) into two sets (say K and L ) such that 
no two IR belonging to the same set are linkable. Numbering 
the IIR of the set K as r = 1 ,2, ... ,k and those of L as 
k + l,k + 2, ... ,k + I, one gets the following structure for the 
skeleton matrix C: 

C= (~ ~, 
u = IICIT'T)II, 7' = 1,2, ... ,k, 7 = k + 1, ... ,k + I, 
V = IICIr'T)II, 7' = k + 1, ... ,k + I, r = 1,2" .. ,k. (2.7) 

Thej-blocks also then take corresponding forms: 

o (O~) 
PIJ) = V. 0' 

J 

~ = IICIT'T)gjT'T)II, r' EK, 7EL, 

~ = IICIT'T)gjT'T)II, r' EL, 7EK. (2.8) 

While ~ and ~ need not in general be square matrices, Xj 
and lj defined by the following equations are square: 

(2.9) 

B. Invariance under space inversion 

By a suitable definition of phase factors appearing in the 
definition of the parity operator and taking the IR in a suit
able order the requirements for parity invariance can be re
duced to the following conditions: 

(€T' _ €T)CIT'T) = 0 if r = 7 and 7' = 7', 

CWT) = €TCIT'T) and CITT') = €TCIrT') 

ifr=7,7'=/=7', 

CWT) = CIr'T) if r=/=+, 7' =/=+'. 

(2. lOa) 

(2. lOb) 

(2. We) 

The factor €T associated with every self-conjugate IR in the 
above is defined to be 

€T = 1 for scalars, polar vectors"", 

eT = - 1 for pseudoscalars, pseudovectors, .. ·. 

It will be noted that when both 7 and 7' are self-conjugate 
(and eT = eT') there is no restriction on CIT'T) while, in all 
other cases, different blocks of this skeleton matrix become 
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interrelated. In theories for half-integer spin, S (A ) cannot 
include any self-conjugate IR; if 7 is in the set K, 7 is in Land 
vice-versa. As a result, the conditions (2.10) for parity invar
iance reduce to a requirement that, in Eqs. (2.7) and (2.8), 

(2.11) 

In the integer-spin case, the IR contained in each of the sets 
K and L fall into three classes: self-conjugate IR and two 
mutually conjugate sets of non-self-conjugate IR. Conse
quently, the structure of U and V can be reduced to 

U= (: 
eR 

e~), V= (~ ~ €!), (2.12) 

T S eQ T S 

Q 
S 

where the first row of U pertains to self-conjugate IR present 
in K, the other two rows to the remaining two classes ofIR of 
K, and the columns of U are similarly associated with the 
three classes of IR of L. In V, the roles of K and L are inter
changed. There is no necessary relation between the blocks 
of U and those ofV. The € in (2.12) is the parity factor of the 
self-conjugate IR, which, according to (2.10), must be the 
same for all such IR. 

3. PHYSICAL REQUIREMENTS 

A. Inequivalence to simpler equations 

In order to avoid the appearance of barnacles [which 
would make Eq. (1.1) equivalent to another with P /L of 
smaller size even when arbitrary interactions are included], 
it is necessary and sufficiene4that the following conditions 
be met. 

Let CiT') be the aT-row matrix consisting of the row 
blocks CIrT') for given rand allr', and let CI'T) be the a T-

column matrix similarly defined. Then the requisite condi
tions are that 

(3.1) 

for every r present in S (A ). These are automatically fulfilled 
if no IR is repeated but impose significant restrictions on 
possible theories with repeated IR. The conditions (3.1) re
quire that for every 7 

Irl 
aT";; L Rank(Clrr'I),,;; L ar' (3.2a) 

T' r' 

lei 
aT";; L Rank(Clr'T))";; L aT" (3.2b) 

r' r' 

where the summation in (3 .2a) is over those r' for which there 
are nonvanishing C IT'T) standing in the 7 row of C-indicated 
by the superscript (r)-and the sum in (3.2b) is with reference 
to the 7 column of C. 

B. Unique mass and spin, and nondegeneracy 

The necessary and sufficient conditions for uniqueness 
and nondegeneracy are that all spin blocks p~J) withj=/=s be 
nilpotent while P ~I must also have the nonzero values + 1 
and - 1, occurring just once each. These are equivalent to 
demanding that the minimal equations of the i-blocks be of 
the form 
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and further that 

Tr(p ?,i = U)js' 

(3.3) 

(3.4) 

Correspondingly, the square matrices ~ and lj defined in 
(2.9) have to satisfy 

Tr Xj = Tr lj = DjS 

with 

Pj - qj = 1,0, or - 1. 

(3.5) 

(3.6) 

(3.7) 

This last property may be readily inferred from the fact that, 
by virtue of the definitions (2.9), powers of ~ and lj are 
interrelated: Xi = ~ Yi-IUj; Yi = UjXi-I~. As regards 
the relation between Ij and the correspondingpj and qj' there 
are two possibilities in view of item l(b) of the Appendix and 
Eq. (3.7): 

(3.8) 
An obvious consequence of the requirements (3.5) and 

(3.6) is the following useful lemma. 
Lemma 1: Xj (lj) cannot be nonsingular in an accepta

ble theory unless the dimension of Xj (lj ) is unity and j is the 
physical spin s. 

It may be noted here that the rather cumbersome"root 
method" ofSokatchev22 is really nothing more than the use 
ofthe condition (3.3), which was pioneered by Capri. 23 Equa
tion (3.3) implies the Harish-Chandra condition24 that the 
minimal equation of po be of the form 

( p 0)1 + 2 = ( P O( 

The value of I is max(lj). It determines directly the number of 
levels of constraints (primary,secondary, ... ) implied by the 
wave equation, and it appears that if I is large, the equation is 
prone to a variety of inconsistencies in the presence of inter
actions.6

•
25 For this reason, equations characterized by low 

values of I are of special interest. However, there is a lower 
bound26 on I, depending on the S (A ) involved. 

4. THREE-IIR THEORIES: SPECIAL AND COMMON 
SPINS 

Let T = 1,2,3 stand for three inequivalent IR, of which 
the last two are linked to the first. Then 2 and 3 cannot be 
linked to each other, and the most general form of the skele
ton matrix is 

Q 

o 
o 

where Q-CO.2) is an a l Xa 2 matrix, and so on. 
The conditions (3.1) demand in the present case that 

Rank(Q) = Rank(Q) = a2' Rank(R) = Rank(R' ) = a 3, 
(4.1a) 

Rank(Q,R) = Rank @) = a p (4.1b) 

and hence that 
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a 2,a3,al,a2 + a3' 

In particular, 

(4.2) 

a l = 1 implies a 2 = a 3 = 1. (4.3) 
Lemma 2: In an acceptable 3-IIR theory in which a l is 

equal to a 2(a3 ), Q and Q (R and R ) must be nonsingular. 
This follows trivially from the fact that if a I = a 2, then 

Q and Q are square matrices with rank [given by Eq. (4.1a)] 
equal to dimension. 

In seeking to implement the conditions onj-blocks 
which arise from mass-spin requirements, one observes that 
the nature of a particularj-block depends on whether thisj is 
contained in all three of the IR or in just two, or in only one 
of them. We shall refer to spins falling under these three 
types as common, special, and trivial spins, respectively. Tri
vial spins are ignorable as the correspondingj-blocks are 
null. 

The values of the special and common spins in the six 
different possible linkage types [i.e., orientations of the 1-2 
and 1-3 linkages in the (m,n) plane] are shown in Table I. It 
may be noted that in one of the linkage types (type V) there 
are two special spins, one occurring in the IR 1 and 2, the 
other in 1 and 3. In all other types there is no more than one 
special spin, occurring in IR 1 and in another IR which will 
by convention be chosen as 2. It will be taken for granted 
henceforth that the IR in which any special spin occurs are 1 
and 2 (all results being applicable with self-evident changes 
of wording to the case where it occurs in 1 and 3). 

We shall now note the forms of the j-blocks for special 
and common spins and also the implications of the "no-bar
nacle" conditions (4.1) for certain properties of the matri
ces-specifically, the ranks of p ?'l' Xj , and lj and hence the 
number of nilpotent irreducible Jordan blocks (niJb) which 
occur in the Jordan canonical form of each. 

(a) Whenj is a special spin: 

o (0 g'o·Q) P lJl = \gjQ (4.4) 

with gj = gjl.21• Recalling that Q and Q have dimensions 
a l Xa2 and a 2 Xa l , respectively, and that both must have 
rank a 2 by (4.1a), we can readily deduce the properties listed 
in Table II with the aid of items 2 and 3 of the Appendix. 
These properties have an important role in the developments 
oflater sections. One can also prove with the aid ofEqs. (4.1) 
that in the case of special spin blocks, (3.7) can be tightened 
to 

Pj - qj = + 1 

except that 

Pj - qj = 0 if a l = a 2 = a 3 = 1. 

(b) When j is a common spin: 

(4.5) 

withg; gjl.31• Noting that (gjQ,gjR) is an a l X(a 2 + a 3 ) 

matrix of rank a I-same as that of (Q,R )--one can infer the 
properties listed in Table III. It may further be shown that 
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TABLE!. Occurrence of special and common spins. [Notation: TheiR I is (m, n); (+ -) stands for (m + 1/2, n - 1/2), and soon. It is presumed thatm<n. 
Other cases follow on taking the conjugates of all three IR.] 

Linkage IR Special Common 
type 2 3 spins spins 

la(m = n) (- +) (+ -) nil I <;J<2m 
Ib(m > n) (- +) (+ -) (m-n) (m - n + 1)<;J«m + n) 
II (+ +) (- -) (m+n) (m - n)<;J«m + n - I) 

III (+ +) (+ -) (m-n) (m - n + 1)<;J«m + n) 
IV(m>n) (+ +) (- +) nil (m - n)<;J«m + n) 
V (+ -) (- -) (m+n), (m - n + 1)<;J«m + n - I) 

(m -n)* 
VI(m>n) (- +) (- -) (m+n) (m - n)<;J«m + n - I) 

Note: All the special spins occur in IR I and 2, except the one indicated by an asterisk, which occurs in I and 3. 

Pj - qj = - I 

in this case, with the aid of items 4 and 5 of the Appendix. 

5. SOME RESTRICTIONS ON S{A) ARISING FROM THE 
ACCEPTABILITY CONDITIONS 

Weare now in a position to prove that the acceptability 
conditions (i) and (ii) impose strong restrictions on the repre
sentation S (A ). 

Theorem 1: No acceptable theory can be based on a 
represen tationS (A ) which contains more than two non trivial 
spins. 

Proof: The requirement (3.6) demands, whenf1?Jl is giv
en by (4.5) or (4.4), that 

if Tr QQ + g/ Tr RR = Ojs' (5.1) 

(This includes special spins) too, for which g; = 0.) 
Two cases have to be considered. 
Case (a): If the IR 1 is self-conjugate, and 2 and 3 are 

mutually conjugate (I = i and 2 = 3, which is the case only 
in the linkage type la), then 

g; = gj for all ) (5.2) 

by virtue of (2.2). Then Eq. (5.1) requires that 

Tr(QQ + RR) = ojslif. (5.3) 

Once the value ofthe left-hand member is chosen to validate 
this equation fori = s, the equation cannot hold for any oth
er). Thus the IR 1,2,3 have to be such that only a single 
nontrivial spin occurs. Reference to the last two columns of 
Table I show that the only set of IR allowed in this category 
IS 

I (! d), 2 (0,1), 3 (1,0). 

These stand, of course, for a vector field and an antisymme
tric tensor field. 

TABLE II. Properties of thej-block for a special spin. 

Matrix Dimension Rank 

In1 a, +a2 2a2 

Xj a, a2 
Yj a 2 ;;>max(O, 2a2 - a,) 

<a2 
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No. of 
niJb 

a 1 -u2 

a) -az 
a 2 - rank 

Case (b ): In any linkage type other than la, if) and J are 
any two spins contained in S (A ), 

(g;lgj f#(g;lgJ )2 for i#J. (5.4) 

Consider then a nontrivial spin J 'Is of S (A ); application of 
Eq. (5.1) to J and s yields the requirement that 

Tr QQ = - rl/( g~2 g; - g;2 rl), 
(5.5) 

Tr RR = g? I( g;2 g; - g;2rl). 

Ifanyotherspin)( #J,s) were to exist inS (A ), Eq. (5.1)would 
require further that if Tr QQ + g/ Tr RR = 0, butthiscan
not be, on account of(5.4) and (5.5).Thus S (A) must be such 
as to contain no more than two nontrivial spins, which 
proves the theorem. 

What this theorem implies is that (in the notation of 
Table I) n can have no value other than 1/2, except in linkage 
type IV where n = ° also is allowed.27 [In this exceptional 
case, S (A ) contains only a single spin,) = m, and therefore 
Tr QQ and Tr RR are not independently determined by 
(5.1), as in type la.] 

Theorem 2: An acceptable theory cannot be based on a 
representation S (A ) unless the multiplicities of the three IR 
in S (A ) are such that 

a 2 +a3 >al (5.6) 

if S (A ) admits a common spin, and either 

(5.7a) 

or 

a I = a 2 = a 3 = 1 and ) = s (5.7b) 

if S (A ) admits a special spin). 
Proof Referring to Table III, we note that the matrix lj 

associated with a common-spin block has rank aI' of which 

TABLE III. Properties of the j-block for a common spin. 

Matrix Dimension Rank No.ofniJb 

PfJ1 a, + a 2 +a3 2a, a 2 +a3 -a, 

Xj a, <a, a, - rank 
Yj a 2 +a, a, a 2 +a3 -at 
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(a I - Ojs) is contributed by nilpotent blocks in its Jordan 
form. This must be not less than (qj - 1), the rank of the 
largest of the Jordan blocks. Further, qj cannot be less than 
the average size of the niJb (the ratio of total dimension of the 
nipotent blocks, namely a 2 + a 3 - OJ., to the total number 
ofniJb, a 2 + a3 - al)' Thus 

a 2 + a 3 - OjS 
---==----.:=--~=- <qj <al + 1 - OJ. 
a2 + a 3 - a l 

(for a common spin j). (5.8) 

The inequality of the two extreme members in the above can 
be reexpressed as 

(5.9) 

whence (5.6) follows. 
If a special spinj were present, considering Table II and 

applying to Xj the same kind of arguments as above, one 
would get the condition 

a l - OjS 
--'--':::'" <Pj «a2 + 1 - Ojs) 
a l -a2 

(for a special spinj), (5.10) 

whence 

(a2 - ojs)(a l - a 2 - 1»0. (5.11) 

If the first factor is nonzero, one immediately gets (5.7a); but 
if a 2 = 1 andj = s, no further restrictions on a I - a2 arise, 
thus admitting the additional possibility a I = 1 (and hence 
a 3 = 1 too) which does not fall under (5.7a). This is (5.7b). 

Equations (5.6) and (5.7) tighten the restrictions (4.2); 
both of them must evidently be required in all cases where 
S (A ) contains both a common spin and a special spin. 

The restrictions on S (A ) pertaining to various classes of 
linkage types, as embodied in Theorems 1 and 2, are dis
played in Table IV. 

6. PARITY-INVARIANT EQUATIONS 

Only two of the various linkage types can support par
ity-invariant equations. 

(a) Type Ia: Since this falls under case (a) of Theorem 1, 
the only S(A) to be considered is al(1I2,1I2) Ella2[(1,0) 
EB (0,1)] and it involves only a single nontrivial spin,j = 1. 
The equality of a 2 and a 3 is necessary for parity invariance as 

TABLE IV. Classes oflinkage types, and restrictions [beyond (4.2)], on the 
IRin each. 

Class 

A: No special spin 
AI: Single common spin 

A2: Two common spins 

B: One special spinj, and 
one common spinjc 

C: No common spin, 
two special spins 

Linkage 
types 

Restrictions on (m, n) 
and [a, J 

Ia n = ! az + a3 > a I 
IV n =0 
IV n = ~ az +a3 >a l 

Ib, II, n = ~ a, = az = a 3 = 1 
III, VI with s = j, 

or 

V 
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the IR 2 and 3 are mutually conjugate here. It is also neces
sary that R = EQ, as we see from Sec. 2. Consequently, we 
have that Rank(Q,R ) = Rank(Q,EQ ) = Rank(Q ) = a 2• But 
(4.1 b) requires this to be equal to a I' Therefore, it is necessary 
thata l = a 2• Then Lemma 2 requires that Qbenonsingular, 
making XI (which reduces to 2gi QQ) also nonsingular. This 
leads, in turn (by virtue of Lemma 4), to the requirement that 
a l = a 2 = a 3 = 1. The final result is that there is just one 
possibility only for parity-invariant equations under the lin
kage type la, namely one which involves a single vector field 
and a single antisymmetric tensor field-in other words, the 
Kemmer28 equation for spin 1. 

(b) Type//with m = n: The class of representations con
sistent with Theorem 1 in this case is 

S(A )-al(~' !)EBa2(1,I)EBa3(0,0) 

with a j subject to both (5.6) and (5.7), i.e., either 

a 1 = a 2 = a 3 = 1 and s = 1 

or 

(6.1a) 

a 2+a3 >al >a2 with s=o or 1. (6.1b) 

The first of these alternatives corresponds to the Ha
gen-Singh equation29 for spin 1. The second leads to a new 
class of equations which has not been studied or known hith
erto. The simplest of these is obtained by choosing the small
est values for the a j allowed by (6.1b), namely a l = 2, 
a 2 = 1, a 3 = 2. (The wave function then consists of two vec
tor fields, a symmetric traceless tensor field and two scalar 
fields.) With these values, we see from Tables II and III that 
thej-blocks for the special spin (j = 1) and the common 
(j = 0) have the following properties: 

fJ fl) has dimension = 3, rank = 2, contains one niJb; 

fJ~) has dimension = 5, rank = 4, contains one niJb. 

Suppose now that we want a spin 0 equation. ThenfJ fl) 
has to be nilpotent, and should be equivalent to a single niJb 
of dimension 3, whilefJ~) would also contain a single niJb of 
dimension 3 (besides eigenvalues + 1 and - 1). Conse
quently, the minimal equation of fJ ° would be ( fJ 0)5 = ( fJ 0)3. 
If, however, a spin 1 equation is sought, fJ~) would be nilpo
tent-a single niJb of dimension 5-resulting in the minimal 
equation (fJO)7 = (fJO)5. 

7. LIMITATION TO LOW VALUES OF I 

We now examine what possibilites might exist for con
structing new equations with fairly small values for the mini
mal degree-specifically, [,;;;4. Consideration will not be li
mited to parity-invariant cases, since such a restriction 
makes no material difference to the arguments, which are 
very simple. We only need to use the fact that with 1<4, allpj 
and qj must be < 2. The left-hand members of the inequalities 
(5.8) and (5.10) then require the following restrictions on the 
multiplicities. 

(a) If a common spinjc exists in the theory, 

(a 2 + a 3 - 0SjJ!(az + a 3 - all<qjc <2, (7.1) 

which reduces to 
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Recalling that we also must have a z <a l and a 3 <aI' we 
conclude that the multiplicities must be such that either 

a I = a z = a 3 (= a,say) 

or, only whenjc = s, 

a I = a with a z = a, a 3 = a - I 

or a z = a-I, a 3 = a. 

(7.2a) 

(7.2b) 

In case there exist two common spins, only (7.2a) is admissi
ble. 

(b) If a special spinjs exists in the theory, we have 

(a l - DsjJ!(a l - a 2 )<pj, <2. (7.3) 

It is a straighforward matter to see what the above condi
tions imply for the various classes of linkage types. The re
sults are summarized in column 2 of Table V. Column 3 
displays the restrictions arising from parity invariance, 
found in Sec. 6. 

8. DISCUSSION 

We have shown in the foregoing sections that the IR 
1=(m,n) to which 2 and 3 are linked in any of six ways must 
(for m>n)haven =! (apartfromalonecasewithn = 0) in all 
acceptable theories. Limitations on the multiplicities and al
lowed spins have also been established. When space-inver
sion invariance is required in addition-this being the situa
tion of greatest interest-we see from Table V that s can only 
be 0 or 1, nothing higher. This happens because of the IR 1 
getting pinned down as (~ , !) with 2 and 3 either (1,0) and 
(0,1) (linkage type Ia) or (1,1) and (0,0) (type II). The former 
yields none other than the Kemmer28 equation for spin 1. 
The latter includes the Hagen-Singh29 spin-l equation (the 
case a l = az = a 3 = 1) and a more general class involving 
repeated IR in which the spin may be arranged to be 0 or 1 by 
proper choice of the skeleton matrix. The spin-O equation 
recently proposed by Cox30 does not fall under one of these 
admissible cases, the representation involved 
[S (A )-2(! ' !) el (1,1) el (0,0)] being in violation of the require
ment a 2 + a 3 > a I (linkage II, Table V). It may be verified in 
fact that Cox's equation is barnacled. The simplest of the 
above-mentioned general class of type II is one with 
a l = a 3 = 2 and a z = 1, already discussed in Sec. 6. It is a 
member ofa subclass characterized by a l = a3 = a, 
a 2 = a-I, i.e., having 

TABLE V. Further restrictions on requiring either 1<4 or parity invariance. 

Class 
of 
linkage For 
types p<4 

For 
parity 

A2 

B 

c 

1086 

a,=a2=a,=a a,=a2=a,=I,s=1 
or a. = a' = a, a H = a - 1 

a, = a2 = a, = a not allowed 

a, = a2 = a, = I, s = j, only linkage II allowed, with 
or a,=a,=2,a2=I,s=jc eithera,=a2 =a,=I,s=1 

ora2 +a,>a, >a2,s =Oor I 

a2 + a, = a, not allowed 
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S(A )-a(! d) el (a - 1)(1,1) ela(O,O), 

in which the minimal degree I + 2 is (2a + 1) if s is chosen to 
be O. Proof of this requires a detailed analysis (based on the 
properties given in Tables II and III) which will not be pre
sented here. The analysis shows also that if s is taken to be 1, 
there are three possibilities in general for 1+ 2, viz., (2a + 3) 
or (for a>3) (2a + 1) or (20 - 1). The existence of several 
possibilities is a reflection of the fact that we have used only 
general conditions on the Jordan canonical form of thej
blocks following from (3.3) and (3.4), and have not tried to 
impose these conditions in full or to construct a skeleton 
matrix consistent with them. The process of carrying 
through this final stage will be illustrated in another paper, 
as already mentioned in the Introduction. 

Possibilities for spins higher than 1 are found to come 
only in representations S (A ) which do not permit parity in
variance or construction of a Lagrangian in conventional 
terms. Some of the allowed S (A ) have earlier made their ap
pearance in the Hurley-Sudarshan20 (H-S) analysis oftheor
ies which have ( f3 0)3 = f3 0 as the minimal equation for f3 o. 

They are listed in Table VI. (Note that there are no repeated 
IR in these.) The insistence on the algebra of degree 3 in the 
H-S work has had the consequence that the equations corre
sponding to each of these cases have solutions with two dif
ferent spins. On the other hand, our insistence on a unique 
spin causes the minimal equation of f3 0 in all the cases to be of 
higher degree, ( f3 0)5 = ( f3 of, as may be seen with the aid of 
Tables II and III. 
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APPENDIX 

Here we list certain properties of matrices (especially 
nilpotent ones) which one rarely encounters, but are needed 
in our work. 

Definition i: A nilpotent irreducible Jordan block (niJb) 
is a square matrix having all elements zero except those (all 
equal to unity) in the positions immediately above the main 
diagonal. In general, an irreducible Jordan block is (iJb) the 
sum of a niJb and some multiple of the unit matrix. 

Definition 2: If the minimal equation of a matrix M is 

TABLE VI. Admissible S (A ) which have appeared in the Hurley-Sudar
shan work. 2

{) 

Lin-
kage Spin 

SIAl type described 

(s, I) $ (s + 1/2, 1/2) $ (s + 1,0) I s 
(s, I) $ (s - 1/2, 1/2) e (s - 1,0) II s;;.! 
(s+ I, 1)$(s+ 1/2, 1/2)e(s+ 1,0) III s 
(s - I, 1) $ (s - 1/2, 1/2) $ (s - \, 0) VI s;;.t 

H-S 
classification 
no." 

4 
2 
2 
3 
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Mqrr(M - m i I)q, = 0 
i 

with m i #0, then q is the nilpotency index of M. 

(AI) 

1. The following properties of any niJb are self-evident 
or easily proven. Let Jd be an niJb of dimension d. Then: 

(a) The rank of Jd is (d - 1); 
(b) J ~ is equivalent to a direct sum of two niJb, both of 

which are of dimension d /2 if d is even, while one is of di
mension (d + 1 )/2 and the other of dimension (d - 1 )/2 if d 
is odd (the latter is nonexistent for d = 1). 

2. From I(a) and the fact that any square matrix can be 
similarly transformed to a direct sum of iJb, it follows that 
the number N of niJb in the Jordan canonical form of any 
matrix of dimension d and rank r is 

N=d-r. (A2) 

3. If UI is an ax/3 matrix of rank r l and Uz a/3 X(J 
matrix of rank rz, then for their product we have 

rank(UIUz)<min(rl.rz). (A3) 

The only circumstance in which one can assert what the rank 
is is if 

(A4a) 

in which case 

(A4b) 

4. If J is an niJb of dimension n and v an n-dimensional 
row vector, vJ n - I is null if v is linearly dependent on the 
rows of J and nonnull otherwise. 

To see this, we note that there exists, associated with J, a 
column vector U and a row vector v that the vectors 

(A5) 

form a linearly independent set of n column vectors and 

vn =v, vn _ I =vJ, ... ,VI=VJ n - I 

of row vectors, such that 

viUj =oij' 

Further, J can be analyzed in terms of these as 

(A6) 

(A7) 

J = UZv I + u3VZ + ... + Un vn _ I . (A8) 

From these equations it follows readily that J n - I = Un VI 
and hence 

v;ln-I=OniVI' (A9) 

Since the rows of J are linear combinations ofvl,vz"",vn _ I 
only, according to (A8), and vn is linearly independent of 
these, Eq. (A9) is the result we seek. 

5. Consider the Jordan canonical form of an arbitrary 
matrix M and the resolution of the space on which M acts 
into a direct sum of subspaces on which the individual iJb 
act. Associated with any nilpotent iJb (say J, of dimension n) 
of M, consider a row vector v which has vanishing compo
nents in all subspaces other than the one associated with the 
particular niJb under consideration and is vn (as defined in 

1087 J. Math. Phys., Vol. 25, No.4, April 1984 

the last paragraph) in the latter. Clearly, this vector is linear
ly independent of all the rows of M, and 

vMn-1 = vJ n- 1 #0 (AW) 

in view of (A9). There is one such vector for each niJb con
tained in M, and all these vectors are by themselves a linearly 
independent set too. Thus, associated with a matrix M, there 
is a set oflinearly independent row vectors (equal in number 
to the number of niJb in M) which are linearly independent 
of the rows of M. 

If the index of nilpotency of Mis q, there is at least one 
niJb of dimension q; the v associated with it (which is a mem
ber of the above-mentioned set) evidently possesses the prop
erty that 
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The Cartan map gives an isomorphism between spinors and isotropic vectors. Isotropic vectors 
F = E + IH satisfy the condition F • F = O. We show that via the Cartan map, the particle current 
for neutrinos is given by l = lEI, j = EXH/IE I, and the neutrino wave equation becomes 
D of = zD X F - (DF) • v, where v = j/l = EX HIE 2 = velocity field, DO = i(h 12)(a I 
at) - VO,D = - i (h 12)V - V, where h = Planck's constant and V = (VO,V) = external 
potential. This wave equation preserves the isotropic condition, and like the equivalent Dirac 
equation, causesj to be the conserved current. We show that the isotropic restriction on the vector 
field F accounts for the observable properties of a neutrino in an external field, in particular, for 
the observed spectrum of the energy, momentum, angular momentum, spin, velocity, and 
position operators. 

PACS numbers: lUO.Qr, 03.50. - z 

1. INTRODUCTION 

Historically, spinors were introduced into physics for 
the following four reasons: 

(A) To explain the observed spectrum of the energy, 
momentum, angular momentum, spin, position, and veloc
ity of a spin-half particle in an external field. 

(B) To obtain a first-order wave equation. 
(C) To obtain a positive probability density which is 

conserved. 
(D) To provide a relativistically covariant theory. 

However, there are also two problems with assigning spinors 
to physical states: 

(E) Spinors are tied to a specific Cartesian coordinate 
frame. l The spinor representation is not coordinatefree, and 
consequently spinor fields exist only on a very restricted 
class of space-time manifolds. 

(F) For the group of relativistic transformations to act 
properly, a spinor rP and its negative - rP must refer to the 
same physical state. 2 

These problems can be resolved by a coordinate map from 
spinors to the isotropic vectors, introduced by Cartan.3 Iso
tropic vectors F = E + zH satisfy the condition F • F = O. 
The Cartan map is locally one-to-one onto a manifold of 
vector states that do not have difficulties (E) and (F). 

Isotropic vectors are coordinate free; whereas spinors 
are tied to a specific Cartesian coordinate frame. To clarify 
this point consider the spinor 

5= [ ~] 

whose spin is "up the z axis". To identify the z axis, one must 
specify a particular Cartesian coordinate frame. 

Unlike spinors, isotropic vectors transform covariantly 
under arbitrary coordinate transformations. That spinors do 
not have any curvilinear components and hence are not gen-

erally covariant, is proved in the last theorem of Cartan's 
book on spinors.4 This creates enormous difficulties in gen
eral relativity, as discussed in Cartan's book. 

Generally, isotropic vector fields can be defined on any 
space-time manifold; whereas spinor fields exist only on a 
very restricted class of manifolds. Indeed, in order for spin
ors to be defined on a manifold, the manifold must admit a 
spin structure.s [A spin structure is a map that arbitrarily 
assigns to each SL(2,C) spinor frame a Cartesian coordinate 
frame, at every point of the manifold.] However, a spin struc
ture exists only if the manifold is parallelizable, and general 
space-time manifolds are not parallelizable. Since no such 
restriction is needed for the isotropic vector representation, 
isotropic vectors have a wider range of applicability than do 
spinors. 

For example, S 4 has been used as a space-time manifold 
for the Yang-Mills vector fields. 6 The isotropic vectors 
would allow spin-half particles to be represented as fields on 
S4; whereas spinors cannot be used. The Cartan map is an 
interesting example of a nonlinear homomorphism which 
preserves physical structure between two representations of 
the relativity group. Because the Cartan map is not linear, 
physicists previously considered spinors and isotropic vec
tors to be physically inequivalent representations. With the 
Cartan map in mind, perhaps there are other nonlinear equi
valences that could classify the irreducible projective repre
sentations of the relativity and other groups that model the 
elementary particles. 7 

The nonlinearity of the Cartan map is a consequence of 
the fact that F = E + zH satisfy a nonlinear condition, 
F • F = O. It is highly probable that other properties such as 
isotropic spin, strangeness, etc., also impose nonlinear con
ditions on the vector fields. These new conditions (which 
may be similar to the isotropic condition) could be discov
ered by nonlinear coordinate maps (similar to the Cartan 
map) from the usual representations into vector fields that 
satisfy the new conditions. 

For the isotropic vectors to be admissable as a model for 
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spin-half particles, they must satisfy properties (A)-(O) 
above. In this paper we study the Cartan map for a neutrino 
in an external field. 8 We show that the isotropic condition of 
the vector field F accounts for all the observed properties of 
the neutrino with regard to (A)-(O). 

The Cartan map is locally one-to-one from spinors onto 
the manifold of isotropic vectors. The theory of spinors and 
the theory of isotropic vectors are isomorphic theories. The 
isomorphism extends to all the properties associated with 
spinors. In particular (see the Appendix), the Cartan map 
commutes with Lorentz transformations, and preserves the 
eigenstates and eigenvalues of the energy, momentum, angu
lar momentum, spin, position, and velocity operators [estab
lishing (A) and (0)]. Thus a spinor field in a given state of 
energy, momentum, angular momentum, and spin is 
mapped into an isotropic vector field that represents the 
same physical state. If, for example, the spinor field is spin 
polarized up the z axis, so is the isotropic vector field. 

We show in Secs. 3 and 4 that both theories have the 
same probability current density, and have equivalent wave 
equations. These are the main results that are derived in this 
paper [establishes (B) and (C)]. A straightforward generaliza
tion of these results to bispinors representing massive parti
cles will be presented in a forthcoming paper. 

An outline of this paper is as follows: In Sec. 2 we intro
duce the subject of isotropic vector fields and discuss some of 
their properties. A number of new useful vector identities for 
the Cartan map are proved in Sec. 3, and we establish (C). 
Section 4 is devoted to establishing (B) [(A) and (0) are 
proved in the Appendix]. A short summary and conclusion 
are given in Sec. 5. 

2. ISOTROPIC VECTOR FIELDS 

Let (E,H) be the real (three-dimensional) vector compo
nents of a complex vector F defined by 

F=E+ lHEC 3
, 

where E,HER 3, C 3 = a complex three-dimensional vector 
space, and R 3 = a real three-dimensional vector space. 

It is well known that ifE and H are regarded as compo
nents of an electromagnetic field, then the Lorentz transfor
mations acting on F are represented by complex orthogonal 
matrices.9 Complex orthogonal matrices leave invariant the 
Euclidean quadratic form: 

F·F=F~ +F; +F; 
= E 2 _ H 2 + 21E. H . (2.1) 

Thus with respect to Lorentz transformations, E 2 - H 2 and 
E· H are invariants ofF. When these invariants vanish, F is 
called an isotropic vector. That is, by definition a complex 
vector F is said to be isotropic if F2 = O. 

The set of isotropic vectors F form a submanifold M of 

where C" = an n-dimensional complex vector space. The 
Cartan map is a coordinate map ofC 2 ontoM. Note that C 2 is 
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a flat space; whereasM has the same dimension as C 2
, but is 

not flat. 
Isotropic vector fields have special properties not 

shared by vector fields in general. One such property is that 
there exists a four-vector j defined by 

l=IEI, 

j=EXH/IEI· 

It is shown in Sec. 3 that via the Cartan map, the four-vectorj 
is the particle current density four-vector for neutrinos. 

In this paper we will show how the isotropic vector 
fields (E,H), with the four-vector j as the particle current 
density, give a vector model for neutrinos that is isomorphic 
to the usual spinor model. The main result ofthis paper, 
given in Sec. 4, is the derivation of the equivalent wave equa
tion 

D OF = mxF - (DF) • v , 

where 

F = E + IH = isotropic vector field, 

v = jl/ = velocity field, 

DO = i!!....i..- VO 
2 at ' 

D= -i!!....V-V 
2 ' 

h = Planck's constant, 

(2.2) 

a I at = partial differentiation with respect to time, 

v = gradient, 

V = (V°,V) = external potential. 

The wave equation (2.2) preserves the isotropic condition 
F 2 = 0, and also causes j to be the conserved current. 

The reader may notice the similarity of the neutrino 
wave equation (2.2) with Maxwell's equation, which is given 
by 

(2.3) 

However, in general, Maxwell's equation (2.3) does not pre
serve the isotropic condition F2 = O. Indeed, Eqs. (2.2) have 
the form that is necessary in order to preserve the isotropic 
condition F2 = O. 

Isotropic vector fields F of a single frequency are circu
larly polarized about the axis v, where 

v = jl/ = E X HIE 2 = velocity field. 

(The axis v will vary as a function of position.) The fields can 
be either right or left circularly polarized about v, which 
results in two possible spin states. Actually, by continuity 
only one spin state is possible for a given neutrino field. A 
neutrino field F (of a single frequency) is either right or left 
circularly polarized about the axis v. 

For neutrino fields, angular momentum eigenvalues are 
integer multiples of h /2, where h is Planck's constant. How
ever, the even multiples of h /2 do not give rise to fields F 
which satisfy the isotropic condition F2 = O. Thus the iso
tropic condition further restricts the possible angular mo
mentum eigenvalues to be odd multiples of h 12. This fact 
correctly accounts for the observed angular momentum 

Frank Reifler 1089 



                                                                                                                                    

spectrum. As a rule, the eigenvalues of any operator may be 
restricted by considering only those fields that will satisfy 
the isotropic condition. This rule applies to the energy, mo
mentum, angular momentum, spin, position, and velocity 
operators. 

For example, the z-component of angular momentum 
Jz for spinors is given bylO 

J = ih ~ + !!... 0" 
z JtjJ 2 z, 

where tjJ = spherical azimuth angle, O"z = Pauli spin matrix 
for the z axis, and h = Planck's constant. 

Via the Cartan map, Jz becomes 

where Sz = Proca spin matrix for the z axis. 
We see that the eigenvalues of Jz are integral multiples 

of h /2, but only odd multiples of h /2 will give rise to eigen
states which satisfy the isotropic condition. A similar analy
sis can be made for each of the operators mentioned above, 
since they all commute with the Cartan map (see the Appen
dix). 

3. ALGEBRAIC PROPERTIES OF THE CARTAN MAP 

In this section we derive some useful algebraic proper
ties of the Cartan map. Prior to defining the Cartan map, let 
us discuss some notation. Let us denote 

C n = a complex n-dimensional vector space. 

Primarily, we will be interested in C 2
, C 3

, and C 4
• We will 

denote elements of C 2 by Greek letters such as 

t~ [::J EC'. 

The elements of C 2 will be called spinors. The two compo
nents of a spinor SEC 2 are denoted by Sl and S2' 

We will denote elements of C 3 by Latin letters such as 

F~ [~] EC'. 

The elements of C 3 will be called vectors. The three compo
nents of F along the x, y, and z axes of a Cartesian coordinate 
system are denoted by Fx, Fy , and Fz. 

Finally, we will denote elements of C 4 by Latin letters 
such as 

Elements of C 4 will be called four-vectors. 
Definition: The Cartan mapll is defined to be the bilin

ear map b from C 2XC 2 into C 4 given by 

1090 J. Math. Phys., Vol. 25, No.4, April 1984 

(3.1) 

Note from Definition (3.1) that bOis antisymmetric, 
whereas b is symmetric in the variables sand t. That is, 

b O(S,l) = - b O(l,S), 

b(S,l) = b(l,S) . 

In particular, for any spinor S, 

bOIs,s) = O. 

(3.2) 

(3.3) 

We now proceed to state certain algebraic properties of 
the bilinear map b in the lemmas below: 

Lemma 1: For all spinorsp, S, andl which belong to C 2
, 

the following identities are true: 

b(p,s)' b(l,l) = - 2bO(p,l)bO(S,l), 

b( p,s) • b(S,l) = - b O( p,s)b O(S,l) , 

b( p,l) • b(S,l) = b O( p,l)b O(S,l) , 

b(s,s) • b(l,l) = - 2b 0(S,l)2 , 

b(S,l) • b(S,l) = b 0(S,l)2 , 

b(s,s)' b(S,l) = o. 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.4f) 

Lemma 2: For all spinors sand l which belong to C 2
, 

the following identity is true: 

b(s,s )Xb(l,l) = 2ib O(s,l)b(s,l) . (3.5) 

Next we define the notion of a conjugate spinor. 12 

Definition: If 

is any spinor, then a conjugate spinor s* associated with S is 
defined as 

s*=[ ~2JEC2, -s\ (3.6) 

where tl and t2 are complex conjugates of Sl and S2' 
Lemma 3: For all spinors sand l which belong to C 2

, 

the following identities are true: 

bO(S,l*) = bO(l,S*), 

b(S,l*) = b(l,S*), 

bO(S*,l*) = bO(S,l), 

b(S*,l*) = - b(S,l) . 

Now let us define 

j = b(s,s*), 

F = E + IH = Ib(s,s) , 

Frank Reifler 

(3.7a) 

(3.7b) 

(3.7c) 

(3.7d) 

(3.8) 
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where E and H are real vectors. We see from (3. 7a) and (3. 7b) 
thatj is real. Moreover, 

F* = E - zH = Ib(s,s) = Ib(s*,s*). (3.9) 
Lemma 4: The following identities are true: 

F·F=O, 

E·E=H·H, 

E·H=O, 

/=IEI, 

j=ExH/IEI· 

Proof From (3.4f) and (3.8) we have 

F· F = - b(S,S) • b(S,S) = ° , 

(3. lOa) 

(3. lOb) 

(3.lOc) 

(3.lOd) 

(3.lOe) 

which proves (3. lOa), (3. lOb) and (3.lOc) are simple conse
quences of (3. lOa). From (3.4d) and (3.8) and (3.9) we get 

:0 _ (F. F*)ll2 _ 
] - -2- -/E/, 

which proves (3.lOd). Lastly, from (3.5) we have, using (3.8) 
and (3.9), 

. . FXF* EXH 
J=/2T=~' 

which proves (3.lOe). • 
Lemma 5: For all spinors S which belong to e 2

, the 
following identities are true: 

/= lEI = Is12, 
(3.11) 

j= EI~~ =tTus, 
where t T = transpose conjugate of Sand u = (O"x,O"y,O"z) 
= Pauli spin-! matrices. 

I t is a consequence of (3. 11) that j transforms as a four
vector under relativistic transformations. I3 Also, the vectors 
E and H transform as components of an electromagnetic 
field tensor under relativistic transformations. 14 Further
more, the Cartan map which associates (E,H) with S maps 
spin eigenstates to the same spin eigenstates, as can be de
duced from Lemma 6(d) below. 

Lemma 6: For every pair of spinors sand t belonging to 
e 2

, and any vector v, the following identities are true: 

(a) b O(v' US,l) = V' b(sA , 
(b) b(v' US,l) = vbO(s,t) + ivXb(S,t), 

(c) b(v • US,S) = (v, S)b(s,s) , 

(d) If s is an eigenspinor of v • u with eigenvalue A, then 
b(s,s) is an eigenvector ofv • S with eigenvalue A, where 
S = (Sx ,Sy ,Sz) = Proca spin-one matrices. 15 

4. THE WAVE EQUATION 

Let V = (V°,V) be the four-vector potential of an exter
nal electromagnetic field. We define momentum operators 
p = (po,p) as follows: 

° 'h a VO p = I at - , 
p= -ihV - V, 
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where h = Planck's constant and V = gradient (differential 
operator). 

Dirac's equation for neutrinos is given by16 

(4.1) 

for spinor fields S. 
Let us define new momentum operators D = (D o,D) as 

follows: 

DO=i!!....~- VO 
2 at ' 

D= -i!!....V-V. 
2 

Note that the momentum operators D are similar to the mo
mentum operators p, except for the constants hand h /2. 

Moreover, when differentiating the bilinear Cartan 
map b, let pi = the momentum operators p acting only on the 
first argument of b, and p" = the momentum operators p 
acting only on the second argument of b. Since b(s,t) = b(t,s ) 
is symmetric, we have 

p'b(S,S) = b(PS,S) = b(S,PS) 

=p"b(S,S) 

= Db(S,S) . (4.2) 

However, b O(s,t) = - b O(l,S) is antisymmetric, which gives 
a different result. 

Lemma 7: For all spinors S which belong to e 2
, 

b O(ps,s) = - !Db(s,s)J • v, 

b(pS,S) = Db(S,S) , 

where v = j//. 

(4.3) 

Proof Setp = PS and t = S*. Then by Eq. (3.4b) of 
Lemma 1, we get, sincej = b (s,s*), 

bO(ps,s) = bO(p,s) 

= - b(p,s)' !b(s,s*)lbO(s,s*)) 

= - {p'b(s,s)) • v 

= - ! Db(s,s)J • v , 
where (4.2) is used in the last step. • 

We now state and prove the main theorem: 
Theorem: Via the Cartan map, Dirac's equation for 

neutrinos becomes the following wave equation: 

DOF=zDXF- (DF)·v. 
Proof Recall from Lemma 6(b) of Sec. 3 that 

b(p • US,S) = p' b O(s,s ) + ip' X b(S,S) . 

Using (4.3) this equation becomes 

b(p'uS,S) = - !Db(s,s)J 'v+zDXb(S,S)' (4.4) 

Together with Dirac's equation (4.1) this last equation (4.4) 
implies that 

D~(s,s) = b(pOs,s) 

= b(p' US,S) 

= zDXb(S,S) - !Db(s,s)J • v. (4.5) 

Substituting F = Ib(S,S ) into (4.5), we get the result 

DOF= zDXF - (DF)·v. • 
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5. SUMMARY AND CONCLUSION 

Isotropic vector fields satisfy the properties (A-D) of 
Sec. 1, which make them an admissible model for spin-half 
particles. Moreover, isotropic vector fields do not have the 
difficulties (E) and (F) of the spinor fields, for assigning them 
physical states. 

The two theories are isomorphic. We show~d that both 
have the same probability current density, and satisfy equi
valent wave equations (Secs. 3 and 4). We established the 
isomorphism using the nonlinear Cartan map, which has 
some novel algebraic properties, which are derived in Sec. 3. 

We conclude from these results that spin-half particles 
have a coordinate-free representation as vector fields 
F = E + lR satisfying the isotropic condition F • F = O. It is 
conceivable that all other properties of spin-half particles, 
such as isotropic spin, strangeness, etc., may also be repre
sented by additional conditions on the vector fields. 

APPENDIX: COMMUTATION OF THE CARTAN MAPS 
WITH THE OPERATORS REPRESENTING 
OBSERVABLES 

Let S be a spinor field, and let A be an operator acting on 
s. Let the Cartan map b send S to-its isotropic vector field 
F = Ib(s,s). We will say that ~ commutes with the Cartan 
map and becomes the operator ~, acting on F, if 

~ F = i~b(s,s ) 

= Ib(~s,s). (AI) 

Thus if s is an eigenstate of ~ with eigenvalue A, we have 
from (AI) since b is bilinear, 

~ F = ib (As,s) = A F , 

so then F is an eigenstate of ~ with the same eigenvalue A. 
Using Lemmas 6 and 7 from Secs. 3 and 4, the reader 

can easily establish that the operators listed in Table I com
mute with the Cartan map. Generally, any linear combina
tion of these operators, with coefficients that are functions of 
x, will commute with the Cartan map. 

The following theorem gives two simple consequences 
of the commutation with the operators above: 

Theorem: (a) The Cartan map preserves the eigenstates 
and eigenvalues of these operators. 

(b) The Cartan map commutes with relativistic trans
formations. 

Proof The proof of (a) has already been established by 
Formula (AI). To prove (b), note that the operators repre
senting the infinitesimal generators of the relativity group, 
for example iJ, commute with the Cartan map. Let ~(r) be a 
one-parameter subgroup of relativistic transformations. Let 

~ = g'(r)g(r)-I 

be its infinitesimal generator. Then one shows that 

(A2) 

by considering the unique solution of the differential equa
tion 

dF 
- (r) = 2A F(r) 
dr -

(A3) 
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TABLE I. Operators commuting with the Cartan map. 

Operator Spinor Isotropic vector 
symbol representation representation 

E ih~ .h a 
{--

at 2 at 
p -ihV -i~V 

2 

x x x 

V(x) V(x) V(x) 

!hrr !h S 

L xXp xXP 

J L+s L+s 

v rr S 

with F(O) = F. Clearly, the left-hand side of (A2) is the 
unique solution of (A3). Set 

F(r) = Ib(Q"(r)s,Q"(r)s) . 

Then, F(O) = F, and also, 

dF = 2/b(U's,Us) 
dr --

= 2/b(~Q"s,Q"s) 

= 2i~b (Q"s,Q"s) 

=2AF. 

Therefore the right-hand side of(A2) is also the unique solu
tion of(A3). Thus Formula (A2) is proved. Formula (A2) 
establishes that the Cartan map commutes with relativistic 
transformations. 
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A method is presented for explicitly evaluating the invariant measure over a Lie group, for any 
parametrization in which a generic group element is written as a product of exponentials of 
elements of the Lie algebra. The measure is expressed as a transition amplitude associated with the 
quantum mechanical evolution operator of the "ghost fields" which appear in the path integral 
over Yang-Mills fields. As an illustration of the method, the measure is evaluated in two cases: (i) 
in canonical coordinates, for an arbitrary Lie group which admits them; (ii) in terms of Euler 
angles, for the group of rotations in three-dimensional space. 

PACS numbers: 11.15. - q, 03.65. - w, 02.20.Sv 

I. INTRODUCTION 

The path integral approach is without doubt the most 
appropriate formulation available of the quantum mechan
ics of the Yang-Mills field. 1 At the heart of its success is the 
fact that the path integral is particularly suited to take into 
account the geometric properties of the field, which are re
flected in the gauge invariance of the action. 

As shown by Faddeev and Popov, 1 the manner in which 
the gauge invariance is dealt with in the path integral is based 
on the principles of the theory of invariant integration over 
groups. However, the explicit form of the invariant group 
measure plays a role neither in establishing the path integral 
scheme nor in its usual applications. It is sufficient for those 
purposes to know that the measure exists. 

It is the point of this paper to indicate that one can turn 
the procedure upside down and use the path integral to ob
tain explicit formulas for the invariant measure in different 
parametrizations of the group. We shall describe the general 
method for doing this and will apply it to two examples: 

(i) the measure in canonical coordinates for an arbitrary 
Lie group which admits them; 

(ii) the measure for the rotation group in three dimen
sions in terms of Euler angles. 

Strictly speaking, nothing new will be obtained since 
the above-mentioned measures have been found long ago by 
other techniques. However, we feel that the method de
scribed here is of interest since, besides its practical utility, it 
provides an interplay of concepts and techniques of group 
theory, gauge fields, functional integration and Hilbert 
space-aU of them coming together under the common roof 
of quantum mechanics. 

The presentation is organized as follows: Section II re
views the Hamiltonian action principle for the Yang-Mills 
field, including its gauge invariance. Section III presents 
those points of the path integral procedure which are essen
tial for our aim. The key issue of boundary conditions and 
admissible ways of fixing the gauge is dealt with in Sec. IV. 
Section V reviews another needed concept, the representa
tion of determinants as functional integrals (or transition 
amplitudes). Finally, Secs. VI and VII present the manner in 

which the group measure is written as a "ghost" transition 
amplitude as well as its explicit evaluation for the two exam
ples indicated above. 

The method presented here arose from work on the Ha
miltonian path integral quantization of the gravitational 
field. 2 

II. HAMILTONIAN ACTION FOR THE YANG-MILLS 
FIELD 

In order to establish both the notation and some proper
ties that will be needed below, we shall briefly review here the 
properties of the action integral for the Yang-Mills field. 

The components of the field will be denoted by 
A a I'- (x,t). The space-time index f.l takes the values O,i, with 
i = 1,2,3, and the group index a runs from 1 to n, with n 
being the number of generators of the Lie group on which the 
theory is based. 

The action takes the form, 

s= F2dt[Jd3X(Aaj1T/-AoaYa)-H]. (2.1) 

Here the 1Taj are the momenta canonically conjugate to the 
spatial components A a j • No conjugate to the time compo
nent Ao a appears; that variable enters as a Lagrange multi
plier for the constraint, 

(2.2) 

The function Ya is called a constraint because it vanishes on 
classical trajectories as a consequence of the demand that the 
action be an extremum under variations of Ao a. The numbers 
Cab C in (2.2) are the structure constants of the Lie group. 

The Ya 's obey the Poisson bracket relations, 

(2.3) 

and, for the Yang-Mills field, the functional H is given by 

H= J T(r+B 2 )d 3x, (2.4) 

with r = 1Ta j~j' B 2 = B a j Ba j. HereB is the "gauge covar
iant" curl of A a j and the group indices are raised and 
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lowered with the group metric and its inverse [which are 
hence needed to write (2.4)]. 

However, in the present case we shall only need from H 
the property 

(2.5) 

which (2.4) satisfies together with many other functions [all 
powers of (2.4), for example]. 

The action (2.1) is invariant under the infinitesimal 
gauge transformation 

8A a
i = [Aao I ~Ybd3x], (2.6a) 

£i [iIb 3] u1Ta = 1Ta , E Yb d X , (2.6b) 

(2.6c) 

where the £" are arbitrary functions of x and t. 
Equations (2.6a) and (2.6b) show that the constraints Ya 

are the generators of gauge transformations on the canonical 
variables, an observation that combined with (2.3), implies 
that the gauge group of the theory is the product of infinitely 
many copies (one for each space-time point) of the Lie group 
with structure constants Cab c. 

The action principle for the Yang-Mills field states that 
the classical equations of motion are obtained by demanding 
that (2.1) should not change under variations of A ao 1Ta i and 
Aoa. The only restriction on the variations being that A ai 
should be fixed up to a gauge transformation of the form 
(2.6a) at the endpoints t), t 2 • In other words, it is the gauge
invariant content of A ai' rather thanA aj itself, which is fixed 
at the end points. 

III. PATH INTEGRAL OVER GAUGE FIELDS 

According to Faddeev and Popov,) the transition am
plitude between two field configurations is given by a path 
integral of the form 

I )1 dA ai(x,t) d1T/(x,t) dAoa(x,t) 

xexp(iS) 8[ xl det Mx' (3.1) 

In (3.1) the "gauge condition" X is a certain functional 
of A al-' and 1T/ which depends on x, t. The effect of 
8 [X] = IIx., 8(x(x,t)) is to select in the path integral only the 
representative with X = ° from each class of gauge equiva
lent histories (which are related to each other by iterations of 
the infinitesimal transformation (2.6)]. 

The linear operator Mx describes the response of the 
gauge condition to a change in gauge. If we denote by 8 EX the 
effect on X of having its arguments undergo the transforma
tion (2.6), then Mx is defined by, 

(3.2) 

The presence of the factor det M x in the integration measure 
in (3.1) ensures that the value ofthe integral is independent of 
the choice ofX or, in other words, converts (3.1) into an 
integral over classes of gauge-equivalent histories. 
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IV. BOUNDARY CONDITIONS AND ADMISSIBLE 
GAUGE CONDITIONS 

The quantities which are fixed in the classical action 
principle become the arguments of the quantum mechanical 
transition amplitude. 

In the present case those arguments are the gauge-in
variant content A l' A2 of A ai(x, tIl and A ai(x, t2)' Here, Al 
and A2 are classes of equivalence of gauge-related field con
figurations at the initial and final times. (These classes are 
the boundaries of the classes of higher dimensionality over 
which the path integral is performed.) 

Now, in practice one wants to fix A aj(x, tIl and 
A ai(x, t2) rather than the more abstract notion of a class. In 
order to do this while still effectively dealing with the gauge 
invariant contents A l' A 2 , one must leave the gauge freedom 
at the end points untouched by the gauge condition. 

Thus, the gauge transformations that can (and must) be 
eliminated by the gauge condition X are not all those which 
leave invariant the action (2.1), but, rather, only the ones 
which do not touch the endpoints. In other words, we must 
add to the transformations (2.6) the boundary condition, 

£"(t), x) = £"(t2' x) = 0, for all x. (4.1) 

The restrictions (4.1) limit the class of permissible gauge 
conditions. Indeed, X must be such that, starting from any 
given history, one can reach, by means of a gauge transfor
mation, one and only one history satisfying X = 0. Here the 
gauge transformation employed must be an iteration of the 
transformations (2.6), with the boundary conditions (4.1). 

A necessary condition for X to be admissible in the 
above sense is that the operator Mx defined by (3.2) should be 
invertible under the boundary conditions (4.1). This ensures 
that det Mx #0, as it should be the case for the measure in 
(3.1) not to vanish identically. The invertibility of Mx means 
that if a history with X = ° exists, it is accessible from any 
history in a neighborhood and also unique within a neigh
borhood. Nothing is said about the global problem which is 
much harder to deal with. 

If Mx acting on the space (4.1) is to have an inverse, it 
must be a second-order differential operator in time. Thus 
we should look for gauge conditions which are such that 8 E X 
should involve second time derivatives of E. This means that, 
in the present context, canonical conditions such as 
X = aiA ai for which 8E X involves no time derivatives of E 

[Eq. (2.6a)] are not permissible. Neither is it allowed the use 
of X = Ao a, for which 8E X involves only first time derivatives 
of E [Eq. (2.6c)]. [These conditions can, however, be used if 
one folds the amplitude (3.1) with gauge-invariant wave 
functionals, a step not considered here. I 

A wide class of permissible gauge conditions are those 
of the form, 

(4.2) 

wherefcontainsno time derivatives of A ao 1Ta i, Aoa, but may 
depend on them even non10cally in space. The point here is 
that the variation of (4.2) yields an i a on account of (2.6c). 
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If a permissible gauge condition is used, then the path 
integral (3.1) must be carried over all histories Aa i(X, t), 
1Ta i(X, t), Aoa(x, t) for which A ai(x, t) is fixed at the end 
points t I' t2: 

A ai(x, tIl =A ai(l), A ai(x, t2) =A 2i(2). (4.3) 

In(4.3) one may choose for A ail}) any representative within 
the class A I of the gauge related fields. Similarly for A Qi(2). 
The amplitude (3.1) should then become automatically de
pendent only on A I, A 2 , that is it should not change its value 
if either A a i (l) or A a i (2) undergo a gauge transformation 
(2.6a). This observation will be crucial for the identification 
of the group invariant measure. 

V. REPRESENTATION OF DETERMINANTS AS 
TRANSITION AMPLITUDES 

In a finite number of dimensions one has the formula 
for a Gaussian integral, 

JexP[iViaikUk]dVdu=(deta)-I, (5.1) 

where we have left out an irrelevant numerical factor. 
The formula (5.1) may be used in turn to represent the 

determinant of a linear operator acting on an infinite-dimen
sional function space by means of a functional integral. The 
functional integral may then be defined as the matrix ele
ment of a quantum mechanical evolution operator in Hilbert 
space. 

This way of evaluating determinants appears to be 
much more efficient for our purposes than, for example, us
ing directly the Fredholm formula det M = exp(tr In M). It 
also has the advantage, in the examples at hand, of providing 
an answer already regularized, whereas in the Fredholm 
case one has to first divide M by a regularizing operator Mo 
(that is one must replace M by M 0- 1M). 

Thus for the operator Mx appearing in the path integral 
we write the analog of the argument of the exponential in 
(5.1) in the form 

Sx = r:, Ea (x, t )(Mx E)a(X, t) dx dt, (5.2) 
all x 

where the gauge parameter E a(x, t) takes the place of Uk in 
(5.1) whereas the independent set of fields Ea (x, t) plays the 
role of Vi' 

The determinant of Mx has then the representation 

(detMx)-I= J II dEa(x,t)d~(x,t) 
x. t,a 

(5.3) 

with Sx given by (5.2). 
[In field theory applications E and E are taken to be 

anticommuting "ghost" fields and the integration in (5.3) is 
understood to be that introduced by Berezin. I This has the 
effect of giving (det M x ) + I instead of (det M x ) - I on the left 
side of(5.3). For the present purpose we have preferred to use 
ordinary real-valued fields in order not to inject another con
cept in the discussion. All the analysis that follows can be 
carried out equally well if E and E are anticommuting.] 

In (5.3) the functional integral is extended over all fields 
E a satisfying the boundary conditions (4.1), because that is 
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the space on which M r acts. The boundary conditions on Ea , 

on the other hand, must be determined by a different argu
ment, since those functions do not playa direct role in the 
gauge transformations. 

In our case, as indicated before, we ultimately want to 
define the functional integral as the matrix element of an 
evolution operator in Hilbert space. In order for this to be 
feasible, one must be able to write the integrand under the 
time integral in (5.2) as a Lagrangian which depends on time 
derivatives of up to the first order only. This is necessary3 in 
order for the amplitudes to obey the basic composition law 
for processes occurring in succession, which we may write 
symbolically as 

(11) = I (1 2) (211)· (5.4) 
2 

Now, as explained earlier, the operator Mx r:ontains 
second time derivatives, so these must be eliminated from 
the action (5.2). When the gauge condition is of the form 
(4.2), this is easily done, provided one imposes the boundary 
conditions 

(5.5) 

since in that case the second time derivatives disappear upon 
integration by parts without bringing in an endpoint contri
bution. Hence, we shall adopt (5.5) for gauge conditions of 
the form (4.2). 

The functional integral (5.3) is then to be evaluated un
der the boundary conditions (4.1) and (5.5) and its value may 
therefore be written as a matrix element, 

(det Mr)-I = (E a = Ea = o lUx (t2' tl)1 E Q = Ea = 0), 

(5.6) 

where Ux is the evolution operator obtained from the Hamil
tonian associated with the action (5.2). 

VI. INVARIANT MEASURE IN CANONICAL GROUP 
COORDINATES 

As a first illustration and application of the method we 
will derive the expression for the group-invariant measure of 
an arbitrary Lie group which admits canonical coordinates. 

The canonical coordinates are such that any group ele
ment can be written as the exponential of a single element of 
the Lie algebra. In other words, if A Q are the canonical co
ordinates of the group element g(A ) and if Ta are the group 
generators obeying 

(6.1) 

then 

g(A ) = exp(A Q TQ)' (6.2) 

A. Identification of measure 

To achieve our aim, we will use the simplest of the 
gauge conditions (4.2), namely, 

(6.3) 

Consider first the Faddeev-Popov operator Mx' Using 
(6.3), (2.6c), and (3.2), one obtains 
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(6.4) 

Here we can assume that Ao b is time-independent since, due 
to (6.3) and the factor 81X] in (3.1), only histories with Aoa 
= 0 contribute to the path integral. 

The operator (6.4) does not involve spatial derivatives of 
E, and therefore its determinant is a product over all points x 
of space, of the determinants of the operators defined by 

(6.5) 

where now the E'S are regarded just as functions of time, and 
not as fields E(X, t). 

Furthermore, as will be explicitly seen below, the deter
minant of the operator defined by (6.5) takes the form 

(tz - ttl n ,uL(A (x)), 

(the index a runs from I to n), with 

A a(x) = (tz - tl)AoQ(x). 

(6.6) 

(6.7) 

Therefore, we can write 

(6.8) 

Next, before further analyzing (6.8), turn back to the 
transition amplitude (3.1). On account of the 8 functional, 
the integration over Ao a(x, t ) may be carried out for all times 
except one, tl say. Thus, using (6.8), the amplitude takes the 
form 

(A z,t21 AI,tl ) = f II [dA a(x),u(A (x))] 
x,a 

XK [A a j (2), A a j (I); A a, tz, td, (6.9) 

where A a(x) may be thought of as being equal to 
(t2 - tl)Aoa(x, tl)' 

The auxiliary amplitude K is given by 

K= f Jt dAaj(x, t)d17'/(x, t) exp(iS). (6.10) 

It has been possible to factorize the determinant (6.8) out of the integration over A aj, 17'a jbecause, due to the simple nature of 
the gauge condition, Mx does not depend on A a j or 17'a j. 

Now, the path integral (6.10) is nothing but the matrix element of the evolution operator derived from the Hamiltonian, 

H + f Aoa Ya d 3x, (6.11) 

which depends onAoa as a parameter and which, due tOAo
a = 0, does not depend explicitly on time. Therefore, we may write 

(6.12) 

which on account of (2.5) may be rewritten as 

(A 2, tzl AI' t l ) = f n [dA a(x),udA (x))] (A aj(2) I exp[ - i(t2 - ttl H] exp( - i f A a Ya d 3X) I A a j(I)) . (6.13) 

The content of(6.13) may be understood by recalling that, on account of(2.6a) and (2.6b) the operator Ya is the generator 
of gauge transformations on A a j' 17' a j. This means that the effect of the factor exp( - i S A a Ya ) is simply to change, 

(6.14) 

with g(A ) given by (6.2), and where (A aj) g denotes the result of a (finite) gauge transformation by the group element g on the 
fieldA aj(x). [The quantum operator - iYa (x) is a representation of the group generator Ta at the pointx. The factor - i arises 
when passing from the Poisson brackets in (2.3) to commutators.] Thus we see that the quantities (t2 - t I) Ao a(x) play the role of 
canonical coordinates in the group copy at the point x. 

Using (6.14), we may express (6.13) as 

(A 2, t21 A I' t l ) = J n [dA a(x) ,udA (x))] (A aj(2)1 exp[ - i(t2 - ttl H] I(A aj(l)) g(A)' (6.15) 

which shows that the dependence of the amplitude on the 
argument A a j (1) is given by an average over the group at 
each point of space with a measure ,utA ), where the A a are 
canonical coordinates. 

But, according to the discussion in Sec. IV, the ampli
tude must be invariant under gauge transformations in 
A aj( 1) [and also inA a j(2), this comes next]. Hence,u(A ) must 
be the group-invariant measure corresponding to the trans
formation (6.14), i.e., the left measure, in canonical coordi
nates. This last implication follows from the fact that the 
previous discussion goes through for any H that is group 
invariant [Eq. (2.5)] but otherwise arbitrary. 
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Lastly we analyze the behavior of (6.15) under gauge 
transformations of A aj(2). To start, we observe that, on ac
count of(2.5), we may pass the exp( - iSA a Ya) factor to the 
left of exp[ - i(tz - t l ) H] in (6.13), which yields the adjoint, 
exp( + is A a y!) acting on A aj(2). However, we have from 
(2.2) 

i J A a(x) [y!(x) - Ya(x)] d 3x = - Trfl, (6.16) 

where 

fl a b (x, y) = 8(x, y) {J)a b (A (x)), (6.17) 
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with 

wab(A)=AcCcba, (6.18) 

being a matrix whose exponential gives the group element 
(6.18) in the adjoint representation (Ta tc = Cab c. The trace 
operation in (6.16) involves both the discrete and continuous 
labels of n. [The factor ordering in (2.2), which yields (6.16), 
has been chosen because it is the one for which the action of 
exp( - is A aya ) on I A ai (I) is simply given by the transfor
mation (6.14) of the eigenvalue, without bringing in a factor 
in front of the state vector.] 

But, on account of(6.17), n has block form in the con
tinuous labels, which yields for the exponential of (6.16), 

exp( - Tr n) = det[exp( - n)] 

= II det ! exp[ - w(A (x))] J. (6.19) 

Thus, we see that the effect of exp( + if A ay!) on 
I A a i (2) amounts to inducing at each point a gauge transfor
mation 

(6.20) 

while simultaneously multiplying the amplitude by the fac
tor (6.19). [In canonical coordinatesg( - A) =g-I(A ).] 
Hence we obtain the analogous relation to (6.15), 

(A z, Izi AI, II) 

= f II [dA a(x)ItR(A (x))] 
x.a 

X «(A a i (2)) g-'(A) I exp[ - i(tz - II) H] I A ai (I), 

(6.21) 

with 
It R (A ) = det! exp [ - w(A )]j It dA ), (6.22) 

from which we conclude that (6.22) must be the invariant 
measure appropriated to the transformation (6.20), that is, 
the right measure. This conclusion will be explicitly con
firmed after evaluating the measure. 

[Several of the key points behind the above discussion 
may be found in the following simple example which is use
ful for fixing the ideas. Consider the quantum mechanical 
motion of a particle with Hamiltonian H in two space dimen
sions. Assume that H is invariant under rotations. Then the 
matrix element (r2Iexp[ - i(/2 - Id H]lr l) takes the form 
K (r2' rl,,p), where r l = Irll, r2 = Ir21, and,p is the angle 
between r l and r2. Next expand K as 

(6.23) 

and find the response 

K). (rz' rl,,p ) = K (r2' rl,,p + A) 

= I k m (r, rd eim
¢ eim

)., (6.24) 
m 

of Kunder a rotation Ofrl by an angleA. Further, assume 
that the average over A of (6.24) with a measure It: 

f
+1T 

-1T K,dr2, rl,,p ) It (A ) dA (6.25) 
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is invariant under rotations Ofrl' i.e., independent of,p 
(which clearly makes also invariant under rotations in r2). 
This can only be true for an arbitrary choice of the functions 
k m (r2' rd-which characterize the rotationally invariant 
Hamiltonian H-if 

(6.26) 

which means thatlt(A ) must be a constant, independent ofA. 
But this is jut the (left and right) invariant measure for the 
group of rotations in two space dimensions.] 

B. Evaluation of measure 

Having identified It L (A ) appearing in (6.13) as the left
invariant group measure expressed in canonical coordinates, 
we proceed to its explicit evaluation. For that purpose we 
will write the determinant of the differential operator de
fined by (6.5) in the form (5.6). Since we are working at a fixed 
space point, the integrals and products over x in (5.2) and 
(5.3) will be omitted. 

According to (6.6) and (5.6), we have then 

[It L (A )] - I = (12 - t dn (E a = E a = 0 

X lexp[ - i(/z - tl) h ] I E a = Ea = 0), (6.27) 

where 

h = ( - 17" + Cbc a AOb c) iTa 

is the Hamiltonian derived from the Lagrangian, 

1= t(E a - Cbca AOb c), 

(6.28) 

(6.29) 

and Ao is related to A by (6.7). Note that (6.28) does not 
depend explicitly on time due to the gauge condition Aoa 
=0. 

The matrix element (6.27) may be evaluated with the 
help of the change of variables, 

¢ = exp[ - (t2 - tr 1ft - td w] E, (6.30) 

(6.31) 

where w is given by (6.18) and we have used matrix notation, 
with T denoting transposition. 

The transformation (6.30), (6.31) is canonical but time
dependent and hence changes the value of the Hamiltonian. 
The new Hamiltonian is 

h = - pT exp[ - (t2 - tr I(t - t l ) w] 1T, (6.32) 

and depends only on the momenta. 
The operator (6.32) is explicitly time-dependent, but has 

the property 

[h(t),h(t ')] =0, (6.33) 

for any t, t I, hence no time ordering is needed for its evolution 
operator which reads 

iT(/2, td = exp [ - i F2 h (t) dt ] 

= exp! q; T [(1 - e - "')fw ](/2 - II) 17-j. (6.34) 

Next, we must evaluate the matrix element of (6.34) 
between states with E = E = O. However, (6.34) is construct
ed in terms of the conjugates of ¢ and E. In order to reexpress 
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(6.27) as a matrix element between orthonormalized eigen
states of ¢ and E, we must introduce a normalizing factor. 
This factor is most easily obtained by changing the integra
tion variables in the time-sliced version of the Hamiltonian 
path integral expression of(6.27), and recalling that in a "q to 
q" matrix element there is an "extra integration" over p at 
the upper end point [see, for example, Eq. (1.12) of Ref. 1]. 
One obtains 

[ilL (A )] -I = (t2 - tlr det[exp( - w)] (¢ = E = ° 
X I if (t2' tl)1 ¢ = E = 0). (6.3S) 

The matrix element in (6.3S) is easily evaluated by going 
to eigenstates ofp and 1T. This gives a Gaussian integral over 
p and 1T, and one can apply (S.I) to obtain 

[1lL!A)] -I = (t2 - tdn det[exp( - w)] 

xdet! [(1 - e - "')lw] (t2 - till-I, 

(6.36) 

which yields finally 

ilL (A ) = det[(e",(A 1_ l)1w(A )]. (6.37) 

Equation (6.37) is known4 as the expression for the left
invariant measure over a Lie group in canonical coordinates. 
The right invariant measure is obtained by changing 
w - - w, which amounts to multiplying (6.37) by 
exp( - w), in agreement with (6.22). Note, incidentally, that 
the right-invariant measure may be also represented in the 
form (6.27) provided we change in that equation h _ h t. The 
verification of this statement follows the same lines as the 
discussion between (6.1S) and (6.22). 

VII. INVARIANT MEASURE FOR THE ROTATION 
GROUP IN TERMS OF EULER ANGLES 

Why did we obtain above the group measure in canoni
cal coordinates rather than in any other parametrization of 
the group? Clearly the only choice ever was made when se
lecting the gauge condition. So the condition Aoa = ° corre
sponds to choosing canonical coordinates in the group. 

If one looks back at the analysis in the previous section, 
one sees that the canonical coordinates arose because the 
condition Ao a = ° produced in (6.13) a factor 
exp[ - i(t2 - td S Aoa Ya]' which is just the defining rela
tion (6.2) of the canonical coordinates. This means that if we 
want to evaluate group measures in terms of other group 
coordinates, we must tailor the gauge condition to the cho
sen group coordinates. 

To explain more clearly what is meant here by "tailor
ing," we will derive in what follows the invariant measure for 
the rotation group in three dimensions, in terms of Euler 
angles. It will be apparent, however, that the method is ap
plicable to any case in which the group coordinates are de
fined by expressing a generic group element as a product of 
exponentials of elements of the Lie algebra. The canonical 
coordinates are the simplest such case, with only one factor 
being presented in the product. 
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A. Choice of gauge condition and identification of 
measure 

For the rotation group we have 

(7.1) 

and the Euler angles are defined by writing any group ele
ment in the form 

(7.2) 

In order to choose a gauge condition tailored to (7.2), we 
divide the total time interval tl < t < t2 in three subintervals, 
which we shall call I, II, III, and which are defined respec
tivelybyt l < t < t ',t' < t < t" ,t" < t < t2. Thedividingtimest' 
and t " are arbitrary (but such that t I < t ' < t " < t2)' They will 
drop out from the final answer for the measure. (And t l ,t2, 

too.) 
We impose then a different gauge condition for each 

subinterval, namely, 

Aol =0, Ao2 = 0, Ao3 = 0, for interval I, (7.3a) 

Aol =0, 
. 2 

Ao =0, Ao3 = 0, for interval II, (7.3b) 

Aol =0, Ao2 = 0, Ao3 = 0, for interval III. (7.3c) 

The reason for (7.3) is that the product of exponentials 
in (7.2) will arise from the fact that the gauge transforma
tions generated by the termAoa Ya in (6.11) consists of three 
successive steps in time according to (7.3). It will be seen 
below that, although not of the form (4.2), (7.3) is indeed a 
permissible gauge condition. 

In order to find the transition amplitude from A a j (1) at 
time tl toA a j(2) at time t 2, we will first evaluate separately 
the amplitudes for the subintervals I, II, and III and will 
subsequently fold them together. 

Due to the simple nature of the gauge conditions (7.3), 
the ghost contributions will not involve the fields A uj> 1Ta '. 

Therefore, in each interval, one can factorize the 
8[X] det My term in (3.1) out of the functional integration in 
A aj, 1Ta j, just as in (6.9), (6.10). Furthermore, one can also 
here use the81X] to perform all "integrations but one" onAoa 
for each interval. In this way one gets auxiliary amplitudes 
analogous to (6.10), which are given by 

K, = (Aaj(t')lexp[ -i(t'-tl)H] 

xexp[ -i(t'-tdf Aol(I)Yld3x]IAa,(tl))' (7.4a) 

Kn = (Aaj(t")!exp[ -i(t" -t')H] 

xexp [ - i(t" - t') f Ao2(II) Y2 d 3X] I A aj(t')) , 

(7.4b) 

KIll = (A aj(t2) I exp[ - i(t2 - t ") H] 

x exp[ - i(t2 - t ") f Aol(III) YI d 3X] I A aj(t ")) , 

(7.4c) 
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In Eqs. (7.4), Ao 1(1) is the time-independent value of Ao I 
in interval I, Ao 2(11) is the time-independent value of Ao 2 in 
interval II, and Ao 1(111) is the time-independent value of Ao I 
in interval III. These functions of x are to be integrated over 
as independent variables at the end, since the path integral 
(3.1) involves an integration over Ao a(x, t) for all x and for all 
tin the interval tl < t < t2. Thus theAol in (7.4a) is not related 
to theAol in (7.4c). 

In order to complete the integration over A aj(x, t) in 
(3.1), we must multiply together the amplitudes (7.4) and 
integrate over the field variables A aj(t') and A aj(t") at the 
joining points. This gives for the total auxiliary amplitude 
the formula 

K [tP, O,t/I] = (A aj(2) I exp[ - i(t2 - td H] 

.exp( - i I tPrl d 3X), exp( - i I OY2 d 3X) 

.exp( - i I tPYI d 3X) I A a j (1)) , (7.5) 

where we have defined 

tP (x) = (t' - t l ) Aol(x)(I), 

o (x) = (t" - t') Ao2(x)(II), 

tP(x) = (t2 - t ") Ao I (x)(III), 

(7.6a) 

(7.6b) 

(7.6c) 

the amplitude (3.1) is obtained from (7.5) by the analogous 
relation to (6.9), namely, 

(A 2, t21 AI' t l ) 

= I IJ [dtP(x)dO(x)dt/l(x)(t2-t")-1 

x(t" - t,)-I(t' - tl)-I] detMx K [tP, O,t/I]. (7.7) 

Equation (7.7) shows, by the same reasoning that fol
lowed (6.13) and led to the identification of(6.8) as the group 
measure in canonical coordinates, that /-l(tP, O,t/I) appearing 
in 

det Mx = II [/-l(tP (x), 0 (x),t/I(x)) 
x 

x(t2 - t ")(t" - t')(t' - td] (7.8) 

is the group-invariant measure in terms of Euler angles. 
[Here the right and left measures coincide because (7.1) has 
zero trace.] 

B. Evaluation of measure 

The operator Mx appearing in (7.8) is defined in the 
whole interval t I < t < t2 by the collection of three different 
expressions for the subintervals I, II, III. Those expressions 
are obtained by applying the gauge transformation (2.6c) to 
the gauge conditions (7.3) and using the definition (3.2). One 
obtains: 

1099 

Interval I: 

(Mx fl =EI
, 

(Mx ff = c + (t' - td-ltPC, 

(Mx E)3 = EJ - (t' - td-ltPC. 
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(7.9a) 

(7.9b) 

(7.9c) 

Interval II: 

(Mx El = EI - (t" - t,)-IOC , 

(Mx Ewf =c, 
(Mx Ef = EJ + (t" - t,)-I OEI. 

Interval III: 

(Mx E)I = EI, 

(Mx E)2 = E2 + (t2 - t ")-It/lc, 

(Mx Ef = EJ - (t2 - t ,,)-It/iC. 

It is straightforward to verify that the equation 

Mx E=O, 

for tl < t < t z, with the boundary conditions 

Ea(td = E a(tz) = 0, 

(7.1Oa) 

(7.1Ob) 

(7.1Oc) 

(7.11a) 

(7.11b) 

(7.11c) 

(7.12) 

(7.13) 

has the only solution E = 0 provided one assumes continuity 
at t ' and t ". This means that M has an in verse and therefore 
the gauge conditions (7.3) are (locally) permissible. Actually 
it is somewhat unnecessary to check this since: (i) One knows 
that the Euler angles are good coordinates for the rotation 
group and (ii) the gauge conditions (7.3) just establish that 
one goes from the initial "gauge frame" to the final one by 
acting on the fields with a group element of the form (7.2) at 
every space point. 

Next we observe that Mx does not involve space deriva
tives so that its determinant is indeed an infinite product 
over x of the form (7.8). Therefore, we will consider E as a 
function of time only just as in Sec. VIB. With that under
standing, (7.8) will be valid with the x dependence omitted 
throughout, with the infinite product deleted, and with Mx 
defined by (7.9)-(7.11). 

We would now like to represent the determinant of Mx 
as a transition amplitude. Just as (7.5), that amplitude will 
result from folding together the three different amplitudes 
corresponding to the subintervals I, II, and III. The folding 
operation is, however, subtler than the one which led from 
(7.4) to (7.5). The subtlety resides in the boundary conditions 
that the additional fields E which appear in the action Sx 
must satisfy. 

The analysis proceeds as follows. Consider the first in
terval. There we have, from (5.2), 

SXi = Jt'dt {E I el + E2 + [c + (t' - td-ItPC] 
t, 

+ E3[EJ - (t' - td-ltPC]j . (7.14) 

To start with, the only thing we know is fixed in this 
action is E a(td = O. The value E a(t') is free since nothing 
restricts the gauge freedom at that intermediate time. How
ever the situation with Ea is different. First of all we see that, 
in order to eliminate the second time derivative of EI in (7.14), 
we must demand 

(7.15) 

Second, we observe that (7.14) is already in Hamiltonian 
form in c and C, with E2 and E3 being nothing but the mo
menta iT z and iT 3 canonically conjugate to c and C. This 
means that E2 and E3 are not fixed at t I and t '. 
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Thus, if we pass to Hamiltonian form in f\, €I as well, 
we find that the partial amplitude in the first interval has the 
form 

Kx I[€ aft '), € a(tl) = 0] 

= (€ aft '), EI(t') = 01 exp[ - i(t' - tl) h I] I 
x I € a(td = 0, EI(t l ) = 0), (7.16) 

where 

h I = -1T11T1-(t'-td-I¢(e1T2-c1T3)' (7.17) 

Similarly, we find, for the other two intervals, 

Kx II[€ aft "), € aft ')] 

= (€a(t "), E2(t') = 01 exp[ - i(t" - t') h II] I 
xl € aft '), E2(t') = 0), (7.18) 

with 

h II = -17'2 ~ - (t /I - t')- 10(€11T3 - e 1Td, (7.19) 

and 

Kx II[€ a(t2 ) = 0, € aft ")] 

= (€ a(t2) = 0, EI(t2) = 01 exp[ - i(t2 - t") h III] 1 

xl € aft "), EI(t") = 0), (7.20) 

with 

hIlI = -1T11T1 
- (t2 - t,,)-I¢(e 17'2 - C 17'3)' (7.21) 

The total amplitude is obtained by multplying together 
Kx I, Kx II, Kx III and integrating the product over € a(t') and 
€ aft "). Hence, the folding of the amplitudes Kx I, Kx II and 
Kx III is done only over the variables € a which appear uni
formly in the three intervals with a term 1Ta E a in the corre
sponding Hamiltonian action. In fact, the need for integrat
ing over € a(t') and € aft ") in the amplitude may be thought of 
as being the quantum mechanical origin of the continuity 
assumption for € a at t ' and t " in the classical history deter
mined by (7.12) and (7.13). 

The additional variables Ea are treated in a different 
way. As the Hamiltonian analysis shows, there is really one E 
coming in into each interval instead of all three of them, and 
that one is fixed at both end points of the interval. Here the 
Hamiltonian form is most useful in preventing one from er
roneously treating the Ea , which appear in the Lagrangian 
form (7.14) and its analogs for the other intervals, as being 
different parts of one overall history for t I < t < t2• 

The partial amplitudes Kx I and Kx II are most easily 
evaluated. Indeed the two terms in h I commute, so the expo
nential in (7.16) factors into the product of the exponentials 
of the two terms. Furthermore, the operator e 17'2 - C 17'3 is 
nothing but the generator of a rotation in the €2, e plane, an 
operation which has no effect on €I and also leaves invariant 
C = e = O. Hence we find 

Kx 1= (€ aft '), EI(t') = 01 

Xexp[ - i(t' - tl) 1T11TI] I € a(tl) = 0, EI(t l ) = 0) 

= 8(€2(t')) 8(e(t '))(t' - tl)-I, (7.22) 

and, similarly, 

(7.23) 
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From these equations we see in particular that the de
pendence on the first and last Euler angles, ¢ and t/J, disap
pears so the measure will depend only on O. 

Ifwe now multiply (7.22), (7.23), and (7.18), and inte
grate the result over € aft ") and € a(t') for a = 1,2,3, we find, 
recalling (7.8), 

}l-I(O) = (t " - t') f d€l(t') d€l(t ")(€I(t "), 

c=e=E2 =01 

Xexp[ -i(t" -t')hII]1I €I(t'), 

C = e = E2 = 0). (7.24) 

But again here the two terms in h II commute, and we obtain 
in (7.24) a product of exponentials, which permits us to re
duce immediately that equation to 

}l-I(O) = f d€l(t') d€l(t ") (€I(t "), e = 01 

Xexp[ - iO (e 17'1 - €11T3)] II €I(t '), e = 0). 
(7.25) 

Now, C 17'1 - €11T3 is the generator of rotations in the 
€I, e plane. Hence the action of its exponential on I €I, e) is 
to rotate the eigenvalues as the components of a vector, by an 
angle O. It follows that 

}l-I(O)= f d€l)(t')d€l(t") (€I(t"),e=OI 

X cos O€I(t '), sin O€I(t ') 

= f d€l(t') d€l(t") 8[€I(t") 

- cos O€I(t ')] 8[sin O€I(t ')] = (sin 0 )-1. (7.26) 

So we conclude 

}l(0) = sin 0, (7.27) 

which is the well-known expression for the invariant mea
sure over the rotation group in terms of the Euler angles 
(7.2). 
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The Hamilton-Jacobi (HJ) theory for fields initiated by De Donder and Weyl is applied to Klein
Gordon, Dirac, and gauge fields. Conserved HJ currents are derived for each parameter on which 
a solution of the field equations depends, and the concept of a "complete" integral of the De 
Donder-Weyl HJ equation is discussed from which solutions of the field equations may be 
constructed. 

PACS numbers: 11.15. - q, 11.10.Qr 

1. INTRODUCTION 

In the 1930s De Donder l and Weyf developed the con
cept of a Hamilton-Jacobi (HJ) theory for field equations 
derived from a variational action integral with a Lagrangian 
density .!t' = .!t'(x, z, v), where x = (Xl, ... , x m

), 

z = (Zl , ... , zn), v = (v: , ... , v~, vi , ... , v~ , ... , v~ , ... , v;:') such 
that v; = ap falx), a = 1, ... , n, J.l = 1, ... , m, on the ex-
tremals ~ = r(x). It is the purpose of this paper to discuss 
some applications of the De Donder-Weyl HJ theory to rela
tivistic fields. 

In Sec. 2 we shall briefly summarize the basic features of 
the De Donder-Weyl HJ theory which recently was dis
cussed extensively in a review article by Kastrup3: In the 
canonical framework of De Donder and Weyl the general
ization of the HJ equation 

a/Sit, q) + H(t, q,p = as) = 0, Pj = ajs(t, q) 

for the function S (t, q) in mechanics is the partial differential 
equation (pde) 

apSP(x, z) + JV(x, z, 1T~ = aaSP(x, z)) = 0, 

JV(x, z, 1T) = 1T ~v; - .!t' , 

a a·-
a'- a~ 

(1.1) 

for the m functions S Pix, z) [in Eq. (1.1) and in the following 
the summation convention is assumed to hold]. It is obvious 
from Eq. (1.1) that it reduces to the one of mechanics if 
m=1. 

In Sec. 3 we discuss the following applications of solu
tions S PIx, z): 

(i) If S PIx, z) depends on a parameter a, then the current 

asp I GP(x; a): = -- ,J.l = 1, ... , m, 
aa z"=J"lx) 

is conserved for any extremal ~ = falx) for which the 
"transversality" property 

(1.2) 

a.!t' 
1T ~(x): = - (x,J(x), af(x)) 

av; 
(1.3) 

alWork supported by the Deutsche Forschungsgemeinschaft. 

holds. A special application of this result is the following: 
Given an extremal, ~ = falx), which depends on a param
eter a. Then it is possible to construct a solution S PIx, z; a) 
such that the property (1. 3) holds for that particular extre
mal ~ = r(x; a) [the extremal z = fIx) is said to be "embed
ded" (weakly) in a solution S PIx, z) of the HJ equation (1.1)]. 

(ii) In mechanics a complete set of solutions of the equa
tions of motion can be constructed from a solution S (t, q; a) 
of the HJ equation, which depends on n parameters aj' 
i = 1, ... , n such that 

det[ azs ] #0 
aql aak 

by solving a set of n algebraic equations for n functions 
q j = fj(t). Similarly, suppose a solution S PIx, z; a) depends 
on m . n parameters a ~,J.l = 1, ... , m, a = 1, ... , n such that 

then it is possible to construct solutions ~ = fa(x) of the 
Euler-Lagrange equations, provided a set of m 2 

• n algebraic 
equations in the variables x and z possesses a degeneracy 
such that it can be solved for the n functions ~ = falx). 

In Sec. 4 we discuss two methods for solving the HJ 
equation (1.1). The first one uses Cauchy's method of charac
teristics, and the second one uses a polynomial ansatz in the 
variables z already introduced by Wey1.2 The resulting dif
ferential equations of the second approach which are of the 
matrix Riccati type are closely related to Jacobi's equations 
of the second variation for field theories. In Sec. 5A we apply 
the results of the preceding chapters to the following relativ
istic field theories: free Klein-Gordon field, E-dynamics 
with an external current, Klein-Gordon field in an external 
electromagnetic field, the system of coupled electromagnetic 
and scalar fields, the Dirac field without and with external 
electromagnetic field, and the SU(2)-Yang-Mills field. In 
Sec. 5B we derive a general form of a conserved current asso
ciated with a parameter a on which a solutionfa(x; a) of the 
Euler-Lagrange equations depends and apply the results to 
plane waves and instantons. Section 5C contains a simple 
example for a "complete" integral of the HJ equation (1.1), 
from which solutions of the Euler-Lagrange equations can 
be constructed by solving algebraic equations. 
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2. THE DE DONDER-WEYL HJ EQUATION 

In this chapter the De Donder-Weyl HJ equation for 
fields with m independent variables will be deduced, follow
ing ideas of Caratheodory,4 introduced by him in the frame
work of mechanics and generalized by Boerner5 to the case 
of field theories. 

For reasons of convenience we restrict ourselves here to 
the physically important case m = 4. 

Here we have four independent variables x 1', 

Ii = 0, ... ,3, x = (xo, xl, x 2
, x 3

) E V C M4 [M4 is the four-di
mensional Minkowski space with metric ( + ---I] and varia
bles z = (ZI, ... , z") E G n(n> 1, G n is a subset of en or Rn), 
which become dependent variables on four-dimensional sub
manifolds.I4 C V®Gn, 

z" = z"(x), x E V, a = 1, ... , n . (2.1) 

The values of the functions (2,1) on the boundary a Vof Vare 
assumed to be the same for all functions. 

For a given Lagrangian Y = Y(x 1', z", v~) [the varia
bles v~ become dependent variables aJlz"(x) on .I4 ] we shall 
now minimize the action integral 

(2.2) 

Instead of the variational problem for Y we can look at the 
corresponding problem for 

~(x, z, az): = Y(x, z, az) - cP (x, z,az) , (2.3) 

where the function <P is defined by 

dS Jl 
<P (x, z, az): = -- (x, z) = aI's Jl(x, z) 

dx Jl 

+ aaS Jl(x, zlaf.'za(x) . (2.4) 

The quantities S Jl(x, z) are functions of x and z which are still 
to be determined as follows: Because the integral 

{ d4x dSf.' = ( SJld 3.I
Jl

, 
Jv dx I' Jav 
d 3.IJl: = ~ EJlvpudxv 1\ dx P 1\ dxu , 

3! 

depends only on the value of the functions S f.'(x, z) on the 
boundary av, the integral 

A (.I4 ): = Iv d 4x ~(x, z(x), az(x)) (2.5) 

will be extremal iff this is the case for the integral (2.2), too. 
In this sense the two variational problems are equivalent. We 
now seek functions S f.'(x, z) and functions <p ~ (x, z) (<p ~ is 
called a geodesic field l such that the properties 

~(x, z, <p) = 0 (2.6) 

and 

~(x,z, v»O, v~#<p~, 
hold. Obviously the solutions of 

af.'z"(x) = <p ~(x, z(x)) 

(2.7) 

(2.8) 

minimize the integral (2.5) because of the properties (2.6), 
(2.7), and therefore the action integral (2.2) becomes mini
mal, too. [We remark that the existence of functions S I' and 
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<p ~ which satisfy the conditions (2.6) and (2.7) is one suffi
cient but not necessary criterion for having minima of(2.2).] 
A necessary condition for Jl' to have a local minimum at 

v~ = <p ~ is 

ay I = aaSf.'. (2.9) 
av~ v~~ 'P~ 

It follows from Eqs. (2.6), (2.8), and (2.9) that 

af.'s Jl(x, z) = Y(x, z, <p) - ay I . <p ~ (x, z) . 
av~ v~~ 'P~ 

(2.10) 

Equations (2.4), (2.9), and (2.10) imply that the integral 

A (i4 ): = Iv d 4X {Y [x, z(x), <p (x, z(x))] 

+ aY [x, z(x), <p (x, z(x))] [af.'za(x) 
av~ 

- <p ~ (x, z(x))] } (2.11) 

is independent of the choice of the functions z(x) inside V. 
(This is a generalization of Hilbert's famous "independent 
integral" for mechanics. 6) 

We now introduce canonical momenta 

ay 1Tf.'._-
a' - a a 

VI' 

and assume that 

det[ a: Y
b

] #0. 
avJlav" 

(2.12) 

(2.13) 

Then the Legendre transformation v~ --+ 1T ~ is regular. The 
Hamilton function associated with the Legendre transfor
mation is 

JiV: = 1T ~v~ - Y = JiV(x, z, 1T) . (2.14) 

For the geodesic field we get, according to Eq. (2.9), 

'" ~(x, z): = -- = aaS f.'(x, z) , aY I 
av~ ue~ 'Pe 

(2.15) 

whereas the relation (2.10) can be written as 

af.'s f.'(x, z) = Y(x, z, <p) - '" ~(x, z)<p ~ (x, z) . (2.16) 

Combining Eqs. (2.14) and (2.16), we obtain the so-called 
Hamilton-Jacobi equation 

1T~ = aaSf.'(x, z) = "'~(x, z), (2.17a) 

af.'s Jl(x, z) + JiV(x, z, 1T ~ = aaS f.'(x, z)) = 0 . (2.17b) 

We see that the functions S I' introduced above must satisfy 
Eqs. (2.17). Taking the differential of the function JiV, we 
obtain v~ = aJiV / a1T ~ and therefore the geodesic field 

<p ~ (x, z) = aJiV I . (2.18) 
a1T~ 1Tb~.pi: 

As already mentioned in connection with Eqs. (2.8), the solu
tions z"(x) of 

af.'za(x) = <p ~ (x, z(x)) = --aJiVI 
a1T~ 7Tb =.ph 

(2.19) 

are functions which fulfill the necessary conditions for the 
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existence of an extremum, that is, they also satisfy7.8 

al-' 1T ~ = - aa7t" . (2.20) 

The pde's (2.19) and (2.20) are the two sets of canonical or 
Hamiltonian equations. The Euler-Lagrange equations 

~(ay) =aa Y (2.21) 
dxl-' au; 

are equivalent to the canonical equations, the solutions of 
which we will call extremals of the variational problem. 

For a more detailed discussion of the De Donder-Weyl 
canonical theory we refer to Refs. 1-3,9, and to. 

3. SOME IMPORTANT PROPERTIES OF SOLUTIONS OF 
THE HJ EQUATION 

In the following we will show how the knowledge of 
solutions of the HJ equation can simplify the problem of 
solving the field equations (2.21): First, we observe that Eq. 
(2.17) is one equation forfour unknown functions S "; conse
quently, we have considerable freedom in the choice of the 
S 1-'. There is, however, a restriction which does not occur in 
classical mechanics, because the functions cp; of Eqs. (2.18) 
must be subjected to certain integrability conditions. These 
conditions are the following: 

a = 1, ... , n, f.1, v = 0, ... ,3. (3.1) 

They impose stringent restrictions on the class of functions 
S 1-', which are of physical interest. 

One possibility of removing the arbitrariness in the 
choice of the S I-' consists of the condition that a given extre
mal z" = r(x) be embedded weakly in a solution of the HJ 
equation. (The weak embedding is locally always possible; 
see Sec. 4.) This means requiring the so-called transuersality 
condition 

(3.2) 

[1T ~(x) denotes the canonical momenta belonging to the so
lutions z" = r(x), according to Eq. (2.12).] 

I t can happen that a solution of the HJ equation (2.17) in 
which an extremal is weakly embedded does not fulfill condi
tions (3.1) for z" =1= r(x), i.e., beyond the extremal. If the 
relations (3.1) are valid in an open neighborhood of 
(x",r(x)), too, we will speak of a strong embedding of the 
extremal. 

A physically important application of solutions of the 
HJ equation is the following: If the S I-' depend differentiably 
on a parameter a, i.e., S I-' = S I-'(x, z; a), then the functions 

- as I-' 
G I-'(x, z; a): = aa (x, z; a) (3.3) 

will yield a conserved current in the case that we substitute Zb 

by such extremalsfb(x) which fulfill1T~(x) = abs I-'Iz~f(x)' 
i.e., we have to solve Eqs. (2.19) in principal. Therefore, the 
vector field 

G "(x,f(x); a): = G I-'(x, z; a)lz~f(xl 

has a vanishing divergence 
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(3.4a) 

dGI-' 
--(x,f(x); a) = ° . 
dxl-' 

This can be proved as follows: 

dG I' aG I' aG I' afb 
--=--+----
dxl-' ax I' azb ax I-' 

a
2
sI-' I a2sI-'I afb 

(~) axl-'aa z~f(x) + azbaa z~f(x) axl-' . 

(3.4b) 

As S I-' is a solution of Eq. (2.17) andfb (x) an extremal, we 
obtain, in accordance with Eq. (2.19), 

:~: = - a:(x,z, ~:)IZ~f(X) 
+ at/J~ (x,z) I afb (x) 

aa z~f(x) axl-' 

= [ _ a7t"(x, z, :S /az) I 
a1T b z=flx) 

+ afb (X)] at/J t(x, z) I = ° . 
ax I-' aa z=flx) 

Noether's currents for classical field theories 11 are just a 
special case of the above HJ currents, for which the param
eter a becomes the parameter of a transformation group.7 

We next mention a method which allows us to calculate 
extremals from certain solutions of the HJ equation3

: Sup
pose S I-'(x, z; a~) is a solution of Eq. (2.17) which depends 
differentiably on 4n parameters a~, fulfills the integrability 
conditions (3.1), and satisfies the inequality 

(3.5) 

Such a solution will be called "complete integral" of the HJ 
equation. We then can compute the functions 

- as I-' 
G I-';~(x, z; a): = -- (x, z; a) , 

aa~ 

f.1, v = 0, ... ,3, b = 1, ... , n . (3.6) 

Furthermore, we seek 16n functionsgl-';~(x) which fulfill the 
following two conditions: 

1. The gl-';e(x) have vanishing divergence, that is, 

al-'gl-';e(x) = 0, v = 0, ... ,3, b = 1, ... , n . (3.7) 

2. The 16n equations 
1 

G I-';e(x, z; a) ~ gl-';e{x) (3.8) 

should be uniquely solvable for the n (dependent) 
variables Z". 

Then 15n of the 16n equations (3.8) necessarily must depend 
on the rest. The resulting functions z" = fa{x) are extremals. 
We can prove this in the following way: Ifz" = falx) is such a 
solution, then we have the relation [see Eq. (3.7)] 

dG I,;b dG I-';b 
__ t' (x,f(x); a) = __ v (x,f(x); a) = ° . 

dxl-' dxl-' 

As in the proof of Eq. (3.4), we obtain, on the other hand, 
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dG It;~(x,f(x); a) = [ar (x) _ aJY(x, z, as /az) I ] 
dx lt ax It a1T ~ z ~flx) 

a2s It x--- (x, z; a) , 
az:aa~ 

and, therefore, because of the inequality (3.5) we get 

ar (x) _ aJY(x, z, as /az) I = 0 . 
ax It a1T~ z~flx) 

Because of our assumption that the solution S It fulfills the 
integrability conditions (3.1), the last equations represent the 
first set of canonical equations [see (2.19)]. Because of Eqs. 
(2.19) the solutionsr(x) are extremals. Further applications 
of HJ theories can be found in Ref. 12. 

4. TWO METHODS FOR SOLVING THE HJ EQUATION 

A. Cauchy'S method of characteristics 

First we shall deal with the problem of embedding a 
given extremal zO = r(x) weakly in a solution of the HJ 
equation. For that purpose we use Cauchy's method of char
acteristics. 8

•
13

•
14 This approach in principle yields a method 

for the explicit construction of solutions of the HJ equation. 
In order to remove part of the arbitrariness in the choice 

of the functions Sit, we require that the functions S j, 
j = 1,2,3, obey the transversality conditions (3.2). That can 
be achieved, for example, by the simple ansatz 

Sj(X,Z)=1T~(X)[zO-r(x)], j= 1,2,3. (4.1) 

The remaining function S 0 is determined by the HJ equation, 
which now takes the reduced form 

aoS°(x, z) + ~(x, Z, 1T~ = aaSo, 1T~ = aaSj(x, z)) = 0 
(4.2a) 

with 

'" ( as) . JY x, Z, 1T = az : = ajS1(x, z) 

+ JY(x, z, 1T~ = aaSo, 1T~ = aaSj) . 
(4.2b) 

In addition, SO should satisfy the transversality condition 
(3.2), too, i.e., 

I 

~(x) = aaSO(x, z)lz~flx) . (4.2c) 

Equation (4.2a) obviously is equivalent to a problem in me
chanics with ~ in general explicitly time-dependent Hamil
ton function JY. In Eq. (4.2a) the space variables x only ap
pear as parameters which are kept fixed. 

The differential equations for the characteristics asso
ciated with the pde (4.2a) are 

x j(t) = 0, j = 1,2,3, (4.3a) 
'" '" :.a( ) _ aJY . ° ( ) _ aJY ~ t --- 1T t - ---. 

a1T~' a azO 
(4.3b) 

(Here we denote the differentiation with respect to t by an 
overdot.) If we employ the ansatz (4.1), the second of Eqs. 
(4.3b) takes the form 1T~ = - aaJY - aj1T~(X), in which the 
term aj1T~ (x) plays the role of an additional, explicitly time
dependent force. 
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Equations (4.3a) imply: x = c = const, whereas Eqs. 
(4.3b) are the canonical equations of a ",mechanical system 
with the reduced Hamilton function JY. Solutions of Eqs. 
(4.3b) can immediately be given 14: The extremalsr(t,c) and 
1T~ (t,c) are solutions of Eqs. (4.3b) as functions of t and con
stant c. 

We determine solutions zO = ; a(t ) and 1T~ = X a (t ) such 
that the following initial conditions are fulfilled: 

;a(o) = ua, Xa(O) = 1T~(O,C), a = 1, ... , n . (4.4) 

Thus, the solutions depend on the n free parameters ua
: 

; a = ; a(t; U
a), X a = X a (t; ua). Due to the uniqueness 

theorem for the solutions of ordinary differential equations 
(ode's), we have 

batt; u~) =r(t,c), Xa(t; u~) = ~(t,c), 
(4.5) 

u~: = r(O,c). 

Furthermore, the initial conditions (4.4) imply 

a(;I, ... ,;n) = 1:;60 for t=O, (4.6) 
a(u l

, ... , un) 

i.e., the equations zO = ; a(t; ua) are solvable for the ua in an 
open neighborhood of t = O. 

Because of the initial conditions (4.4) a lengthy but sim
ple calculation 14 shows that the differential form 

[ 
'" a;a] a;a 

-JY(x,;,X)+Xa - dt+Xa -b dub 
at au 

(4.7) 

is a total differential. Therefore, the line integral 

o-(t;u): = - ~(x, ;, X) + Xa -:.- dt i
ll

.
U

) {[ ar 
a ] 

10."0) at 

(4.8) 

[u: = (u l
, ... , un), UO: = (U6 , ... , u~)] is path-independent. 

After solving the equations zO = ; a(t; ub
) for the ua

: 

ua = r"(t,~) and replacing the constant space coordinates c 
by the vector x, we obtain the solution of the differential 
equation (4.2a), 

SO(x, z): = a(x, ua = r"(t, z)) . (4.9) 

[(4.9) is indeed a solution ofEq. (4.2a) which can be verified 
with the help of the definitions (4.8) and (4.9) and the identi
tyl4 zO = batt; r).] We have 

which because of the relations (4.5) implies 

aaSO(x, z)lz~flx) = 1T~(X); 

therefore, the transversality condition is satisfied, and the 
problem is solved. As a consequence, the weak embedding of 
an extremal zO = r(x) is (locally) always possible. 

The construction of explicit solutions of Eq. (4.2a) es
sentially depends on the solvability of Eqs. (4.3b); solving 
this system of differential equations analytically will not be 
possible in general. 
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B. The "polynomial ansatz" technique 

A more fruitful procedure for an explicit construction 
of solutions of the HJ equation represents the following "po
lynomial method.,,2 Especially the derivation of conserved 
currents will be much easier. 

For that purpose we assume that the variables 
za, v~, 1T ~ are real numbers (the complex case runs analo
gously). We start with the ansatz 

S J(x, z): = 1T~ (X)[Zb - fb (x)], j = 1,2,3, 

SO(x, z): = f" dt g(t,x) + 1T~(X)[Zb - fb(X)] 

+ ~ hbc(x)[Zb - fb(X)] [ZC - f"(x)] 

(4.10) 

+ (1!3!)lbcd(x)[zb - fb(X)] [ZC - f"(x)] 

X[Zd _fd(X)] +"', 
where hbc(X) = hcb(x), lbcd(x) = lcbd(x) = lcdb(x),.··. Again it 
will be our aim to embed a given extremalfa(x) with mo
menta 1T~(X) weakly in a solution of the HJ equation. We 
obviously achieve this aim through the ansatz (4.10), if we 
succeed in determining functions g(x) and hbc(x), lbcd(x),. .. 
such that (4.10) becomes a solution of the HJ equation. For 
this purpose the function 

M(z; x): = - eW'(x, z, 1T~ = aaS "(X, z)) (4.11) 

will now be expanded in a Taylor series with respect to the 
variables za arou!1d the extremal. The independent variables 
x are kept fixed as parameters. The result is [the asterisked 
quantities are to be taken on the extremal za = falx) and on 
their momenta 1T ~(x)] 

M (z; x) = - ,jy* + - --~ ( aeW'* 
aza 

a
2
eW'* a2s0 I -------

a1T~azb azcaza z~/Ix) 

a
2
eW'* a

2s O I a2sO I 
a1T~a1T~ azdazb 

z ~/Ix) azcaza z ~ fix) 

a:7r* a
3
s

O I ) 
a1T~ azca~azb z ~flx) 

X [za - r(x)][zb - fb(X)] + .... (4.12) 

Comparing the coefficients of the corresponding powers of 
(Zu - r(x)), we obtain from Eqs. (4.10) and (4.12) 

g(x) = 1T~(X)V~(x) - $'* = Y*, 

a,,1T~(X)= -aaeW'*, a= 1, ... ,n, 
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(4.13a) 

(4.13b) 

a
2

:7r* (a
2

S
O 

I ) 
+ a~a1T~ azcazb 

z=flx) 

a
2

eW'* (a
2

S
O 

I ) 
+ azba1T~ az<a~ z =/Ix) 

a2:7r* + --- = 0, a, b = 1,00', n . 
a~azb 

(4.13c) 

Obviously, Eqs. (4.13b) are just the second set of the canoni
cal equations (2.20). Equation (4.13c) is a matrix differential 
equation of the first order for the functions hab(X). We want 
to write this relation somewhat more compactly. For this 
purpose we introduce the following abbreviations: 

(4.14) 

The quantities (4.14) are real n Xn matrices of which S, 
$',r')lTo, and eW'zz are symmetric. With the help of this nota
tion, Eqs. (4.13c) assume the form 

S + S:7r ° ,,5 +:7r ,,5 + SeW' 0 + eW'zz = O. (4.15) 
1T 1T Z1I" 1T Z 

Equation (4.15) is a matrix Riccati differential equation IS 

with the independent variable t (x appears only as a param
eter) whose coefficients eW',r')lTo, eW'Z1TO' and :7rzz will in gen
eral be explicitly t-dependent. Equation (4.15) can be asso
ciated with a linear system of matrix differential equations 

(4.16) 

( U and V are t-dependent n X n matrices.) The connection 
between the solutions of Eqs. (4.16) and (4.15) is the follow
ing: IfU(t) and V(t) are solutions ofEqs. (4.16)andifU(t lis 
nonsingular, thenS (t): = V(t)U -I(t )willbeasolutionofEq. 
(4.15); on the other hand, if a solution of(4.15) can be written 
in the formS (t) = V(t)U -1(1), then Uand Vwill solve (4. 16). 
[It can be proven that the general solution ofEq. (4.15) can be 
expressed throughfour independent special solutions of the 
same equation. 16] 

Equations of the type (4.16) we also find in the theory of 
the second variation in which necessary and sufficient crite
ria are developed for a solution za = falx) of the Euler-La
grange equations to minimize the action integral (2.2). A nec
essary condition for this to be the case is that the following 
quadratic form Q (S' ) is positive semidefinite, that is, 

J.- Q (S'): = ( d 4X L (x, S' (x), at (X)) ;;;'0, (4.17) 
2 Jv ax 

in which 
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a2
:£,* ) + --- lU~ lU~ • 

aVaaVb 
I' v 

(4.18) 

The functions ;a(x) are assumed to obey the normalization 
condition: II; 11'y2(V) = 1, where :£,2(V) denotes the Hilbert 
space of the absolutely square integrable functions on V. [If 
Q (;) in Eq. (4.17) is even positive definite, then this property 
will also be a sufficient condition for the existence of a mini
mum.] We try to solve this sign problem through an analo
gous procedure as in the first variation. This leads to the so
called "accessory variational problem,,17,18: We deduce the 
Euler-Lagrange equations for the Lagrange function 

LO:=L-~ ± A;a;a 
2 a~ 1 

(4.19) 

(A is a Lagrangian multiplier): 

d (aL O

) aL o 

dx I' alU~ - a; a = 0 . 
(4.20) 

For A = 0 Eqs. (4.20) are called Jacobi equations of the sec
ond variation. Equations (4.20) constitute a linear eigenvalue 
problem from which we will get the solution of the sign prob
lem (4.17), if the sign of the smallest eigenvalue A can be 
determined. (For a more detailed discussion see Ref. 18.) 

We calculate the canonical momenta and the Hamilton 
function for the Lagrange function (4.18) by a Legendre 
transformation; this gives 19 

(4.21b) 

Jacobi's equations of the second variation are equivalent to 
the canonical equations 

a aH a2 cW'* a2 cW'* 
lUI' = -- = ; b + YJ~ , (4.22a) 

aYJ ~ a1T ~ azb a1T ~ a1T~ 

aH a2cW'* a2cW'* aflYJ~ = ____ ;b ____ v 

a;a a~azb a~a1T~ YJb . 

(4.22b) 

We easily find extremals to the Lagrange function (4.18), i.e., 
solutions ofJacobi's equations: If~ = falx; a) is an extremal 
of the first variation which depends on a parameter a, then 

; a = Ta(x): = ar (x; a) 
aa 

will be a solution of Jacobi's equations (see, for example, Ref. 
18). It is a trivial fact that Ta(x) = 0, also, is an extremal of 
the second variation with" Tall = O. 

For the Hamilton function (4.21b) we now can set up 
the HJ equation 

afl W fl(X,;) + H(X,;, YJ = ~f) = O. (4.23) 
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We want to embed a given solution; a = Ta(x) of Jacobi's 
equations weakly in a solution of the HJ equation (4.23): If 
YJ ~(x) are the canonical momenta, we will make the ansatz 

Wj(x,;):=YJ~(x)[;a_Ta(x)], j=1,2,3. (4.24) 

From this we deduce the reduced HJ equation [see (4.2)]: 

( ° aw
o 

) aoWO(x,;)+n x,;, YJa = a;a ' YJ~ =YJ~(x) =0, 

(4.25a) 

in which 

n(x,;, YJ): = ajYJ~(x)[;a - Ta(x)] - YJ~(x)ajTa(x) 

( ° awo 
. .) + H x, ;, YJa = --, YJ~ = YJ~(x) . 

a;a 
(4.25b) 

In accordance with (4.3b) we obtain the differential equa
tions for the characteristics: 

. an a2 cW'* az cW'* 
;a(t)=-ao= a~a 0 ;b(t)+ atl!.arr? YJ~(t) 

YJa 1Ta a b 

(4.26) 

an 
---= 

a;a 
a 2 cW'* b a2 cW'* 0 

- a~a~ ; (t) - a~a1T~ YJb (t) 

a2cW'* 
--- YJ1.(x) - ajYJ~(x). 
a~a1T~ 

Equations (4.26) form an inhomogeneous, linear system of 
differential equations with varying coefficients. The homo
geneous part of Eqs. (4.26) is the same as Eqs. (4.16). We 
automatically get this homogeneous part, if we embed the 
trivial extremal Ta(x) = 0 with YJ ~(x) = O. Therefore, we 
find the following connection between Eq. (4.15) and the HJ 
equation (4.23): 

If S (x) is a symmetric n X n matrix, then 

WO(x, ;): = ! ; TS (x);, ; T: = (; I, ... , ; n) 

will be a solution ofEq. (4.25a) for the extremal Ta(x) = 0 iff 
S (x) is a solution of (4.15). [In general we easily show that if 
S fl(X, z) is a solution of the HJ equation (2.17) in which an 
extremal ~ = r(x) is weakly embedded, then 

W fl(X, ;): = ~ ;a;b a
2s fl(X, z) I ,f.l = 0, ... ,3 

2 a~azb z~f(xJ 

solves Eq. (4.23).] 
Summarizing, we can draw the following conclusion: 

The "polynomial method" will be appropriate, if the Hamil
ton function cW' is a polynomial up to the second order in the 
variables 1T ~ and~; for in this case the solution of Eq. (2.17) 
is given by a polynomial ansatz for SOup to the second order 
[see Eq. (4.10)]. The only problem left consists of solving the 
corresponding matrix Riccati equation (4.15). But even the 
physically more interesting cases in which cW'is of higher 
order in the variables ~ can be treated with the above meth
od to some extent (see Sec. SA). 
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5. EXAMPLES 

With some examples from relativistic field theory we 
now want to illustrate the methods developed above. 

A. Solutions of the HJ equation 

First we construct some explicit solutions of the HJ 
equation: 

(i) The simplest example from field theory is the real, 
scalar Klein-Gordon field. It has the Lagrange function 
(LF) 

x = ~ v!1v!1 - ~ m2z2 (n = 1!) 

in which z and v!1 become 

z ----c> z(x), v" ----c> v,, (x) = a!1z(x) 

(5.1) 

on the submanifolds.I4 [see Eq. (2.1)). The canonical mo-
menta are 

ax 1T!1: = __ = v!1. 
av!, 

We see immediately that the Legendre transformation (LT) 
is regular [see Eq. (2.13)). Therefore, we can calculate the 
Hamilton function (HF) 

JY = 1T!1V - X = 1 1T!11T + 1 m2z2 
!1 2 I' 2 • 

For the slope functions CP,l (x, z) we obtain here 

aJY I as" CP,l (x, z): = -- = g!1" -- (x, z) 
a1T!1 1T ~ as laz az 

(g!1V = Minkowski metric tensor), and the integrability con
ditions (3.1) take the form 

a2s p a2s p asa 
g!1P axvaz +g!1P gva aF-;;;-

a2s p a2s p asa 
= gvP ax!1az + gvP g!1a aF -;;;-. (5.2) 

These are nonlinear pde's of the second order. 
If we want to embed a given extremal z = cP (x) with 

momenta 1T!1(X) = a!1cp (x) weakly in a solution of the HJ 
equation, the ansatz (4.10) will lead to 

S!1 = g!10 fO dt $'*(t, x) + 1T!1(X) [z - cP (x)] 

+ g!1°h (x)[z - cP (xW . 

h (x) here has to satisfy the Riccati equation 

h = - 2h 2 _ 1 m 2 

2 ' 

the general solution of which is 

h(x)=~mtan[ -mxo+F(x)]. 

The integrability conditions (5.2) here give 

ajh (x)[z - cP (x)] = 0, j = 1,2,3. 

These conditions are fulfilled either on the extremals (that is 
always true) or if ajh (x) = 0, j = 1,2,3. The result shows 
that solutions of the HJ equation exist in which a given extre
mal can be embedded weakly but not strongly. 

A symmetric form of the ansatz (4.10) is possible, too; 
for instance, 

(5.3) 
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The coefficient functions are determined by comparing the 
coefficients of z; this gives 

a!1 h I' = - h !1h'l - m2
, 

gP(x) = 1T!1(X) - 2h !1(x)cp (x) , 

0/= - ~gll(X)g'l(X) (0: = ap a!1). 

(5.4a) 

(5.4b) 

(5.4c) 

A separation ansatz yields special solutions ofEq. (5.4a) (see 
Sec. sq. If the functions h !1(x) are known, Eq. (5.4b) defines 
the functionsg!1(x). This definition of the functionsg!1(x) 
ensures the validity of the transversality condition (3.2). For 
the ansatz (5.3) we obtain the integrability conditions (3.1), 

[a"h!1(x) - a,lh,,(x)] [z - cP (x)] = 0, 

v, f.1 = 0, ... ,3, f.1 =I v . 

(ii) The calculations for the complex (charged), scalar 
field are completely analogous: Here we have the LF 

,7 = V"V 'l - m 2zz (n = 2!) 

(the overbar denotes the complex conjugation), from which 
we find the canonical momenta and the HF 

With the help ofEq. (4.10) we get the following solution of 
the HJ equation: 

S Il(X, Z, z) = gilD fO dt Y*(t,x) + 1T " (X)[Z - cP (x)] 

+ ffll(X) [z - q; (x)] + g IlOh (x) 

X [z - q; (x)][z - cP (x)] , 

where the function h (x) is a solution of the Riccati equation 

h = - h 2 - m 2 , (5.5) 

with the general solution 

h (x) = m tan[ - mxo + F(x)] . (5.6) 

(iii) (a) In the case of E-dynamics without external cur
rent we start with the LF 

where v!1V ----c> v!1v(x): = gpva!1A Pix) on the extremals A Pix). 
The canonical momenta are 

1T!1V: = ax = _ f!1V . 
aV!1V 

It is clear that the LT is not regular [see Eq. (2.13)]. Never
theless, it is possible to calculate the HF by means of the 
relation 1T!1"V!1v = ~ 1T!1"(V!1" - v"!1)' The result is 

JY = 1T ,ll'V!1" - ,51' = - i 1T!1V1T!1v . 

Although the LT is singular, a linear ansatz of the type (4.10) 
leads to the solution of the weak embedding problem: If 
A!1 (x) and 1T!1V(X) are given extremals and associated mo
menta, then 

S Il(X, z,,) =g,lO f" dt x*(t,x) + 1T!1"(X) [z" -A,,(x)] 

(5.7) 

will solve the HJ equation 
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a S Ji. _ ~ as Ji. asJi. = 0 . 
Ji. 4 az" az" 

There is no integrability problem here, because the canonical 
equations (2.19) and (2.20) are not equivalent to the Euler
Lagrange equations, for the L T is singular. 

A symmetric solution of the HJ equation is2D 

(S.8) 

(b) We next examine E-dynamics with external current 
r(x) with the LF 

2" = -AlJi."IJi." - j"(x)z" , (S.9) 

which gives the canonical momenta 

rr'''': = ay = -I''''. 
au,,,, 

Again we calculate the HF, despite the singularity of the LT, 

JY' = -lrr''''rr,,,, + /'(x)z" . 

We will find a solution of the HJ equation of the type (S.7), if 
we take for 2"* the Lagrangian (S.9). 

A symmetric solution is the following20
: 

S"(x,z,,)=rrJi."(x)[zv -!Av(x)] -!a"g(x), (S.lO) 

in which g(x) has to satisfy the equation 

Og=r(x)A,,(x) , 

In order to get a regular LT, we take the LF in the Lorentz 
gauge a"A Ji.(x) = 0: 

,51' = -! u"vUJi." - j V(x)zv 

with the canonical momenta 

I'" ay I'" rr :=--= -u . 
aUf'"~ 

The L T is obviously regular, and we obtain the HF 

JY' = rrflVuflV - 2" = -! rrflVrr/,,, + jY(x)zv . 

(S,11) 

This time we want to construct a solution of the HJ equation 
by the method of characteristics. For that purpose we set 
Sj, j = 1,2,3: 

Sj(x, z") = - ajA "(x) [z" - Ay(x)] , 

in which A,,(x) are the given extremals with momenta 
rr,,,,(x) = - aflAV(x). 

According to the procedure of Sec. 4 we have to calcu
late the characteristics which belong to the reduced HJ equa
tion (4.2) [see Eq. (4.3)] from the equations 

.,' a2 "lID Z =--= -g rrfl' 
arr~ 

(S.12a) 

'0 
rr" = 

o 0 a2
A" 0 - LlA,,(x ,c) - jv(x ,c) = - -2- (x ,c) . 

at 
(S.12b) 

The last equality in Eq. (S.12b) is valid because of the field 
equations 0 A,,(x) = jv(x). Solutions of these equations 
which satisfy the condition (4.5) are the following: 

ZV(t) = A V(t,c) - A V(O,c) + u", U
V = const, (S.13a) 

o aA" rr,(t) = - - (t,c) . 
at 

(S.13b) 
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The calculation of the line integral (4.8) and solving Eqs. 
(S.13a) for the constants U V are simple here, and we get 

x" 
SO(x, ZV) = 1 dt Y*(t,x) - aOA,,(x)[z"-A V(x)] . 

For these solutions S I' the integrability conditions (3.1) are 
fulfilled, for we have in this case 

aJY' I aS
f7 

f7 'P,,,,(x, z): = ~ = - g,w --" = g'lf7 a A,,(x). 
arr ,,~aSlaz az 

(iv) Next we want to couple a complex, scalar field to an 
external electromagnetic field AI' (x). The LF is 

Y = (v" - iqA
" 

(x)z)(u 'I + iqA "(X)Z) - m2zz. (S.14) 

On ~4 [see Eq. (2.1)] this LF is gauge-invariant in the follow
ing sense: 

A "(X) ~ A "(X) + afl/(x) , 

z(x) ~ e - iqf1x)z(x), z(x) ~ eiqflx'Z(x) . 

We get the canonical momenta 

rrfl: = a2" = vI' - iqA fl(X)Z, 
aUfl 

iTfl: = ay = Ufl + iqA fl(X)Z. 
du

" Therefore, the LT is regular, and the HF is 

JY' = rrl'iTfl - iqA fl(x)rrflz + iqA "(X)iTflz + m2zz. 

The weak embedding corresponding to Eq. (4.10) gives for 
extremals <pIx), (p (x) with momenta rrfl(x), iTJi.(x) 

x" 
S fl(X, Z, z) = gflO 1 dt 2"*(t,x) + rrfl(x)[z - 'P (x)] 

+ iTl'(x)[z - -;p (x)] + gflOh (x)[z - 'P (x)] 

X [z - -;p (x)] , (S.lS) 

in which h (x) satisfies Eq. (S.S) with the general solution (S. 6). 
We can try here a symmetric ansatz analogous to (S.3), too: 

S fl(X, Z, z) = a''f(x) + g ~(x)z + g i(x)Z + h fl(X)ZZ, 

with the following equations for the coefficients: 

g ~(x) = rrfl(x) - h fl(X)-;P (x) , 

g i(x) = iT I' (x) - h P(x)'P (x) , 

01 = - g 'i (X)g2, P (x) . 

(S.16a) 

(S.16b) 

(S.16c) 

(S.16d) 

Special solutions of Eq. (S.16a) are, for instance, 

h O(x) =! m tan( -! mxD + CO), 

hj(x) =! m tanh( -! mx j + c j), 

j = 1,2,3, e" = const. 

The integrability conditions lead to the constraints 

(aoAj(x) - ajAo(x) - (i/q)ajh (x)] [z - 'P (x)] = 0, 

j= 1,2,3, 

[ajAdx ) - akAj(x)] [z - 'P (x)] = 0, 

j,k = 1,2,3, f=l=k , 

and analogous equations for z - -;p (x). 
(v) The example (iv) will now be extended by coupling 
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the electromagnetic field to the matter fields tp(x), ep (x), too. 
Instead of (S.14) we now have 

!£ = vI' vI' - iq Y) zv) + iq y)zv) 

+ q2y) y) zz - m2zz - !f l'J,w , (5.17) 

in whichy) -A )(x) on the extremals and/l'v: = vl'v - vVI" 
v1'0 = V 1'0: = O. The function (5.17) is the LF in the temporal 
gaugeAo = O. We can get the complete set offield equations 
in the temporal gauge from this LF, if we require as a secon
dary condition the conservation of the currene l

: 

al'r(x) = 0, j O(x) = iq[ep (x) JOtp (x) - tp (x) JOep (x)] , 

l (x) = iq [ep (x) aktp (x) - tp (x) akep (x)] 

- 2q2 ep (x)tp (x)A k (x), k = 1,2,3. 

The above LF then leads to the complete theory in the 
Ao = 0 - gauge. For the momenta we get 

° a!£ - ° -0 a!£ ° 1T·----V 1T·----V . - avo -, . - Ov
o 

- , 

. a!£ . . 
1TJ: = -- = vJ - iqyJ z , 

av) 

. a!£ . . 
iTJ: = -- = vJ + iq yJz, j = 1,2,3, 

Ov) 

1'). - a!£ - 11') - 0 3 . - 123 1T . - -- - - , J-l - , ••• , , J - , , . 
avl') 

It is true that the LT is only regular with respect to vO, ... , v\ 
v 0, ••• , v3

, and VOj but, nevertheless, we can calculate the HF 
I 

For the (Hermitian) matrix dY'zz from Eq. (4.14), we find 

m 2 0 - iq1TI(X) - iqr(x) 

o m2 iqiTI(X) iq~(x) 

dY'zz = iqiTI(X) 

iq~(x) 

iqr(x) 

- iq1TI(X) 

-iqr(x) 

- iqr(x) 

o 

dY' = 1Tl'iTl' - iq1T)y)Z + iqiT)y)z 

- 1 1T k)1T . - 1 1TO)1T + m2zz 
4 kJ2 oJ • 

The ansatz (4.10) is again successful in this case, because only 
the regularity of the L T with respect to the zero components 
of the momenta is important. Ifep(x), tp(x), and A )(x) are 
extremals which are to be embedded, then the solution takes 
the form 

S I'(x, Z, Z, z)) =gl'O fO dt !£*(t,x) + 1T1'(x)[z - tp (x)] 

+ iTl'(x)[z - ep (x)] + 1Tl'k(Xl[ Yk - Adx)] 

+ h(l) (x)[z - ep (x)] [z - tp (x)] 

+ h ~)(x)[z - tp (x)l[ Yk - Adx )] 

+ Ii t2)(X)[Z - ep(x)l[ Yk -Adx )] 

+ ! h (~) (xl[ Yk - Adx)] [ Y/ - A/(x)] 
- - 2 +! h(4) (x)[z - tp (xW +! h(4) (x)[z - tp (x)] , 

where h !'I) (x) = h !~) (x). The functions h can be ordered in a 
Hermitian 5 X S matrix 

S:= 

- iqr(x) 

iqr(x) 

h(l) 

1i(4) 

Ii l2) 

Ii ~2) 
Ii r2) 

h(4) 

h(l) 

h l2) 

h f2) 

h r2) 

h l2) 

Ii (12) 

. . . 

. . . 

h f2) h r2) 
li2 -3 

(2) h (3) 

. . . 
h k/ 

(3) 

. . . 

We proved already in Eq. (4.1S) that S fulfills the matrix Riccati equation 
. 2 
S + S + dY'zz = 0 (dY'1To1To = E5!) . 

It seems very difficult to find analytical solutions of this equation because of the explicit t dependence of dY'zz; in simple special 
cases a solution will be possible [for example, if tp (x), ep (x), and A j(x) are independent of time]. 

(vi) We will now treat the free Dirac equation using once more the method of characteristics. At first we want to derive an 
LF which yields a regular LT. For that purpose we start with the common LF 

!£ = ! i(zyl'vl' - vI' yl'z) - mzz , (S.18) 

in which z is a complex, four-component column vector and z: = z+ yO is the adjoint row vector. Obviously, the LT with 
respect to the LF (5.18) is not regular. To change this fact, we add to the expression (5.18) a total divergence of the form22 

(5.19) 

where uI'V: = ! i[ yl', yV] and 

d .-a - a I' a - a a 
-- . - I' + vI' - + V - + vl'V - + vl'V -
dxl' az az Ovv avv 

with vl'V = VVI" vl'V = VVI" The new LF reads 

!£' = ! i(zyl'vl' - vI' yl'z) - mzz - iAVI' ul'Vvv 
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(A >0). 
(5.20) 

I 
The canonical momenta assume the form 

-" a!£' i -.. .,- V" 
p~: =-a =-2 zy' -IAVvU', 

VII 

(5.21) 

pI': = a!£' = _ ~ yl'z _ iAUI'VV" . 
Ovl' 2 

With the help of the matrix 
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which obeys the equations 

VA "AE -AV TI-'VU =Ul-' 4=0- Tvl-" yI-'Tl-'v=Tvl-'yl-'= -jiyv' 
(5.22) 

we can solve Eqs. (5.21) for Vv and vv: 

(5.23) 

AVv = iTvl-' pI-' + i iyvz. 

Now we are ready to calculate the HF, 

jY' = Fvv + Vv pV - !£' 
= (1/..1 )(ipvTvl-' pI-' + i ipVyvz - i izyv pV +! zz) + mzz. 

If "'(x) and ¢(x) are extremals, we can make the following 
ansatz: 

S l(X, z, z) = ~ i [ ¢(x)yjz - zyj",(x)] 

- iA av¢(x)uVj[z - "'(x)] 

- iA [z - ¢(x)]ujV aV"'(x) , (5.24) 

j = 1,2,3 

and solve the reduced HJ equation according to the formula 
(4.2a). The corresponding differential equations of the char
acteristics are 

z = - ~ po + _1_' YoZ - _1_' yo"'(t c) + ao"'(t c) 
3..1 6..1 2A' , 

- ~ iuov av",(t,e) , 
3 

(5.25a) 

Z- -_ 2 -0 i - i ::i,( ),J) a ::i,( ) --p --zYo+-o/t,er + oo/t,e 
3..1 6..1 2A 

- ~ i av¢(t,e)uvO 
, 

3 

. ° i ,J) ° ( 1 ) 1 .1,( ) p = - r P - m + - z + - 0/ t,e 
6A 3..1 4..1 

1·1· + - yplV av",(t,e) + - iyl aj"'(t,e) 
6 2 

+ iAu jv ajav"'(t,e) , 
(5.25b) 

po = - 6~ Pyo - ( m + 3~)Z + 4~ ¢(t,e) 

1 - . 1 - . 
- - av",(t,e)uV1Yj - - i Jj"'(t,e)yl 

6 2 
+ iA ajav¢(t,e)uVj . 

Ifwe use the Dirac representation of the y matrices in which 
~ is diagonal and if we define the constants 
m~: = (2/3A)(m + 1/3..1), u: = (u i

, ... , U
4

)T, W: = (u5
, ... , u8 ), 

we obtain the following characteristics which satisfy Eqs. 
(4.5): 

z(t) = COSh(mot)( cos( 6~ )E4 

+ i sin( :..1 )~] [u - ",(O,e)] + ",(t,e) , 

(5.25c) 
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z(t) = cosh(mot) [w - ¢(O,e)] [cos( :..1 )E4 

- i sin( 6~ ) ~] + ¢(t,e) , 

pO(t) = - 3: mo Sinh(mot)[ cos( :..1 )E4 

+ i sin( :..1) ~] [u - ",(O,e)] 

- ~ ~"'(t,e) - iAuov av"'(t,e) , 
2 

pO(t) = - ~ m o sinh(mot) [w - ¢(O,e)] 
2 

i - -+ - "'(t,e)~ - iA av",(t,e)uvO 
• 

2 

(5.25d) 

The calculation of the line integral (4.8) and solving Eqs. 
(5.25c) for the u's and w's leads to the result 

SO(x, z, z) = LXO 
dt !£'*(t,x) 

- ~ mo tanh(moX°)[z - ¢(x)] [z - "'(x)] 
2 

+ [~i¢(x)~ - iA av¢(x)uvO
] [z - "'(x)] 

+ [z - ¢(x)][ - ~ i~"'(x) - iA~v av"'(x)] . 
(5.26) 

The LF (5.18) vanishes on the extremals "'(x), "'(x); there
fore, we can simplify the expression for !£'*(t,x) under the 
integral in Eq. (5.26), namely, 

!£'*(t,x) = A [aV¢(x) av"'(x) - m2¢(x)"'(x)] . 

The integrability conditions (3.1) for the solutions (5.24) and 
(5.26) are in general only fulfilled on the extremals. 

(vii) In order to couple the free Dirac field to an external 
electromagnetic field A I-'(x), we replace a I-' in the expression 
(5.18) by al-' + iqAI-' (x) (minimal coupling), and again we add 
the total divergence (5.19). This gives 

!£' = ! i(zyl-'vl-' - vI-' yl-'z) - mzz - qAI-' (x)Zyl-'z 

- iAvl-' ul-'Vv" (A> 0) . (5.27) 

The LF (5.27) is gauge-invariant on the extremals in the fol
lowing sense: If we make a gauge transformation 
AI-' (x) -+ AI-' (x) + al-' f(x), "'(x) -+ e - iqf1xl",(X), 
¢(x) -+ eiqfIXi¢(x), the LF which results from this transfor
mation will differ from (5.27) only by a total divergence. 
After the gauge transformation we get 

!£' -+ y' = !£' - Aq d~ I-' [f(x)zul-'Vvv - vvu VI-'f(x)z] 

with d /dxl-' as in Eq. (5.19). 
The canonical momenta are identical with those in Eq. 

(5.21) from which we get the HF with the help of Eqs. (5.23): 

cy,o 1(._1-' v i_I-' i_ I-' 1_) 
en =- Ip T P +-p Y z--zy P +-zz A I-'V 6 I-' 6 I-' 3 

+ mzz + qAI-' (x)Zyl-'z . 
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The ansatz (5.24) works here, too. That leads to the following differential equations: Those in Eqs. (5.25a) remain the same; to 
Eqs. (5.25b) we have to add terms of the form - qAI"(x)yl"z and - qAI"(x)Zyl", respectively, on the right-hand sides. These 
equations are hard to solve, because the y matrices cannot be diagonalized simultaneously. It is, however, possible to write 
down the form of a solution of the reduced HJ equation. It reads 

SO(x, z, z) = fO dt Y'*(t,x) + H i¢(x)y) - iti av¢(x)lTVO ] [z - ¢(x)] 

+ [z-¢(x)l[ -!iyD¢(x)-itilTovav¢(x)] + [z-¢(x)]G(x)[z-¢(x)] , 

where the 4 X 4 matrix G (x) satisfies the Riccati equation (4.15), that is to say, 

G - ~ G Z + _1_' GyD - _1_' yDG + (m + _1_)E4 + qA (x)yl" = 0. 
3ti 6ti 6A 3ti I" 

(5.28) 

In special cases we can find solutions ofEq. (5.28), for example, Aj = O,j = 1,2,3. We get the solution 

3ti [E~IMol tanh(E~IMolxO)Ez Oz ] 
G(x) = -- , 

2 Oz E~IMJI tanh(E~IMJlxO)Ez 

in which Mo(x): = (2!3ti )[m + l/3ti + qAo(x)], 
MJ(x): = (2!3ti )[m + l/3ti - qAo(x)], and E = lor E = i depending on the sign of Mi,j = 0,1. 

(viii) Finally we examine the nonabelian gauge theory 
(Yang-Mills) with gauge group SU(2). In this case we have 
12 real gauge fields A ~,/1 = 0, ... ,3, a = 1, ... ,3. For reasons of 
convenience we take the temporal gauge [A ~ = 0, 
a = 1,2,3; see the arguments in example (v) and Ref. 23] and 
choose as LF 

where 

V 1"0 - va . - ° ZO - ..a . - ° a - flO' -, Q -'::::0' - • 

The canonical momenta are 

. ay . 
1T~J: =--= -f~J. 

aV~j 

Therewith we get the HF, despite the singularity of the L T, 

JIr = -! 1T?!1f'oj - ! rI;~j + ! gEabc rl;ztz'f . 

An ansatz of the type (4.10) [with extremalsA j(x) and mo
menta 1T ~j(x)] yields 

Sj(x,z~) = 1T~k(X)[~ -A %(x)], j= 1,2,3, 
x O 

S O(x, z~) = Sa dt Y*(t,x) + 1T~k(X) [~ - A % (x)] 

+ ~ h ~~(x)[ zt - A t(x)][ Zl - A f(x)] 

X [h ~~(x) = h ~~(x)] , 

in which according to Eq. (4.15) the real symmetric 9X9 
matrix G: = (h ~~) has to fulfill the Riccati equation 

h ~~ + h 'f!ah~c + gEabc~/(x) = ° 
or in matrix notation 

G + G 2 + gEa X1Ta(x) = 0, 

where 

(i.e., 1T~ = - 1Ta), 
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I 
B. Conserved currents associated with solutions of the 
HJ equation 

We showed in Eq. (3.4) how we can construct conserved 
currents from solutions of the HJ equation. This shall be 
illustrated now by simple examples: 

With the help of the ansatz (4.10) we found in Sec. 5A 
solutions of the HJ equation of the form 

S I"(x, z) = gl"O f" dt Y*(t,x) + 1T~(X)[z" - r(x)] 

+ !gl"°hab(x)[z" - r(x)] [Zb - fb(X)] . 

If we embed an extremalfa(x) which depends differentiably 
on a parameter a-that is,Ja = falx; a)-then we will get 
according to Eq. (3.4a) the current 

a LX" G I"(x) = gl"O - dt Y(x,J(x; a), af(x; a)) aa 0 

a 
- 1T~(X) -r(x; a). (5.29) aa 

Ifwe calculate the divergence of the expression (5.29), we 
obtain 

ay* aJP* 
al" G '"(X) = -a a au r(x; a) + -a a aual" r(x; a) 

Z vI" 

- al' 1T ~(x) au r(x; a) - 1T ~(x) aual" r(x; a) . 

Because of the validity of the Euler-Lagrange equations for 
the functions fa and because of 

1T
"

(X) = aJP* 
a a a 

VI" 

the functions in (5.29) are indeed the components of a con
served 4-current, and that is independent of the fact whether 
the current was derived from a solution of the HJ equation or 
not. For m = 2, n = 1, the current (5.29) was first derived in 
Ref. 7. 

For extremals which vanish fast enough for Ixl- 00 

the conserved charge 
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xO 

Q: = J d 3X G O(XO,X) = J d 3X :a i dt 2'*(t,x) 

-J d 3x 1T~(XO,X) a:aa (xo,x) 

exists. Because Q is time-independent, we can calculate Q 
while we consider the limit XO ---+ 0, where we have to distin
guish two cases: 

(i) If the parameter a is related to the time coordinatexO, 

the term involving the integral st dt 2'*(t,x) in general will 
give a finite contribution in the limit XO ---+ 0. For instance, if 
a appears in the combination XO + a (time translation), we 
get 

Q = i d 3X [2'*(XO,X) - 1T~(XO,X) W: (XO,X)] . 
xO~O ax 

(This is obviously the energy conservation.) 
(ii) If a is not related to xc, we get 

Q = - i d 3X 1T~ (XO,x) ar (XO,x) . 
xo~o aa 

Instead of the current (S.29) we can take the conserved cur
rent 

G /"(x): = g"O aa IXU 

dt 2'(x,J(x; a), af(x; a)) 
a -00 

ar - 1Tt(X) - (x; a) , (S.29/) aa 

if the integral exists. For solutions with finite action we get 
the charge 

Q/ = ~Jd4X 2'* - i d 3x 1T~(XO,X) ar (XO,x), aa xO-oo aa 
provided a is not related to XO and the different limits to be 
taken are interchangable. Before we treat some examples, we 
want to remark that the special role ofthe zero component in 
the expressions (S.29) and (S.29/) is completely arbitrary. We 
could obtain similar currents in which one of the space com
ponents plays a special role. 

1. Plane wavesinE-dynamics withjl' (x) = o [see Eq. (5.11)] 

Given A nIx) = 0, A i(x) = fi(t - n'x),j = 1,2,3, n2 = 1, 
for instance, 

n = (n I, n2
, n 3

) = (cos a sin {3, sin a sin {3, cos {3). 

The 4-potential A " which has been defined in this way is a 
solution of the homogeneous Maxwell equations in the Lor
entz gauge and depends on the parameters a and {3. We find 
that the LF (S.II) vanishes on these extremals, i.e., 
2'*(t,x) = ° in the expression (S.29). For the current (S.29) 
we get after a short calculation 

GO(x) = - E2(X) sin {3 (Xl sin a - x 2 cos a), 

(S.30) 
Gi(X) = - n iE2(X) sin {3 (Xl sin a - x2 cos a), j = 1,2,3, 

where E i = - Ji = - anA i is the electric field strength. 
For plane waves of the above form the continuity equa

tion 
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is always valid; therefore, the current (S.30) is of the follow
ing type: Supposeg"(x) is a conserved current, a" g"(x) = 0, 
andf(x) is a function which does not depend on XO and which 
fulfills giaj f = 0; then G ": = g"f is a conserved current 
too. 

2. Plane waves in the Dirac theory 

A plane wave solution of the free Dirac equation is24 

¢(x) = e - ik·x '*-+ m 
~2m(m +ko) 

u, 

where ko: = + ~k2 + m2, u: = (1 ,O,O,O)T, i.e., t,b(x) is a solu
tion to positive energy. The bispinor ¢ depends differentia
bly on the parameters k = (kl' k2' k3)T, the space compo
nents of the 4-momentum k. The LF (S.20) vanishes on this 
extremal, and therefore the integral in Eq. (S.29) disappears. 
For example, we can take k I as a parameter, and we get the 
following conserved current: 

G" = (XI-~XO)~+~[ 1 
ko m 2 ~2ko(m + ko) 

+ Am ] [e - Ik,xi;.(X)y,,(k l yO + yl)U 
~2m(m + ko) ko 

- eik'Xue~ yO + yl) y"¢(X)] 

- ~ A [e - ik'Xi;.(X)yli'k,(~ yO + yl)U 
2 ~2m(m + ko) ko 

- eik'Xu(~~ yO + yl )kyli¢(X)] , 

in which 

i;.(x) = eik.xu K-+ m ,u: = (I,O,O,O)yO . 
~2m(m +ko) 

If we take k2 or k3 as parameters, we will get completely 
analogous formulas. 

3. Plane waves in the nonabelian gauge theory [SU(2)] 

Plane wave solutions of the Yang-Mills equations are 
obtained from the ansatz25 

A; = c5~ cJ> (u) Pli + c5~ 1/1 (u)qli ' 

where u: = s"x", pliSIi = qlis" = qlip" = 0. The special 
choice Sli: = c5~ - ~,p" = q,,: = ~ - c5~ and 
cJ>(u) = xIF(u), I/I(u) =:: x 2G(u) (F, Gare arbitrary functions) 
yields 

A ; (x) = (c5~ - c5~)[ c5~xIF(u) + c5~X2G(U)] . 

These are Coleman's plane waves. 
If we make the choice 

cJ>(u) = I/I(u) and p2 = q2, 

the field equations require that cJ> (u) has to satisfy the differ
ential equation 

cJ> "(u) - ~;2 cJ> 3(U) = ° [ cJ> /(u): = ~: (U)]. (S.31) 

A solution of this equation is Jacobi's elliptic function26 
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f/> (u) = cn(u, k) , 

in which k 2 = ! and S2 = - ffp2. We now calculate the cur
rent (S.29) with So as the parameter a. We have 

F;v(x): = JI"A ~(x) - JvA; (x) - gE"bcA!A ~ , 

y*= -IF;vF~v= _~p2[2(f/>')2+g2f/>4p2J, 

and 

+ ffxOp2f/> ' . f/> 3 + so(f/> ')2 J , 

JA a JA a 
-1t;V(X) __ v (X) = F~V(x) __ v (X) = 2xO(f/> 'fSl"p2 . 

JSO JSO 
Using Eq. (S. 31), we get the conserved current 

,,0 

G I"(x) = - 2p2g 1"0 Sa dt [2tg 2p2f/> I • f/> 3 + sol f/> ')2] 

+ 2x0p2sl"(f/> ')2. 

4. Instant on solutions of the Euclidean SU(2)-Yang-Mills 
theory 

We now want to investigate the so-called instanton so
lutions of the Yang-Mills field equations in Euclidean 
space-time [with metric (+ + + +)], which can be char
acterized through topological quantum numbers. 27 The 
gauge fields and the related "field strengths" for an Euclid
ean SU(2)-Yang-Mills theory are 

.s:1'1": =gA;1"a/2, f.l = 1, ... ,4, 

Yl"v: =gF;v1"j2 = JI".s:1'v - Jv.s:1'1" 

+i[.s:1'I" .s:1'v], f.l,v= 1, ... ,4 

(1",,1"2,1"3 are the Pauli matrices). They obey the field equa
tions 

JI"Y"Y +i[Lw'I",Y,ll'] =0. 

The field equations for the components F;v are 

J,,F~v - gE"bcA !F~ll' = O. 

(S.32) 

Instantons are solutions of Eqs. (S.32) with self-dual "field 
strengths" Y,ll" that is, 

07 _*07 ._, 07 
t_:,r ILV - ~./ 11V' - 2: C,lvpa'-/ po • 

For such solutions the topological quantum number r (often 
called the Pontryagin index) coincides up to a constant factor 
with the action integral, namely, 

- 8Ji1 r = - ~ J d 4X F~vF~, . 
g2 4 

We consider instanton solutions with Pontryagin index 
r = 1; they are 

2(xv - a,,) 
.s:1' (x) = - P I" j 2 ( )2 1-'" 

/I. + x-a 

in which 

x
2

: = xl"xl"' PI"": = (l/4i)(sl"$" - S,,$I")' 

(sl'): = (iT, E2l, ($1"): = ( - iT, E2)' 

Because of PI"" = *pI'Y the "field strengths" 
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(S.33) 

4A. 2 

Yl"v(X) = + [,.{2 + (x _a)2]2 PI'" 

are self-dual. 
The solutions (S.33) contain five parameters: A. and 

a = (a " ... , a4 ). The Euclidean current associated with the pa
rameter A. is 

where 

y* = - ~F~J~v = 
48 A. 4 

g2 [A. 2 + (x - af]4 

and 

JA ~ JA~. 
- n-;:v(xl JA. (x) = F~,,(x) JA. (x) 

48 A. 3(X" - a,,) 

-7 [A. 2 + (x - afJ4' 

The current (S.34) takes the form 

G (x) = - 192 A. 38 I" 2 1"4 g 

X d1" 4 i
X4 (x - a)2 + (1" - a )2 - A. 2 

° [A. 2+(x-a)2+(1"-a4)2p 

48 3 xI' - al" 
---A. 

g2 [A. 2 + (x _ a)2J4 

The corresponding charge has the value 

Q: = d 3X G4(x, x 4 ) = _ 4. J 6Ji1 A. 3a 

g2 (A. 2 + a~ )5/2 

The charge associated with a current of the form (S.29') is 
Q'=O. 

C. Construction of new extremals from solutions of the 
HJ equation 

We now want to illustrate the use of a complete integral 
for the construction of a solution of the field equation by a 
simple example: For that purpose we take the Klein-Gor
don field from Eq. (S.l). The ansatz 

S "(x, z): = ! h "(X)Z2 

leads to the differential equation 

J h I-' = - h "h - m 2 
fL }.1,' 

A solution of this equation is 

h 0 = ! m tan( - ! mxo + aD) , 

h ) = ! m tanh( - 1 mx J + a J) , 

j = 1,2,3, ai' = const. 

The integrability conditions here are 

and are apparently fulfilled. Furthermore, we have 
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JSo m Z2 

Jao 4 cos2( - ! mxo + an) 

Jsj m r 
------.---. , j = 1,2,3. 

Ja j 4 cosh2(-!mxJ+a J) 

Thus, the value of the functional determinant (3.5) 

X cos2( _! mxo + aO)nJ~ I cosh2( -! mx j + a j
) 

is in general unequal to zero. Therewith all assumptions are 
given in order to carry out the method of solving. 

Only the diagonal elements GOo,"" G 33 of the functions 
G I" v from Eq. (3.8) are unequal to zero; therefore 
gl" v = 0 (J.L =I v). Eventually we get four equations for the 
remaining components of gl" v (J.L = v), namely, 

G- ° _ JS ° _ m Z2 ° 
0- - = g o(x), 

Jao 4 cos2( - !mxo + an) 
(5.35) 

-. ~i m r . 
GJi = --. = - .. = gJi(x), 

Ja J 4 cosh2(-!mxJ+a J) 
j = 1,2,3 

with the additional conditions (3.12): 

JogOo(x) = 0, J3g3
3(X) = O. 

We choose the functions g I" v (x) (J.L = v) to be 

gOo = (m)3 .IT COSh2( _ m xi + a i), 
4 J~ I 2 

gii = (:r cos
2
( - ; XO + an) 

X IT COSh2( - m Xi + a i
), j = 1,2,3. 

i~1 2 
i#j 

We are now able to solve (5.35) uniquely for z with the result 

z =z(x) = (:) cos( - ; XO + an) 

X IT COSh( - m x j + a i ) . (5.36) 
i~ I 2 

Indeed, the expression (5.36) solves the Klein-Gordon equa
tion 

( 0 + m2)z(x) = 0 . 
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Causal transformations of Wightman localizations are studied without assuming further 
symmetries (e.g., Galilean or Lorentz invariance). They are characterized completely by a 
condition which imposes analyticity and restricted growth on the matrix elements and implies a 
close connection between the helicity components. This condition is applied to obtain causal time 
evolutions. Spin-O and spino! systems and, generally, all simple systems of definite spin are 
considered in detail. The factorizing causal time evolutions are determined completely. 

PACS numbers: 11.90. + t, 03.65. - w 

I. INTRODUCTION 

The Wightman localization 1 is used to describe the 10-
calizability of quantum systems, e.g., relativistic or nonrela
tivistic massive particles. It consists of a continuous unitary 
representation U of the universal covering group ISU(2) of 
the Euclidean group, and of a projection valued measure E 
on the coordinate space R3

, both acting on a Hilbert space dY 
and satisfying the covariance property 

U(g)E(.1 )U(g)-l = E(g . .1), (1 ) 

whereg = (b,B )EISU(2), .1 CR3 a Borel set, 
g . .1: = !b + B,xlxELi J, B·x: = A (B lx, andA:SU(2)-+SO(3) 
the universal covering homomorphism. In the one-particle 
case its physical interpretation is rather obvious. In the gen
eral case it describes a pointlike and Euclidean covariant 
characteristic of the quantum system. (For example, one 
could think of its center of mass.) 

The time evolution of a quantum system is usually de
scribed by a continuous unitary representation Vofthe addi
tive group of real numbers. Let us assume that, as in the case 
of the nonhomogeneous Galilei group or the Poincare group, 
V commutes with U, i.e., 

V(t)U(g) = U(g)V(t). (2) 

Localizability and time evolution are not independent 
of each other but are connected by causality. We give the 
following natural description of it: 

Definition 1: The time evolution V is called causal if 

V(t)E(.1)V( - t)<E(.1,) (3) 

for every t and .1, where 

.1,: = I y 13 xELi: I y - xl < 1 til· 
The interpretation of (3) is clear. A system, localized in .1 at 
time zero, is expected to be found within Ll, at time t> 0, 
since it cannot move faster than light (velocity oflight = 1). 
Equations (1)-(3) give a simple mathematical description of 
Einstein causality for quantum systems. However, it contra
dicts other physical requirements. First, it does not allow 
positivity of energy except in the trivial case where the time 
evolution V commutes with the localization E. Indeed, take 
t> 0 and Ll, e.g., a closed ball. Then 
V(r)E (.1 )V( - 1')(1 - E (.1,)) = 0 for all 11'1 <t. Bya 

theorem of Borchers, 2 this remains valid for all l' if the gener
ator of V, the energy operator, is semibounded. In this case 
the limitt-+O shows that V(r)E (.1 ) = E (.1 )V(r). Now it is a 
merely technical step to extend this equation to all Borel sets 
Ll. 

Statements similar to this one, and others which also 
involve conditions on the energy-momentum spectrum are 
proven in Refs. 3-5. Acausal features, predicted according 
to the preceding considerations, are studied in Ref. 6 for a 
free relativistic massive particle. 

A second defect of the above concept is that the Wight
man localization does not exist for relativistic massless parti
cles with nonzero helicity (see Ref. 1). 

There is a more sophisticated approach to causality, 
namely, to look for representations in Hilbert space of the 
causallogic !f. 7.8 !f is the lattice of the space-time domains 
of determinancy ( = diamonds) for spacelike regions in the 
case of a limited velocity of propagation. (Its structure is well 
known from hyperbolic partial differential equations.) How
ever, since the Cauchy data have to be prescribed for space
like regions, it is possible to return to a formulation of causal
ity involving only spacelike hypersurfaces. Indeed, let Fbe a 
representation of !f, i.e., a normalized a-orthoadditive 
mapping of !f into the lattice of the projections on dY, 
which is covariant under Poincare transformations by 
means of a continuous unitary representation W of the uni
versal covering group 9 of the Poincare group. Define U 
and Vas the restriction of W to Euclidean transformations 
and time translations respectively, and define E by 
E(.1 ): = F(LlJi), where.1 JL denotes the causal closure of .1. 
Then (1) and (2) hold trivially, and (3) follows from 
V(t )E(Ll )V( - t) = F((t + .1 )lL), since t + .1 C(Ll,)li. Thus 
the difficulties mentioned persist. 

A possible way to solve both problems is to substitute 
the Wightman localization for the more general Euclidean 
system of covariance (ESC) by replacing the projection val
ued measure by a positive operator valued one, see Ref. 9 and 
literature cited there. The reasonable physical features of 
such systems are shown generally for massless particles in 
Ref. 10 and particularly for the photon in Ref. 11. Let us also 
see that the difficulty of negative energy can be avoided when 
ESC are used. Suppose a Wightman localization ( U,E) and a 
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nontrivial causal time evolution Vare given. Then according 
to the foregoing considerations, the energy operator is not 
semibounded. However, there exists a spectral projection P 
of it for a semibounded interval such that PV (t)P does not 
commute with PE (.:1 )P. Clearly P commutes with V, and 
since V commutes with U, it commutes with U. Let Vand U 
denote the reduction of Vand U, respectively, by P, and let 
R (.:1 ) be defined by PE (.:1 )P taken as an operator in the range 
of P. Then (U,R ) is an ESC, and Vis a unitary time evolution 
which commutes with U, does not commute with R, and is 
causal in the sense that 

(4) 

and the generator of V is semibounded, as desired. 
This method of constructing "causal ESC with semi

bounded energy" states one of the reasons to study Wight
man localizations with causal time evolutions. (However, it 
is an open question whether all ESC with causal time evolu
tion can be obtained by that method.) On the other hand, one 
can still hope to find a reasonable interpretation for the nega
tive energies. Last but not least, these investigations can help 
clarify the relation between relativity and causality in quan
tum theory. 

The following notion, which is apparently weaker than 
that of a causal time evolution, turns out to be very useful. Its 
analysis is the main purpose of this paper. 

Definition 2: A bounded operator T commuting with U 
is called a causal transformation if there is a compact ball fl 
of positive radius such that for each state tf; localized within 
fl, i.e., E (fl )tf; = tf;, there is a compact region.:1 such that the 
transformed state Ttf; is localized within.:1, i.e., E (.:1 )Ttf; 
= Ttf;. Our main result is the following: 

Theorem: A bounded operator T commuting with U is a 
causal transformation if and only if there are entire functions 
!jkl of one complex variable such that Z-!jkl (ZZ) are uniform
ly exponentially bounded and 

(k,sl T,p I j,s) 

(5) 

where I j,s) and Ik,s) are spin eigenstates ofhelicity s,p is the 
absolute value of the momentum, ( l s : ~) is the Wigner 3-j 
symbol, and Tsp is the reduction of T with respect to the 
helicity basis. 

Equation (5) imposes analyticity and restricted growth 
on the matrix elements with respect to their dependence on 
momentum. It also connects closely the helicity components 
with each other. Of course, causal transformations do not 
mix up boson and fermion states since they commute with 
Euclidean transformations. But in addition, the transition 
probability (5) between two boson (fermion) spin eigenstates 
I j) and I k ) of equal helicity vanishes for small linear mo
mentap like plj - k I. 

In Sec. III we apply the Theorem to study causal time 
evolutions for some physical interesting cases, namely, (a) 
spin-O systems with arbitrary finite multiplicity, (b) spin-! 
systems with multiplicity one or two, and (c) factorizing 
causal time evolutions which include all simple systems with 
definite spin. In case (a) it turns out that there are only trivial 
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unitary causal transformations, i.e., they commute with E. 
One remembers the difficulties of incorporating the Klein
Gordon equation to Hilbert space formalism so that the time 
evolution is unitary. Here we get a no-go theorem even with
out assuming relativistic time evolution. In (b), the case of 
multiplicity one mainly yields the relativistic time evolution 
of the neutrino-antineutrino system. In the case of multi
plicity two the Dirac energy operator and the energy opera
tor of the doubled neutrino-antineutrino system are the only 
generators for a relativistic causal time evolution. In (c) we 
encounter the situation that there is a proportional coupling 
of the limiting velocity to the absolute value of the helicity, 
i.e., another kind of dispersion relation. These time evolu
tions, like some time evolutions occurring in (b), are causal 
but not relativistic. Because of their Euclidean invariance, 
they could serve to describe quantum systems, for example 
quasiparticles, in a homogeneous medium. 

II. PROOF OF THE THEOREM 

According to Mackey's imprimitivity theorem the 
Wightman localizations are obtained by inducing the repre
sentations of SU(2) to ISU(2) 

Eb vjD ij)r U = : Eb vi5 ill, 
j j 

(6) 

where the spinjruns through (O,P, ... J, vjE(0,1,2, ... ,NoJ 
are the multiplicities «No since we restrict ourselves to sep
arable spaces) of the mutually inequivalent representations 
D (j) of SU(2), and the induced representations D ill act on 
Pt"j: = L Z(R3,CZj+ I) by (D (j)(b,B )g)(x) = D 111(B )g(B -I(X 
- b)). The corresponding covariant PV-measure E is the ca

nonical one, i.e., E (.:1 ) multiplies each component by the 
characteristic function 1 Ll of.:1. This is the coordinate space 
representation. 

We use the notation I j,l > ® g = (I j,l,S) ® gs )SE[j J' 

where the labellE( 0, 1, ... ,Vj J accounts for the multiplicity, 
[ll = ( - j, - j + 1, ... ,j - IjJ, andgEPt"j' to indicate the 
various mutually orthogonal subspaces and components. 

Now we pass to the helicity representation. Each subre
presentation D (j) of U is unitarily transformed by the Four
ier transformation Y which acts separately on each spin 
component and, subsequently, by the helicity transforma
tion 

(Xjf)(p): = D(j)(B (p)-I f(p), 

wherefEPt"j andR3 3p-+B (p)ESU(2) is any measurable map 
satisfying 

B(p)e, ~ p,e, ~ G) 
One takes, for instance, the helicity section 

(
a -b*a_), . __ (P±P3)1!2 

B (p): = ba+_ a+ a ± . 2p , 

b: = PI + ipz 
Ipi + ip21 

Since the WignerrotationR (p,B): = B (p)-IBB (B -I.p)leavel 
e3 fixed, it is diagonal so that D (j)(R (p,B)) 
= diag(K(p,B )2j, ... ,K(p,B ) - 2j), where K(p,B ): = R (p,B )11' 
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Therefore the transformed representation D Ul splits into the 
direct sum of2j + 1 subrepresentations characterized by the 
exponent 2s,sE[]]. The primary component of U correspond
ing to a particular value of sEZ/2 acts on the subspace r s 

generated by the orthonormal set II j,l,s) I [ j] 3 s, 1 <l < Vj J . 
The dimension of rs is l:[jJES vj • Let Xbe the unitary trans
formation acting on each subspace I j,l > ® /Jr'j by Xj . Then, 
in the helicity representation, one gets 
U h : = XYUY-IX -I acting on $ sL 2(R3,r.) by 

(Uh(b,B)F)s(p) = exp( - i(b,p»)K(p,B)2sPs(B -I.p). (7) 

One infers from (7) that a bounded (unitary) operator T 
commutes with U if, and only if, there exist uniformly 
bounded (unitary) operators Tsp in rs such that in the heli
city representation 

(8) 

T commutes with (U,E ) if and only if, after altering Tsp on 
some null set, Tsp does not depend on p, say Tsp = Ts' and 
(k,K,rl Tr Ij,l,r) = Okj (k,K,sl Ts I j,l,s) V r,sE[k ]n[j]. Re
turning to the coordinate space representation one gets 

Tlj,l)®g=I I Ik,K)®y-IA~~Yg, (9) 
k I<K<Vk 

where A t is a complex (2k + 1) X (2j + 1) matrix valued 
function on R3, which maps /Jr'j into /Jr'k by pointwise mul
tiplication. It is built out of the matrix elements 

ai~,s(p): = (k,K,sITsp Ij,l,S) (10) 

as follows. Define the pseudodiagonal (2k + 1) X (2j + 1) 
matrix (N i~)rs(P): = orsai~,s(p),rE[k ],SE[j]. Then 

A ~~(p): = D Ikl(B (p))N ~~(p)D Ul(B (p)-I). (11) 

In the following, we use the multi-index p for (j,l,k,K). 

A P(B.p) = Dlkl(B)A p(p)Dl1l(B )-IV BESU(2), pER3
, 

(12) 

is a necessary and sufficient condition that A Pis of the form 
(11). In this case the following relation holds: 

A P(pe3) = NP(p). (13) 

Now we tum to causal transformations (see Def. 2), 
Lemma 1: Let Tbe a causal transformation. Then there 

exists a compact ball fl ~ fl concentric with fl such that 
(1 - E(fl ))TE(fl) = 0. 

Proof Assume the contrary. Then there is an increasing 
sequence (.1 n ) of compact sets tending to the whole space, 
and a sequence (tPn) in E (fl)/Jr' such that E (.1n )TtPn = TtPn 
and E(.1n)TtPn + 1# TtPn + I' Apply Gram-Schmidt orthon
ormalization to get (tPn) orthonormal and assume without 
loss of generality that II T II = 1. Then 

{:JI: = 1.Pn+ I: = 11(1 - E (.1n ))TtPn + 1 IIElO,I], 

(an): = (3 -n{:J ;: I JJI{:Jv )EI2, 

and 
00 

tP: = L antPnEE(fl )/Jr'. 
n=l 

However, 
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00 

1I(1-E(.1d)TtPll = II I a nll(1-E(.1d)T,pnll 
n~k+1 

00 

;;'ak+ 111(1- E(.1k))T,pk+ 111- I an 
n~k+2 

;;'ak+ d3k+ I -!ak+l{:Jk+1 >0, V k. 

This contradicts T being a causal transformation, • 
Lemma 2: Tis a causal transformation if and only if A P 

has an analytic continuation to an exponentially bounded 
entire function. More precisely, there exists an entire func
tion f/> P on (? into the Banach space of all complex 
(2k + I)X(2j + 1) matrices such that f/>PIR3 = A P almost 
everywhere independently of p and IIf/>P(z)1I <cpexp[o(lzll 
+ IZ21 + IZ31)]V zEC\wherecp' 0;;.0 are constants. o can 

be chosen to be the difference between the radii of fl and fl 
(cf. Lemma 1). 

For the proof, one uses the coordinate space representa
tion where T is given by (9) and E (.1 ) is the multiplication 
operator by 1 LI • Then the main steps are to apply the general
ized Paly-Wiener theorem l2 in both directions. 

In particular, since alteringp--+ Tsp on a null set does not 
alter T, we may assume af' (10) to be analytic. Then N P and, 
by continuity, A P are analytic. Let us denote their respective 
entire continuations by the same letter. 

For further analysis of the A P's we introduce a Hilbert 
space d i, in short d, of entire functions similar to that of 
Bargmann. 13 It consists of all entire functions f/> on C3 into 
the Banach space of all complex (2k + 1) X (2j + 1) matrices 
such that f dfl(z)tr( f/> (z) + f/> (z)) < 00, where z = (z I' Z2' Z3) 
= (XI + iYI, ... ) and dfl(Z): = 1T-

3 

Xexp( - IZI12 - IZ212 - IZ312)dxI dYI dX2 dY2 dX3 dYJ. The 
inner product is given by (f/>,tP) = fdfl(z)tr(f/> (z)+,p(z)). 
Clearly, d contains all entire functions which are exponen
tially bounded and, in particular, the set 9 of all polynomi
als. 9 is dense in d. d carries the continuous unitary re
presentation S ofSU(2) 

(s (B)f/> )(z): = D (k I(B)f/> (B -1.z)D IJ1(B )-1. (14) 

Because of (12) the A P's are S-invariant. The projection 1T in 
d onto the subspace do of the S-invariant elements is given 
by 1T = SS (B )dB where dB denotes the Haar measure on 
SU(2) (see, e.g., Ref. 14). In order to evaluate this integral, we 
need some facts on homogeneous polynomials. 

Lemma 3: Every homogeneous polynomial q of the var
iables XI' ... , X m, m;;'2, and degree lEIO,I,2, .. , J has a 
unique expansion of the form 

(//2) 

q = I d VH I _ 2v , (15) 
1/=0 

where (1/2) is the greatest integer 
<1/2, d (XI' ... , Xm): = (Xt\2 + ... + (Xm )2, and Hk is a 
homogeneous harmonic polynomial of degree k. 

Proof In order to prove uniqueness assume ° = l:~/~2~od vHI _ 2v' where O<vo< (1/2) and H I _ 2vo #0. 
Then H 1 _ 2vo = dq, where q is homogeneous of degree k;;.O. 
Applying the Laplace operator n times to this equation, 
where n< 1 + k /2, and using the Euler equation each time 
one gets an.1 n - Iq + d.1 nq = 0, where a l = 2m + 4k and 
an = an _ I + 2m + 4(k - 2(n - 1)), (1 + k /2) is the low-
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est integer n;;.O such that L1 nq = O. However, it contradicts 
the foregoing equation. This proves uniqueness and also the 
linear independence of(d vHl _ 2v)' The dimension of the lin
ear space of all homogeneous harmonic polynomials of m 
variables and of degree k is equal to d (k,m): = (2k + m 
- 2)[(k + m - 3)!/(k l(m - 2)1)], see Ref. 15; Sec. 11.2(2). 

Therefore the combinations (15) form a linear subspace of 
dimension 

(112) (I + m - 1) 
v~o d (/- 2v, m) = I . 

This is exactly the dimension of the space of all homogen
eous polynomials of m variables and of degree I, see Ref. 15; 
Sec. 11.2(5). • 
In the case m = 3 we take (H1hEII J [see Ref. 15; Sec. 
11.5.1(2)] as a basis of the space of all homogeneous harmon
ic polynomials of degree I· H 1 transform properly under 
SU(2): 

n1Hl(B.p)= I D~~(B)nrHr(p), (16) 
/tEll J 

where n/, = ( - 1),1 ((/- A )1(/ + A W/2. Furthermore, 
n/ H 1(pe3 ) = ( - 2)Il!i8oA . Now, we are in a position to de
termine the invariant elements of d i. 

Lemma 4: Let I run through 
! Ik - jl,lk - jl + 1, ... ,k + j - l,k + jj, let rE[k], sE[ll, 
and let ( l s ~b) denote the Wigner 3 - j symbol. It is cf>Ed 0 if 
and only if there are entire functionsh:C-C such that 

f dJl(z)l~ +~ +~lllh(~ +~ +z~W<oo 
and 

<P (p) = D (k)(B (p))<P (pe3 )DU)(B (p)-I), 

where p > 0 and 

( . k Ifr 
<Prs (pe3) = I( - l)j-S~21 + 1 1 0 1t(p2). 

I -sr 

Theh are uniquely determined by <P since 

( . k I) 
p1t(p2) = I( - W-s~21 + 1 _~ S 0 <Pss (pe3 ), 

s 

(17) 

(18) 

where sE[k ]n[ll Moreover, <P is exponentially bounded if 
and only if the Zl---+h (Z2) are exponentially bounded, and <P is a 
polynomial if and only if the h are polynomials. 

Proof In order to determine 1T9 it suffices to consider 
polynomials <P ofthe form <PKO'(z) = 8Ka80'f3(~ + z~ 
+ ~ tn1H l(z), where aE[k], ,BEU1, AE[l], l,nE! 0, 1,2, ... j, 

since according to Lemma 3 fo1. they generate 9 by finite 
linear combinations. Because of (16) fo1. 

(S(B)<P )rs(pe3 ) 

= ( - 2)lllD ~l(B -I)D ~~)(B)D ~b(B -l)p2n + 1 

and hence 

(1T<P Irs (pe3) 

= (- 2)1l!~ k 1)( _ W+ sfj k I\L2n+ 1 

-a A \s - r oJP 
[see Ref. 16; (4.6.2)]. This proves (17) in the case of cf>E9, 
where theh are polynomials. The inversion formula (18) 
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follows from Ref. 16 (3.7.8). 
Since each subspace consisting of all polynomials of 

same degree is invariant under S, 1T9 C 9 holds. Hence 
1T9 C 9ndo and 9ndo is dense in do. 

Consider the case thatJm is the constant polynomials 
81m 1. Then q:; (II, 

q:; ~sl(p): = iI D ~:)(B (p)) 
K,O' 

( . k I) X~21 + 1( - W-O' _ ~ K 0 D~l(B(p)-l), 
(19) 

are homogeneous polynomials of degree I belonging to do 
and, therefore, every <P of the form 

<P(z) = Iq:;(lI(zV;(~ +~ +~), (20) 
J 

where h are entire functions satisfying 

fdJl(z)l~ +~ +~nft(zi +~ +~W< 00, 

belongs to do. We have to see that a limit in d offunctions 
of the form (20) is still of this form. By means of 

tr(q:;(lI(z*)+q:;(ml(z))=(~ +~ +~)18Im' (21) 

which follows from Ref. 16; (3.7.8), Eq. (20) is inverted 

This indeed shows that (20) is maintained under limits,since 
convergence in d implies pointwise convergence of the Tay
lor coefficients and pointwise convergence. 

The last assertion is verified directly using (20), (22) .• 
The Theorem is proved combining Lemmas 2 and 4. 

III. APPLICATIONS 

We determine the possible causal time evolutions for 
some physical systems. The systems are characterized by the 
values of the multiplicities vj • The class offactorizing causal 
time evolutions is determined completely. This includes the 
determination of the causal time evolutions for all simple 
systems of definite spin. 

A. Spin-O systems (Vj = 0 ifJ#O) 

We consider the case Vo < 00. Then in the helicity repre
sentation, a causal transformation T is a voX Vo matrix val
ued function depending quadratic on p > 0 and admitting an 
entire exponentially bounded continuation, see (5). 

Lemma 5: If Tis unitary then Tis constant. 
Proof Pick t,KE! 1,2, ... ,vol and consider 

J(z): = at(z)at(z*)* ,zEC, cf. (lO).fis an entire exponentially 
bounded function satisfying (i)J(z) = J( - z), (ii)J(z*)* = J(z), 
and, because of (i) and the unitarity of T, (iii) [((x) I.;;; 1, 
[((iy)I.;;;1 V x,YER. The Phragmen-Lindeloftheorem (Ref. 
17; VI, 4.2) for the sector I zEqO < arg z < 1T12 I, combined 
with (i), (ii), yieldsfbounded by 1. By the Liouville theoremJ 
is a constant c. If c = 0 then at = O. If c#O then at is an 
entire function without zeros and, therefore, at = exp g, 
where g is entire. By Hadamard's factorization theorem 
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(Ref. 17; XI, 3.4) the exponential bounded ness of at implies 
g(z) = az + /3. Since at is even, a = 0 follows. • 
By (8) fol., this implies that there are only trivial causal time 
evolutions for spin-O systems. 

B. Spln-l systems (vi = 0 if i=l- I) 
We consider the cases v l / 2 = 1 and v l / 2 = 2. 
In the case v l / 2 = 1,0 <p-+Tsp is a scalar valued func

tion admitting an entire exponentially bounded continu
ation, and T _ 1/2.z = TI/2. -z' see (5). If Tis unitary, then 
I Tsp I = 1 'cJ P > 0, see (8), and by the factorization theorem 
Tsp = exp [i(Eap + /3)], where a,f3 are real constants and 
E: = sgn s. Therefore, the causal time evolution Vis given by 
Vsp (t ) = exp [i(wp + /3)t ]. /3 fixes the value of the energy at 
p = 0 and gives rise to the trivial part of the time evolution. 
lal is the velocity ofpropagation./3 = 0 and a = 1 yields the 
relativistic time evolution of the neutrion-antineutrino sys
tem. 

In the case v 1/2 = 2, 0 <p-+ Tsp is a 2 X 2 matrix valued 
function admitting an entire exponentially bounded con
tinuation, and T _ 1/2.z = T1/2, _ z' see (5), Let ~ V (t ) be a 
unitary group of causal transformations. 

Lemma 6: There is an entire 2 X 2 matrix valued func
tion :z.--+Hsz such that (Hsz) + = H s•z and Vsz (t ) = exp(itHsz )' 
Of course, H _ 1/2,z = HI/2, _ z. 

Proof We omit the index s. By analyticity, Vz is a one 
parameter group for all ZEC. Let iHz be its generator. Fix 
WEc' There is t> 0 so small that II Vz(t) - 111 < 1 for all z in 
some neighborhood of w. There itHz = In V2 (t ), where 
In X: = - l:: ~ I (lIn)( 1 - X r, which proves analyticity. 
(Hz) + = Hz. follows from (Hp) + = Hp ,p > 0, by 
analyticity. • 
Applying a preceding argument, det Vsp(t) = exp[i(Eap 
+ iJ)t ] follows, where a,/J are real constants and E = sgn s, 

Hence 
_ - [alP) b(P)] 

HI/2,p=(ap+/3)I2+ b(p)* -a(p) , 

H _ 1/2,p = HI/2, _ p' (23) 
wherea,bareentireanda(z*)* = a(z). Now the consequences 
of the exponential boundedness of~Vsz(t) have to be stud
ied. 

Considering the eigenvalues of Vsz(t) it follows that 
Im(A ) is linearly bounded, where A (z) is any square root of 
a(z)2 + b (z)b (z*)*.HenceRe( - A 2) is quadratically bounded 
from above. By the Borel-Caratheodory theorem 18 and the 
Liouville theorem this implies that A 2 is a quadratic polyno
mial. 

So the spectrum of the energy is given by 

ap +iJ ± ~(ap +/3f + 'I, 
where a, fl, and r are real constants. 

VI/2,(.)(t) 

( 

. sin At 
CosAt+la--

- A =ei[a(·)+.Bl t • 

'b- smAt 
I--

A 

V _ I12,z = V1/2, -z' 

'b sin At ) I--
A 
. sin At ' 

cos At - za -,1-

(24) 

(25) 

whereb (z): = b (z*)*, shows that a andbmustbeexponential-
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ly bounded. Moreover, by the Paley-Wiener theorem, Vis a 
causal time evolution if and only if D(a) = D(b ) = 0, where 

D(f): = inf{D>013 c>O:I/(z)l<c exp(D IzlJ 'cJZEG l 
for any functionfG-C,GCc, Otherwise V describes a 
propagation with a limiting velocity which is superposed by 
an instantaneous one of a finite limiting range. It could serve 
as a model for macrocausality in the absence of microcaus
ality. An example is given by a(z) = cos z, b (z) = eirzsin z for 

r real. The example a = iJ = 0, a(z) = z, and b (z) = meirz, 
m > O,l'ER,\ { 0 l, is remarkable, since it is noncausal and, 
nevertheless, it yields a relativistic time evolution, namely 
the Dirac one. (However, by a unitary transformation leav
ing U and Vinvariant, E can be replaced by a unique E such 
that Vbecomes causal, cf. Lemma 7 fol.). Here, microacau
sality manifests itself by an instantaneous propagation be
yond the light cone and within a cone around about it at a 
fixed distance. The particular time the system leaves the 
light cone depends on its initial state. 

Lemma 7: If 15 (a) = 0, then a is linear and there is l'ER 
such thatb exp[ir(.)] is linear. Clearly, ifD(a) > OthenD(b) > O. 

Proof In the sequel, we refer to the fact (*) that any 
analytic function on the upper half-plane which is bounded 
on the real axis and satisfies D( I) = 0, is bounded (cf, Ref. 17; 
VI,4.4). 

We already know that a2 + bb is either constant or 
equal to ~1](z - w)(z - w*), where 1] > 0 and WEc' Particu
larly, it is D(a2) = D(bb ) = O. In the first case (*) applies to a2 

and bb. Therefore a is constant and, by the argument at the 
end of the proof of Lemma 5, b is a constant times exp[ir(.)] 
with r real. In the second case we assume first that W is real. 
Then a(w) = 0 = b (w), and :z.--+a(z)l(z - w) and z-b (z) 
X exp[ - ir(.)]/(z - w) are constant by the argument used in 
the first case. Now let Im(w) > O. Then (*) applies to 
I(z): = [b (z)b (z) - b (w)b (w)]/(z - w)(z - w*) for Im(z);;;>O, 
which shows that bb is bounded quadratically on the upper 
half-plane. The same result follows analogousl~ for the low
er half-plane. Thus by the Liouville theorem, bb is a polyno
mial of degree <2, bb is either constant or equal to 
:z.--+1](z - w)(z - w*), where 1] > 0 and WEc' In the first case, 
b is a constant times exp[ir(.)], as we already know. The sec
ond case reduces to the first one by considering b (z)l(z - w) 
instead of b (z). Moreover, a2 is a polynomial of degree <2. 
Hence, by repeating the foregoing argument, a is linear. • 
Thus V is causal if and only if a and b are linear. It is causal 
and relativistic if and only if, additionally, the spectrum (24) 
is relativistic, i.e., equal to ± (p2 + m2)1/2,m;;;>0, Ifm > 0, up 
to a unitary equivalence transformation leaving (U,E ) invar
iant, the Diract system is unique. If m = 0, in addition there 
is the doubled neutrino-antineutrino system. The first is giv
en by a = iJ = 0 and A (Z)2 = Z2, the latter by a = ± 1 and 
iJ = a = b = O. The other cases yield causal and not relativ
istic time evolutions. Because of their Euclidean invariance 
they could serve to describe motions relative to a homogen
eous medium. 

C. Factorizing time evolutions 

In this section we specifically discuss the unitary one 
parameter groups V of factorizing causal transformations 
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Vsp(t) = Vs(t )exp [it9?s(p)] , where Vs is a unitary group act
ing on r s' and 9?s: ]0,00 [-R is measurable. Clearly, the 
time evolutions ofa simple spinjsystem, i.e., V k = Dkj , are of 
this kind. 

Lemma 8: Let V factorize. Then (i) each Vs leaves the 
spin eigenspaces invariant and its reduction to them does not 
depend on s, cf. (8) fol., and (ii) there is a real constant D such 
that 9?s(p) = 2&p almost everywhere. Conversely, every V 
of this kind is causal. 

Proof It follows from (5) and the orthogonality relation 
[Ref. 16; (3.7.8)] than:s laY'( pW = I.IP2/1 f~/(p2W· Since the 
left-hand side does not depend on p, it vanishes identically if 
1>0, i.e.,j=/=k. Moreover, according to (5), we may assume 
that~xp[it9?s(p)] admits an exponentially bounded en
tire continuation. By the argumentation at the end of the 
proof of Lemma 5, exp [it9?s (p)] = exp(iDts p) and hence 
Dts = IDs, where Ds is real. Therefore 
aY'(O) = ( - 1 )2j(2j + 1) - 1/2f'pO (O)Djk which is independent of 
s. This proves (i). 

Let I andj be fixed and let C denote the orthogonal 
(2j + I)X(2j + 1) matrix 

C : = ( - 1 Y - s ~ 21 + 1 ] ] . ( " I) 
Is _ S S 0 

According to (5) it remains to be solved that 
p:t,(p2) = I.sClsexp(iIDsp). 

Obviously, the right-hand side, denoted by 9?1(P), ad
mits an entire exponentially bounded continuation. Since 
CI. -s = ( - 1)/Cls ' D -s = - Ds and 9?/( - z) = ( - 1)/9?/(Z) 
follow. Therefore 9?/(Z) is of the form Z:t,(Z2) if and only if 
Z = 0 is a zero of 9? I of multiplicity I. This means that D s solve 
the equations 

L Cis (Ds)" = 0, V IEIl, .. · ,2jJ,A.E{0,1, ... ,1-lJ. (26) 
SE[jj 

IfjE{O,!J thenDs = 2& (see below) because OfD_ s = -Ds. 
Letjbe > 1. Then the case A. = 1 in (26) means that the vector 
(D s) is orthogonal to the lines I = 2, ... ,2j of C. Therefore 
Ds = sCos + 7]CIs where s,7] are some real coefficients. Since 
D -s = - Ds and CI. -s = (- 1)ICls ' S = 0 follows and 
hence Ds = 7]CIs = Us, where D is a real constant not de
pending on s [e.g., Ref. 19; (C.27)]. Thus it remains to be 
verified that Ds = s satisfies (26). First, we note that (26) is 
true in the case of A. = O. Indeed, this follows from the rela
tion in Ref. 16; (3.7.13), solving for Cis' Secondly, we need 
the recursion relation in Ref. 19;(C.20): SCls = dl + I CI + I.s 
+ d l CI _ I,s' where d l is a constant not depending on s. Now 

(26) is proved by induction on A.. • 
We encounter the situation that the limiting velocity 21DI lsi 
is coupled to helicity. In particular, this means that a factor
izing causal time evolution is not relativistic except in the 
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case of a multiple neutrino-antineutrino system, and there
fore the neutrino-antineutrino system is the only simple spin 
j system admitting a relativistic causal time evolution. 
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Bradyons and tachyons in an expansion of the spherical wave 
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A resolution ofthe spherical wave exp[i(w/ c)(r - ct )]/r into (evanescent plus outgoing) cylindrical 
waves, valid everywhere except atp = ° is given. This expansion, being the exp[i(w/c)(r - ct )]/r 
solution of an inhomogeneous wave equation, turns out to be wholly equivalent to the expansion 
of the corresponding source into uniformly moving 8-line densities, which includes bradyonic as 
well as tachyonic contributions. When applied to the electromagnetic potentials produced by a 
charged particle in an arbitrary one-dimensional motion, it provides an alternative derivation of 
the decomposition of the fields of the charge into their bradyonic and tachyonic parts. 

PACS numbers: 14.80.Pb, 11.10. - z 

To our knowledge, the only attempt to represent a 
spherical wave as a sum of cylindrical waves goes back to 
Sommerfeld. I In solving the problem of a vertical dipole lo
cated at the surface of a plane, finitely conducting earth, 
Sommerfeld succeeded in decomposing the primary excita
tion exp[i(w/c)(r - ct )]/r into two sets of cylindrical waves, 
one valid for z < ° and the other for z> 0, i.e., 
eiilU/clir - ct I 

r 

= ('''' Jo( Ap)exp [ ± ~ A 2 - (W
2/c2)z] e - ilUt AdA. (1) 

Jo ~ A 2 _ W 2/c2 

Sommerfeld's expansion, although adequate to solve 
the problem at hand, has the drawback of having the region 
of nonvalidity (the plane z = 0), not invariant under z-trans
lations. It is the aim of the present paper to show that, start
ing from well-known integral representations of cylindrical) 

functions, a resolution of the spherical wave exp[i(w/ 
c)(r - ct )]/r into (evanescent plus outgoing) cylindrical 
waves, valid everywhere except atp = 0, can be obtained, in 
which the total cylindrical symmetry (rotation plus transla
tion)is preserved. This expansion, beingexp[i(w/c)(r - ct )]/r 
solution of an inhomogeneous wave equation, turns out to be 
wholly equivalent to the expansion of the corresponding 
source into uniformly moving 8-line densities, which in
cludes bradyonic as well as tachyonic contributions. When 
applied to the (Fourier analyzed in time) electromagnetic 
potentials produced by a charged particle in an arbitrary 
one-dimensional motion, it provides an alternative deriva
tion of the decomposition of the fields of the charge into their 
bradyonic and tachyonic parts recently given by the present 
writers. 2 

Let us consider the two following definite integrals3
; 

p>O, 

(2) 

l oo cos[(W/C)~p2+U2] k d {-(1T/2)No(~W2/c2-k2P) for w/c>k>O, 
--=-'-;:=:;:::::::=:;:----=- cos u u = 

o ~p2+U2 KoUk2_0)2/c2p) for k>w/c>O. 

From these expressions and using H ~~) = Jo ± iNo, it is rather straightforward to write 
p>O, k~O, 

ei(w/c) \.IpZ + u:' 
{ 2Kol ~k ' - w'lc'pJ for W2/C2 < k 2, w~O, 

J:oo 
e- iku du = i1TH bll ( ~W2/C2 - k 2p) for W2/C 2 > k 2, w>O, (3) 

~p2 + u2 for W2/c2 >k 2
, w<O. _ i1TH~I( ~W2/c2 _ k 2p) 

By multiplying both members ofEq. (3) by eikz 
, integrating from k = - 00 to k = 00, taking into account the properties 

of the 8-function, and introducing the time factor e - ilUt , we readily arrive at 
p>O, w~O, 

eiilU/clir-ctl 1 i (~ 2 
----= - Ko k-

r 11" k2>W2/C2 

(4) 

wherer=~. 

a) Fellow of CONICET, Argentina. 
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Let us discuss this result. For all k 2 > (WIC)2, and taking 

Kp = ~k 2 - W2/c2p> 1, each term of this expansion behaves 
asymptotically as 

Ko( ~k2_ ;:p)ei(kz-"'t)~e;;; ei(kz-"'t), (Sa) 

which is an evanescent cylindrical wave traveling with the 
phase velocity vph = wlk along thez axis. Forallk 2 < (WIC)2, 

and taking kp P = ~(jllc2 - k 2p>1, each term of this ex
pansion behaves asymptotically as 

w;;e:O, 

(1)(F2 ) . e±i(kpP±kz-1w1t) 
H 02 -2 - k 2p e'(kz- "'t)~ rz;-::: , 

C "\jkpp 
(Sb) 

which is an outgoing cylindrical wave traveling with the 

phase velocity Vph = wi ~ k ~ + k 2 = c in the direction of 
the "asymptotic wave vector" 

(6) 

Hence what we have obtained through Eq. (4) is an expan
sion of the outgoing spherical wave into evanescent plus out
going cylindrical waves, valid everywhere except at p = O. 

Now, the spherical wave satisfies 

o == V2 __ _ ei(w/c)(r-ct) ( 1 a2 ) ei(",/c)(r-ct) 

r c2 at 2 r 
= _ 4m5(r)e - iwt, (7) 

and thus we may ask for the expansion of the inhomogeneity 
- 417(5 (r)e - iwt that matches with the expansion of exp[i(wl 

c)(r - ct )]/r given above. By applying a D' Alembert opera
tor to both sides ofEq. (4), using Eq. (7), and taking into 
account that4 

o [Ko( ~k2_ ;: p)ei(kZ-"'t)] = _ 2O~P) ei(kz-"'t), 

(8a) 

+ i ~ 6(p) ei(kz-wt) - , 
rr p 

we readily arrive at 
(8b) 

_4m5(r)e-iwt= _ ~ 6(p) f ei(kz-wt)dk 
rr p Jk 2>",21c' 

_ ~ 6(p) f ei(kz-wt) dk, (9) 
rr p Jk2<W2/C2 

which gives the "source" - 417"6 (r)e - iwt as a sum of 6-line 
"source densities" [ - 20 (p)1 rrp ]ei(kz - wt) moving at the con
stant velocities Vkw = wlk along thez axis. The first integral, 
which extends over those k satisfying k 2 > w2 I c2

, comprises 
only the "bradyonic" components of the source, i.e., those 6-1 

'" 

line source densities moving uniformly with hw I < c. The 
elementary waves excited by these bradyonic components 
are the evanescent cylindrical waves 
Ko(~k 2 _ w2/c2p)ei(kz- ",t), cf. Eq. (8a). The second integral, 
which extends over those k satisfying k 2 < W 2/c2

, comprises 
only the "tachyonic" components ofthe source, i.e., those 6-
line source densities with IVkw I > c. The elementary waves 
excited by these tachyonic components are the outgoing cy-

lindrical wavesH~~\ ~w2/c2 - ep)ei(kz-"'tl, cf. Eq. (8b). 
By comparing Eqs. (4) and (9), and taking into account Eq. 
(7), we can conclude that our expansion of the spherical wave 
exp[i(wl c)(r - ct )]Ir into evanescent plus outgoing cylindri
cal waves is wholly equivalent to the expansion of the corre
sponding source - 4rr6 (r)e - icut into bradyonic plus ta
chyonic 6-line source densities.5 This equivalence now 
makes evident why the expansion given by Eq. (4) is not valid 
along the z axis: each of its terms is not a solution of the 
homogeneous wave equation, but of the inhomogeneous one, 
the source of which is singular at p = O. 

In order to illustrate the usefulness of the present ex
pansion, we consider the electromagnetic potentials tP and 
A = (0, 0, Az ) produced by a particle of charge q which is 
moving arbitrarily along the z axis. Within the Lorentz 
gauge, the scalar potential tP (r, t) satisfies 

o tP (r, t) = - 4rrp(r, t) = - 4rrq6(x)6( y)6[z - z(t)], (10) 

and there is a similar equation for Az(r, t). By Fourier analyz
ing in time both tP (r, t) and p(r, t), we readily arrive at 

'" 

tP(r, t) = f~ '" dw f f f dx' dy' dz' Gw(r, r')pw(r')e-
iwt

, 

(11) 

where 

p",(r) = -.L6(X)6(y)J'" 6 [z-z(t')]ei",t'dt' (12) 
2rr -'" . 

and Gw (r, r') is the Green's function ofHelmholz's equation, 
i.e., 

v 2Gw(r, r') + (w2/c2)G",(r, r') = - 4m5(r - r'). (13) 

There are three different Green's functions, solution of Eq. 
(13), which are the outgoing spherical wave 
exp[i(wlc)lr - r'11I1r - r'l, the ingoing spherical wave 
exp[ - i(wlc)lr - r'11I1r - r'l, and the standing spherical 
wave cos[(wlc)lr - r'11I1r - r'I. 6 If we are looking for the 
retarded scalar potential, we must choose that Green's func
tion which, inserted in Eq. (11), gives outgoing waves, i.e., 

Gw(r, r') = ei(w/c)lr-r'l/lr - r'l. (14) 

By introducing Eqs. (12) and (14) into Eq. (11) and perform
ing the integration over x' and y', we obtain 

tP (r, t) = -.L fff dw dz' dt' 6[z' _ zit ')] exp i(w/c) [ ~p2 + (z - z,)2 - cit - t ')] , 
2rr _ '" ~p2 + (z _ Z')2 

(15) 

which gives the (retarded) potential tP (r, t) as the sum of the outgoing spherical waves exp i(wl 

c) [ ~p2 + (z - z'f - cit - t ')] I ~p2 + (z - Z')2 excited by the charged particle at every point z' along the z axis. 
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Now a different representation of this potential can be found if we replace each outgoing spherical wave in Eq. (15) by its 
expansion into evanescent plus outgoing cylindrical waves given by Eq. (4). Thus we obtain 

cP (r, t) = ...!L foo dw foof dz' dt' ( dk Ko( ~ k 2 - w: p)e jlk (z - z'l- wit - t 'IJD [z' - zit ')] 
2-ff2 - 00 Jk2>W2/C2 C 

- 00 

+ -.!!L (00 dw foof dz' dt' (. _ dk H~I (~ w: _ k 2p)edkIZ-Z'I-,Ult- t'IJD[z' -zit')]. 
4k1T Jo Jk" <,,,'Ie" C - 00 

(16) 

Due to the dissimilar asymptotic behavior ofthe cylindricalfunctions Ko andH ~~), we see that cP (r, t ) splits naturally into 
two terms, i.e., 

cP (r, t) = cJ>B (r, t) + cPT (r, t ), (17) 

where cJ>B (r, t) contains only (all) the evanescent cylindrical waves and cPT (r, t) contains only (all) the outgoing cylindrical 
waves. 7 From Eq. (16), and calling, as in Ref. 2, 

9(k, w) = (2~)2 f f dz' dt' D[z' - zit ')]e- ilkz' -wt'l, 

we can finally write 

which coincides with the resolution of the scalar potential of 
an accelerated charge into its bradyonic and tachyonic parts 
given in Ref. 2.8 By carrying out a similar analysis for the 
vector potential A z (r, t), we get A z = A ~ + A ;, where 
A ~ [ A n is obtained from Eq. (19a) [Eq. (19b)] by replacing 
9(k, w) with (wick )9(k, w). From E B

, T = - vcJ>B' T - (1/ 
c)aAB, T lat and H B, T = V I\AB, T, it is straightforward to 
arrive at the decomposition of the fields of the charge into 
their bradyonic and tachyonic parts [cf. Ref. 2, Eqs. (8) and 
(9)]. Thus our development of exp[i(wlc)(r - ct )]Ir into 
(evanescent plus outgoing) cylindrical waves given by Eq. (4) 
appears, at least for one-dimensional motions, as a useful 
device capable of uncovering the bradyonic and tachyonic 
components of the fields produced by the moving charge. 

IA. Sommerfeld, Ann. Physik 28, 665 (1909). See also J. Stratton, Electro
magnetic Theory (McGraw-Hill, New York, 1941), pp. 573-576; G. N. 
Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. P., 
Cambridge, 1960), p. 416, Eq. (4). 
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(18) 

(19a) 

(19b) 

I 
'J. L. Agudinand A. M. Platzeck, Phys. Lett. A83, 423 (1981). See also J. L. 
Agudin and A. M. Platzeck, "Tachyons and the radiation of an accelerated 
charge," Phys. Rev. D 26,1923 (1982). 

'I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products 
(Academic, New York, 1980), p. 472, Eqs. 3.876(1, 2). Here wecallp, k, UJ/ 
c, and u what Gradshteyn and Ryzhik call a, b, p, and x. 

4See, for example, Ref. 2, Eqs. (5), (6), and (7). 
5We note in passing that the separation of the source into its bradyonic and 
tachyonic parts is a covariant one, since a bradyonic (tachyonic) compo
nent remains always bradyonic (tachyonic) under any Lorentz transforma
tion. This also applies to the expansion of the spherical wave into evanes
cent plus outgoing cylindrical waves. We exclude here the so-called 
"Superluminal Lorentz Transformations," for which the words bradyon 
and tachyon do not have an absolute meaning but only a relative one. It is 
worthwhile to note here that all these "superluminal theories" have been 
recently shown to be nonlinear, see J. L. Agudin and A. M. Platzeck, Phys. 
Lett. A 90, 173 (1982). 

hIn saying that exp[ ± i(UJ/c)lr - r'll/lr - r'l, cos[(UJ/c)lr - r'llIlr - r'l 
are spherical waves, one must bear in mind that the time factor e - iw' is 
always present. 

7 According to what has been discussed in Ref. 5, this separation is manifest
ly covariant. 

"The unprejUdiced reader could ask himself what result would have been 
obtained if, instead of our expansion, we had inserted Sommerfeld's repre
sentation in Eq. (15). The answer is that Sommerfeld's formula could hard
ly be applied here, since in replacing each spherical wave in Eq. liS) by its 
representation into cylindrical waves given by Eq.II), we would have the 
whole space filled with planes at which the expansion is not valid. 
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The reduced Dirac Green function for the Coulomb potential 
D. J. Hylton 
Gibbs Laboratory, Physics Department, Yale University, New Haven, Connecticut 06520 

(Received 19 July 1983; accepted for publication 23 September 1983) 

The radial reduced Dirac Green function for the Coulomb potential is calculated for all bound 
states. The result is written in a form suitable for numerical calculations. The nonre1ativistic limit 
agrees with the known radial reduced Schrodinger Green function for the Coulomb potential. 
Also obtained are the derivatives with respect to the energy of the relativistic and nonre1ativistic 
radial solutions evaluated at any eigenvalue. 

PACS numbers: 31.15. + q, 03.65.Ge 

1. INTRODUCTION 

In the standard Rayleigh-Schrodinger perturbation 
theory, the second-order energy shift or the first-order cor
rection to the wavefunction can be evaluated with the aid of 
the reduced Green function 1.2 

G R( E)= ~,lPdX2)lPt(XI) 
X2, XI' n £.. ' 

k#n Ek - En 

(1.1) 

where the prime on the summation indicates an integration 
over the continuous part of the spectrum and IPdx) is a nor
malized eigenfunction of the Hamiltonian with eigenvalue 
Ek • If one solves the Dirac equation for IPdx) and Ek , then 
(1.1) defines the reduced Dirac Green function (RDGF), 
which is a 4 X 4 matrix. 

The RDGF calculated as an expansion over the com
plete set of eigenfunctions of angular momentum is useful in 
applications. In the case where the perturbing potential com
mutes with angular momentum, this expansion is particular
ly useful since only one term will contribute provided the 
unperturbed wavefunctions are eigenfunctions of angular 
momentum. In Sec. 2, the Dirac Green function (DGF) for 
the Coulomb potential is constructed as such an expan
sion,3.4 and the relation to the familiar sum over eigenfunc
tions is established. 1.2.5 In Sec. 3, the radial RDGF is expli
citly calculated from the radial DGF and is written in the 
form of an integral representation. Other calculations either 
have written the RDGF in terms of an infinite series of La
guerre polynomials6 or have calculated the reduced Green 
function for the second order Dirac equation in similar 
form. 7 In Ref. 7 the ground state was considered, and in Ref. 
6 the RDG F was explicitly written down for the special cases 
j= n -!. 

As a check of the present results, the nonrelativistic 
limit is obtained in Sec. 4 and found to be equal to the results 
of previous calculations of the radial reduced Schrodinger 
Green function for the Coulomb potential. 8.9 This limit 
yields a new way of writing the nonrelativistic result in terms 
of the derivative with respect to energy of the radial solu
tions. As another check, and also to verify that the results are 
suitable for numerical calculations, the second-order energy 
shift for a perturbing potential 15 V = - wi r was numerical
ly calculated. The numerical results agree with the exact 
results, and a summary of the calculation is given in Appen
dix B. 

2. THE DIRAC GREEN FUNCTION 

The DGF, G (X2' XI' z), satisfies the equation I 

[H(X2) - zI]G (X2' Xl> z) = 153
(X2 - xdI, (2.1) 

where I is the 4 X 4 identity matrix and H (x), the Dirac Ha
miltonian, is 10 

H(x) = (l.x(px + (i/x){JK) + V(x) +{J, 

where 

Px = 
i d 

- -x, K = {J(a-L + 1), 
x dx 

(2.2) 

(2.3) 

and L is the orbital angular momentum operator. The units 
chosen are those for which fz = c = me = 1. The representa
tion for the Dirac matrices is the same as in Ref. 11, and U i 

are the usual Pauli matrices. 
The DGF, expanded over the complete set of spin

angular eigenfunctions of K and J3 = L3 + !u3, x,:(x) 
is3.4.12.13 

- iG ~2(X2,xI,z)X~(X2)Xi-<-'AXd) 

G ;2(X2,XI,z)~_ ,,(x2)Xi-<-' ,,(xd . 
(2.4) 

The spin angular eigenfunctions are written in (A3). The coefficients of the expansion, G Z (X2' X I' z), which are the components 
ofthe radial DGF, are,u-independent. This is because the effect of the Hamiltonian with a radial potential onx~(x) is,u
independent (see Appendix A). 

1125 

Inserting (2.4) into (2.1) gives 

( 

1 + V(X2)-Z 

1 d K 
- -X2+
X2 dX2 X2 

- 2- ~X2 + ~~G~I(X2,x1,z) x2 dX2 X2 

-1 + V(x2) -z G;I(X2,XI,z) 

J. Math. Phys. 25 (4). April 1984 0022-2488/84/041125-08$02.50 
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which is to be solved for G ~ (xz,x 1,z). The solution can be 
constructed in terms of the solutions to the homogeneous 
equation 

- - -x + - if'1(X,z) 

( 

1 + V(x)-z 

1 d K 
--x+
x dx x 

x dx x 1 d K X ) 
_ 1 + V(x) _ Z if'z(x,z) = 0, 

G~(X2,XI,z) = _1_ [t!¢(xz,z)if'?(XUz)O(x I -xz) 
K(z) 

(2.6) 

+ if'?(xz,z)ifI;(x I ,z)O (X2 - X I) ] , (2.7) 

where 

K (z) = XZ 
[ t/1(x,z)if'r(x,z) - if'~(x,z)¢t(x,z)] . (2.8) 

In (2.7) and (2.8), the superscript L means the solution regu
lar atx = 0, while the superscript G means the solution regu
lar as X----+oo. Using (2.6), one can show dK (z)ldx vanishes. 

For the Coulomb potential, V(x) = - Za/x, the solu
tions to (2.6) are13 

l+z 
¢t(x,z) = ----:;;z 

x 

X [(IL - v)Mv _ 1I2.A(2ex) - (K - ~ )Mv+ I12.A(2eX)], 

e 
t/1(x,z) = ~ 

x 

X[(IL-V)Mv_ 1I2.A(2eX)+(K- ~)MV+1/2.A(2eX)], 

G( ) 1 +z if'IX,z =----:;;z 
X 

(2.9) 

X [( K + ~) Wv_ I12.A (2ex) + Wv+ 1/2.A (2eX)], 

if'~(x,z) = ~/z 
X 

where 

y = Za, IL = (KZ _ y)I/Z, 

e=(1-r)I/2, Re(e) >0, v=yz/e, (2.10) 

and Ma.p(x) and Wa.p(x) are Whittaker functions. 14 From 
the small x forms of the functions in (2.9),14 one evaluates 
(2.7) in the limit x----+O to obtain 

K(z) =4(1 +z)e2F(1 +2.iL)lF(IL-v), IL>!. (2.11) 

Equations (2.7)-(2.11) determine G ~ (x2, X I' z) for the 
Coulomb potential, which can be related to the familiar sum 
over normalized eigenfunctions. I Since G ~ (x2 , Xu z) is ana
lytic everywhere in the complex z-plane except for branch 
points at z = ± 1 [due to the (1 - Z2)1/2 dependence] and 
poles at 

z = Zm = (IL + m)/[y + (IL + mfll/z, m = 0,1,2,. .. ,(2.12) 
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the zeros of K (z), one has from Cauchy's theorem 

G ij( ) - -1-fd G~(X2' xI,Y) 
K Xz, x I' Z - . Y , 

2m c Y - z 

z=j:.zm and ZEE{[l,oo),(-oo,-Ij}. (2.13) 

The contour C circles the point z in the positive sense as 
shown in Fig. l(a). The contour is deformed to the contour C' 
shown in Fig. l(b). Since Re(e) > 0, G ~(xz' XI' z) falls off ex
ponentially for large z for fixed XI and x 2• Therefore, the 
contributions from the semicircles at infinity vanish, and 
(2.13) reduces to 

G ij( ) - ~ if'7'.K(X2)if'j,K(XI) + l' { 1 f"'dE 
K X 2'X I'Z - ~ 1m -

m Zm - Z <.->1)+ 21Ti I 

G~(xz' XI' E + iE) - G~(X2' XI' E - iE) 
X -----------------------------

E-z 

1 I-I +- dE 
2m' - 00 

(2.14) 

The first term in (2.14) is the sum of the residues of the poles, 
where if'7"K(X) is the normalized radial bound state wavefunc
tion. The wavefunctions obtained in this way agree up to an 
undetermined phase with the standard results written in Ap
pendix A. From the definitions 14 

Ma,p(Z) = e- z/2zP+ 1I2M(P - a +!, 2{J + 1,z), (2.15) 

Im(y) 

a. 

----_"":I-----+--+-~+~I---- Re(y) 

b. 
Im(y) 

'z c' 

y= E+iE y= E+iE 

~!!!i!i!!!!!!i!i!!!~_,r---1~~~+,~~~~Re(y) 
y=E-iE y=E-iE 

FIG. I. (a) The contour Cin Eq. (2.13). Thex'sdenotebound state poles only 
two of which are shown. The bold lines denote cuts corresponding to the 
condition Re(e) > O. (b) The new contour C '. This contour is used to obtain 
Eq. (2.14). 
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<Xl (a)zi 
M (a,b,z) = I (b)1 . I ' 

1~0 j)' 

(a) = r(a+j) 
:J r(a) , 

and the identities 14 

W () r( - 2/3) M () 
a,p Z = r (! _ (J _ a) a,p z 

r (2/3) M (z), 
+ r (! + (J - a) a, - P 

M (a,b,z) = eZM (b - a,b, - z), 

along with 

c± =pe~i1T12, E> 1, 

c ± = pe±i1T12, E < - 1, 

(2.16) 

(2.16') 

(2.17) 

(2.18) 

(2.19a) 

(2.19b) 

wherep = (E 2 - 1)1/2 and c+ and c_ are the values of C 

above and below the real axis respectively; one finds for E > 1 

."L( E .) - i11jA + 112) ,1- iyE Ip .I.L( E .) 
'f'i x, + IE = - e 'l'i x, - IE 

K + iylp . 

and 

if!?(x,E ± iE) 

-1 r( - U) .I.L 
'1'; (x E+ iE) 

K+iylp r( -A +iyElp) 1 ' -

X e ~ i11j - A + 112)12 r (U ) 
riA +iyElp) 

(2.20) 

X ( K~.iYlp M( -A + 1 + iyE Ip,1 - U, + 2ipx) 
A +lyElp 

+ (- lY+ IM( -A + iyElp, 1 - U, + 2iPY)] , 

(2.21) 

where A I = (1 + E) and A z = pe 'f ;1T12. Similar expressions 
are obtained for E < - 1. From (2.20) and (2.21), one has 

where tM(x E) are the continuum radial wavefunctions, 
which agree with the standard results as given in Appendix 
A. It should be noted that the second term in (2.21) cancels 
within the first integrand of (2.14), and similarly for the sec
ond integrand using the analogous expression for E < - 1. 

This explicitly relates the radial DGF for the Coulomb 
potential in (2.7) to the sum over eigenfunctions in (2.22). 
Furthermore, since (2.22) satisfies (2.5), this also demon
strates the completeness of the radial eigenfunctions. 
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3. THE RADIAL RDGF FOR THE COULOMB POTENTIAL 

From (1.1) and (2.22), the components of the radial 
RDGFare 

if!;",K(X2 )if!t'K(X I ) ], 

En -z 
(3.1) 

where 

(3.2) 

and En is the eigenvalue as given in Appendix A. To evaluate 
(3.1), one expands G ~ in a Laurent series in powers of 
(z - En) up to and including zero order. The pole cancels the 
second term on the right-hand side of (3.1), and the zero 
order term is the RDGF. It is convenient to define 

A-v= -m+8 (3.3) 

and expand about 8 = 0, since (A - v) = - m when z = En. 
Then, in terms of 8, one has 

A +m -8 r 
Z= -----'--.,.---- =En - -3 8+0W), (3.4) 

[(A + m - 8)2 + r] 112 N 

C = Y = Co + c I8 + OW),(3.5) 
[(A + m - 8)2 + r] 1/2 

where 

N = [(A + m)2 + r] 1/2, Co = yiN, c l = y(A + m)/N 3
• 

(3.6) 

The expansion of the homogenous solutions (2.9) is con
sidered first. From (2.16) and the identity 
r(w)F(l - w) = 1Tlsin 1Tw,itisstraightforwardtoderivefor 
k a nonnegative integer 

MI(k,b,w) ~M(8 - k,b,w) I 
d8 8=0 

k ( _ ljiw i 
= k ! I --'----'--

j=O (k - j)l) l(b t 
X [if!(1 + k -}) - if!(1 + k)] 

00 

+kl I 
i=k+1 

( - I)K(j - k - 1)!wJ 

jl(b )J 
(3.7) 

where b is not a negative integer and if!(w) is the logarithmic 
derivative of r (w). 14 One can write an integral representation 
for the second term in (3.7) 

00 (j _ k - 1 )lwl 1 11 (1 _ t )b + k - I I = - dt -'------'--
j ~ k + I ) l(b )i (b)k 0 t k+ I 

X few, -.f w.J;j], Re(b) > - k, 
J=O }. 

(3.8) 

which can be verified by expanding the expression in the 
square brackets in a power series in t. Using (3.4)-(3.7) along 
with the identities l4 

k ! ± (- 1 yw j .L 
j=O (k - })l(b)j ) I 

d 
=W -M( -k,b,w) 

dw 

- kM(I- k,b,w) + kM( - k,b,w), 

D. J. Hylton 
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(k _ l)til 
( - 1Yw

j 1.. 
j~O (k-j-1)!(b)j j! 

d 
=W -M(l-k,b,w) 

dw 

= (b + k - l)M( - k,b,w) - (b + k - w - l)M(l- k,b,w) 
(3.10) 

to evaluate the derivative with respect to the argument of 
Ma,p(z), one has 

M,,± 112," (2cx) = e - CoX(2coX)" + 112{M(m ± ,1 + U,2coX) 

+ 15 [A ± M( - m,l + U,2coX) 

+B±M(l-m,l +U,2coX) 

+ M I( - m ± ,1 + U,2coX)]} + OW), 
(3.11) 

where 

m± =!-m+!, A+=(cI/coHA.+m+!-coX), 

A_ = (cl/coHU + m), 

B + = - mCI/co' B_ = (cl/coH - A. - m +! + coX). 
(3.11') 

For m = 0, M I( - 1,b,w), which appears in (3.11), is defined 
to be zero. This is just a convenience since it will tum out that 
in this case the first-order correction in (3.11) does not enter 
in the final result for the RDGF. 

A similar treatment is done for the W function, where l4 

Wa,p(w) = e- wI2WP+ I12U(! +,B - a,l + 2,B,w). (3.12) 

An integral representation is used for the U function 14 

U(t5 - k,b,w) 

= 1 (OOdte-wttO-k-l(l+t)b+k-o-l, 
r(t5 - k) Jo 

Re(t5) > k, Re(w) > O. (3.13) 

Equation (3.13) must be analytically continued to the neigh
borhood of 15 = O. This can be done by adding and subtract
ing the first (k + 1) terms in the power series expansion of 
(1 + t)b + k - fJ - I in the integrand to get 

U(t5 _ k,b,w) = ± r(t5 - k + j)F(b + k - 15) w
k

-
j
-

fJ 

j~or(t5-k)F(b+k-j-t5) j! 

+ 1 (OOe-wttfJ-k-I[(l+t)b+k-fJ-I 
r(t5 - k) Jo _ ± r(b+k-t5) ~]dt 
j~or(b+k-t5-j) j! ' 

Re(t5»-l. (3.14) 

Again using r(w)F(l - w) = 1T/sin 1TWZ, one obtains 

~U(t5-kbw)1 =k!± (-l)k+
j
r(b+k) w

j 

dt5 "fJ~O j~O r(b+j)(k-j)! j! 

X [¢U + 1) - ¢(k + 1) + ¢U + b) - ¢(b + k) -In w] 

+ ( _ l)kk !loo e - wtt - k - 1[(1 + t)b+ k - I 

_ ± . r (b + k ) ~ ] dt, 
j~O r(b + k - j) j! 

(3.15) 
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where in the first term the replacement k - j_j was made. 
Using (3.4) and (3.5) with the identities (3.9) and (3.10) and 

r(t5-k)= (-w [~+¢(k+1)+0(t5)], (3.16) 
. k! 15 

one has 

r(A. - v +! + !)W,,± 112," (2cx) 

= e - c,,x(2coX)" + 112 

X{ [m+1±(1-m)] r(U-m+ +1) 
2m!r(U + 1) 15 

XM(m ± ,1 + U,2coX) 

+ WI ( - m ± ,1 + U,2coX) 

+ [m+1+(1-m)]r(U-m± +1) 

2m!r(U + 1) 

X [A ± M( - m,l + U,2coX) 

+ B ± M(l - m,l + U,2CoX)]} + 0(15), 

where (3.17) 

W (k b w) _ r (b + k) ~ ( - 1 yw
j 

I " - r(b) j~O (b)j(k-j)!j! 

X [¢U + b ) - ¢(k + b ) + ¢U + 1) - In w] 

+ 100 

e - wtt - k - 1[( 1 + t)k + b -- I 

k r(b + k) t
j

] - I - dt, 
j~or(b+k-j) j! 

(3.18) 

which is the zero order term in the expansion of 
r(t5 - k )U(t5 - k,b,w). In (3. 18),iftheupperlimitofthesum 
is smaller than the lower limit, then the sum is zero. 

Using (3.4), (3.5), (3.11), and (3.17), one finds 

- 1 r(U + m + 1) t!¢(x,z) 

r(I+U) 4m!N(N-K) ~I+z 

= ¢J'K(X) + ~Fj(X)t5 + OW), (3.19) 

mIN (N - K) r (A. - v) ¢J(x,z) 
4r(U + m + 1) c2~1 +z 

= N
3

/r ¢m,K(x) + G(x) 
15 J J 

3N(~; m) ¢j.K(X) + 0(15), 

where 

Fj(x) = - N'~I - sjEnX"-le -c,,x(N 3/r) 

X [Aj(x)M(I - m,I + U,2coX) 

+ Lj(x)M( - m,l + U,2coX) 

- mMI(m - 1,1 + U,2coX) 

+ Sj(K - N)MI(m,I + U,2coX)] , 

Gj(x) = [3N(A. + m)/2r]¢J'K(X) 

- N'~l - sjEnx" -Ie - CoX(N 3/r) 

X {lj(x)M(I - m,l + U,2coX) 
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+ Rj(x)M( - m,1 + U,2coX) 

+ [m!F(1 + 211, }/F(U + m + 1)] 

X [ - (211, + m)WI(m - 1,1 + U,2coX) 

+ Sj(K - N)WI(m,1 + U,2coX)]}' (3.22) 

where N I is the eigenfunction normalization given in Appen
dixA and 

Sj = ( - lY, 

Aj(x) = 1 + m(cl/co)[A. + m - ~ - coX - Sj(K - N)] 

-sjm(1 +sjEn)/2N, 
(3.23) 

Lj(x) = Sj [En + (K - N)(cl/co)(A. + m + ~ - CoX)] 

- m(cl/co)(U + m) + (K - N)(l + SjEn)/2N, 

Pj(x) = - I + m(c/co)[ A. + m -! - CoX - Sj(K - N)l 

+ mEnl(K + N) - sjm(l - 3sjEn)12N, 

Rj(x) = Sj(K - N)(cl/co)(A. + m +! - CoX) 

- m(cl/co)(U + m) + (K - N)(1 - 3sjEn}/2N. 

From (3.19) and (3.20), it is clear that}j(x) and Gj(x) are 
related to the derivative with respect to energy of the regular 
and irregular solutions of (2.6) evaluated at the eigenvalue. 
The additional term in (3.20), proportional to the eigenfunc
tion, can be removed by changing the z dependence of the 
normalization coefficient of the solutions. 

Finally, from (2.7), (2.11), (3.1), (3.19), (3.20), and 

N
3
/r _ 3N(A. + m) + 0(8), (3.24) 

En -z 8 2r 

the radial RDGF for x I > X 2 is 

G{(X2,xI,En ) = tPj.K(X I)F;(X2 ) + t/1'.K(X2)Gj (X I). (3.25) 

The radial RDGF for x I < X2 can be obtained from the sym
metry relation 

G~(X2,x1,z) = G~(XI,x2,z), (3.26) 

which is evident from (2.7). 

4. NONRELATIVISTIC REDUCTION 

As a check of (3.25), the nonrelativistic limit is taken 
here. This is accomplished by dropping all terms of order y 
compared to unity (yx is not considered small compared to 
unity). II The expansions are 

and 

1129 

A. = IKI + 0 (r), 

N=n +O(r), 

Co = yin + o (r), 
CI = yln2 + 0 (r), 

(A. + m) = n + o (r), 
En = 1 - r12n2 + o (y4), 

K= I, K>O, 

K= -(/+ 1), K<O. 
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(4.1) 

(4.2) 

In this limit, G 12R and G 21R are of order y smaller than G lIR 

while G 22R is of order r smaller than G II R. SO G II R is the 
dominant component and produces the radial reduced 
Schrodinger Green function in the nonrelativistic limit. 

A few of the less direct steps in taking this limit are 
outlined below. Since A. approaches a nonnegative integer, 
the integral in (3.18) can be carried out in the nonrelativistic 
limit. For k = m - 1 and b = I + 214 one has 

L"'e-wtt -m[(1 +tt+2IKI-1 

m - I (m + 21KI - I)! t j
] 

- /~o (m +2IKI-l-j)! j! dt 

= i"" e - w/IY I (n + IKI - I)! t
j 

dt 
o j~O (j + n - IKI)! (21KI - 1 - ll! 

= 21y I (n + IKI- 1)!j!w-1H I) . 

j~O (j + n - IKI)!(2IKI - 1 - j)! 
(4.3) 

A similar result follows for k = m. In (3.21), the two infinite 
series arising from the definition of MI (k, b, z) in (3.7) can be 
combined with the aid of the identity 

_ m! i (- l)m - l(j - m)!(2(ylnJxY 

j~m j!(1+2IKI)j 

+ m!(n - K) i ( - It(j - m - 1)!(2(ylnJxY 
j~m+1 j!(l+2IKI)j 

= (-2 Lx)m(2IKI)!m!i (2 Lx)j 
n }~o n 

X j ! + (n - K)(j - 1 )!( 1 - 8oj ) . 

(n + IKI + j)!(n - IKI + j)! (4.4) 

Differences of t/J functions can be combined using the recur
rence relation 14 

t/J(w) = t/J(w - 1) + l/(w - I) (4.5) 

to produce finite sums. 
The cases K < 0 and K > 0 reduce to the same result for a 

given I, but terms combine differently. After a lengthly alge
braic calculation, FI and GI in the nonrelativistic limit be
come 

F~R(X) = _ ~/( 2: Y/2e - Y12 

( 
(n + /)! )112 {n-J-I j 

X Sk L Bjy 
2n(n-I-l)! j~1 

( -yt- J 

+ I 2F2(1,I,n + I + 2,n -I + 1,y) 
(n + + l)!(n - /) 

+ L n - I - I M (I _ n + 2,21 + 3,y) 
n (21 + 2)! 

+ 1 (L _ 21 + 3 )M(/- n + 1,21 + 2,y) 
(21 + I)! 2n 2n 

+ e~ M(/-n+lU+2Y)} (~6) 
(21 + 1 )!(n - l) " 
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and 

G~R(X)= _ n
3 
y'(~)312e_Y/2( (n+l)! )1/2SK r n 2n(n - I - I)! 

X { _ 2Il (n - I - 1 )!(j - 1 )!y - j 

j = 1 (n - 1- 1 + j)!(21 + 1 - j)! 

n-I-2. 1 [ 1 
+ L CjyJ - I ¢(n -I) - In y - -

j=O (21 + 1). 2n 

+ 21+3 _ L]M(/-n+ 1,2/+2,y) 
2n 2n 

+ (n -1- 1) LM(/- n + 2,21 + 3,y) 
(21 + 2)! n 

e(K) M(/- n + 1,21 + 2,y)}, (4.7) 
(21 + 1)!(n -I) 

where15 

s -M K- , 

K 
y=~X, 

n 

00 wJ! 
2F2(1,I,a,b,w) = L --, 

j=O (a)j(b t 
B. = _( -_I_V ___ (~n_-_I_-----!.l)_! __ 

J j1 (21 + j + 1 )!(n - I - j - I)! 
j - 1 1 

XL ' k=on-I-k-l 

C = (- lY (n -1- I)! 
J j1 (21 + j + 1 )!(n - 1-j - I)! 

n - 1- 1 2k + 21 + 1 

X k =.t+ 1 k (21 + k + 1) . 

(4.8) 

The last terms in (4.6) and (4.7) are proportional to the nonre
lativistic wavefunction; and although they are K-dependent, 
they will cancel upon substitution in the nonrelativistic ana
log of (3.25). Therefore, a K-independent radial reduced 
Schrodinger Green function will result. Equations (4.6)-(4.8) 
together with the nonrelativistic limit of the eigenfunctions 

(4.9) 

where f"R(X) is the normalized nonrelativistic radial eigen
function, 11 determine the nonrelativistic limit of(3.25). With 
the aid of the identity 14 

M( - f3,a + l,x) = [f3!a!!(f3 + a)!]L aj3(x), (4.10) 

this limit can be shown to agree with the result of the calcula
tions of Hameka9 and Sherstyuk.8 

5. CONCLUSION 

The radial RDGF for a Coulomb potential for a general 
state is given in (3.25). For any state with m = 0 (IS1l2, 2P3/2' 
3Ds/2,"')' one has 

Fj(X)=¢?'K(X)~[:2(A+ ~ - :X)+ ;~ +1;], 

Gj(X)=¢?'K(X)~[:2(A++- :X) 

+ ;~ + ¢( 1) - In( 2: X) + I j ]. 
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(5.1) 

(5.2) 

where 

I j = e2(y/nlx 100 

dt e - (2y/nlxI [Sj ~ t 2,1 - 1 + t :,1_-1 1 ] 

(5.3) 
and 

r= dt t 2A ____ _ 11 [ e2!y/n lx(1 - II - 1 

I 0 1 - t 

- Sj ~ t 2A - 1e2Iy/nlx!1 - t)]. (5.4) 

The integral in (5.4) may be converted to an infinite sum via 
(3.8). For any state with m = 1 (2S1I2, 2P1/2, 3P3/2, 3D3/2, ... ), 
one has 

{ 

K -Nl Sj En 
Fj(x)=gj(X) -- +1- - +-

2Nl 2Nl Nl 

X [Sj(K-N1{A + 1- ~Yl) 

+SjN1 -A -1- +Yl] 

Yl [K-N1 En 
-U+l ~+N; 

X (Sj(K - Nd(A + 2 - + Yl) 

+ SjNl - U - 1) - Sj(K - Nd] + Jj(X)}, (5.5) 

Gj(x) = 3Nl;~+ 1) ¢l,K(x) 

{ 
K-N] Sj 

+gj(X) -- -1--
2NJ 2NJ 

+ [1 - Si(K - Nd][lnYI - ¢(1)] (5.6) 

+ !~ [Si(K-NI{A -1- ~ YI) 

+ -.!!..L.. -A + 1- ~YI] 
K+NJ 2 

__ Y_I_~ 
I+U NI 

X [SdK - Nd( A - + YI) - U - I + K ;;~I ] 

+ _S_i _ [1 + YI¢(2) - YI InYI] + J;(X)}, 
K+NJ 

where 

NI = [(A + If + rJ 112, YJ = (2yINdx, 

__ N~ (F(U+2)(1-SiEn))1I2 
gi(X) - r 4NI(NJ - K) 

x (2y1NdA + 112x'" - Ie - y,/2 

r(I+U) , 

Ji(X)=i Jdt (I_t)2A 
o t 

X [ 1 - e,1 + 

D. J. Hylton 
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J;(x) = .c"'dte~y't[ I-(\+t f" 

_ S; (I + t )2" + I - I - (I + U )t ]. 

(K+Ntl t 2 (S.9) 

The integral in (S.S) may be written as an infinite sum via 
(3.S). 

Also obtained are F; (x) and G;(x) in (3.19)-(3.22), which 
are the derivative with respect to energy of the regular and 
irregular solutions of the homogeneous equation (2.6), evalu
ated at the eigenvalue. The nonrelativistic analogs are given 
in (4.6)-(4.S). 
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APPENDIX A: COULOMB EIGENFUNCTIONS 

The Coulomb eigenfunctions are solutions of the equa
tion 

[H(x) - EJ] 4f!(x) = 0, (AI) 

whereH(x) is given in (2.2) with V(x) = - ylx. The normal
ized solutions are lO 

(A2) 

where 

The normalized radial bound-state wavefunctions are lO
•
11 

/;(X)=t,b;",K(X) = N'~1 - s;Enx" ~ le~ lylN)x 

X [mM( - m + 1,1 + U,2(yIN)x) 

- silK - N)M( - m,1 + u,2(yIN)x)], (A4) 

where 

N'= (2IyN)" + 112 (F(U+m+l))1I2, (AS) 
F(U+l) 4m!N(N-K) 

and 

E = A+m 
n N' (A6) 

where m, given in (3.3), is any nonnegative integer. The con
tinuum radial wavefunctions (E> 1 or E < - 1) are lO 

1; (x)=t,bj(x,E) = N2~ 1 - sjE e ~ ;pxx" ~ I 

X [M (A + 1 + i r: ,1 + U,2iPX) 

+Sj K+/ylp M(A +i yE,1 +U,2iPX)], (A7) 
A +lyElp P 
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where 

IF(A + 1 - iyE Ip)Je7TYEI2P(2p)" N2 = ~~~--~--~~--~~ 
2F(1 + U)fiiP 

p = (E2 _ 1)1/2, 

arg(~ 1 - sjE ) = 0 or 1T12. 

Some important properties of the wavefunctions are 

K4f! (x) = - K4f! (x), 

J3 4f! (x) = f.L 4f! (x), 

a.xx.:(x) = - X"~ K(X). 

APPENDIX B: NUMERICAL CALCULATION 

(AS) 

(A9) 

As a check of the results in (3.2S), the radial RDGF was 
used to numerically calculate the second-order perturbation 
energy for a perturbing potential 

c5V = - mlr. (Bl) 

The exact result can be obtained by replacing Z by (Z + E) in 
the exact expression for the bound state energy in (A6). This 
is expanded to second order in E to get 

E~ =En +E~)E+E~)c+O(c), (B2) 

where 

(B3) 

and 

E~) = - H(a2IAN3)(~ + Am) + (Za2)2K2IA 3N3 

+ (Za2)2(3mIA 2N5)(~ +Am)]. (B4) 

From perturbation theory, one has 

cE~) = -1"" dXl1"" dX2Xfx~ c5V(x l)c5V(x2) 

(BS) 
iJ 

To numerically calculate G i/'(X2,xl,En ), everything is 
straightforward with the possible exception of the evaluation 
of MI(k, b, z) and WI(k, b, z). The range of variables 10-6 

";2coX;"; 100, i = 1,2, is adequate to calculate (BS) to six fig
ures. In this range, the infinite series in (3.7) can be evaluated 
to give the result 

i (j - k - 1 )!wj 

j~k+1 (b))1 

= F(b )wk + I[ I. wj1 + R M ], 

j ~ 0 (j + k + 1 )!F (j + k + b + 1) 
(B6) 

where 

R M <TM + I(1-wIM)-I, M>w, (B6') 

and T M + I is the (M + 1 )th term of the series on the right
hand side of (B6). The integral occuring in the expansion for 
WI(k, b, z) in (3.23) was evaluated using a 12-point Laguerre 
numerical integration method. 14 However, the integrand 
must be calculated in double precision because of cancella
tions. In the case m = 0, the evaluation of M(l, b, w) was 
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required. This was done using a lO-point Legendre numeri
cal integration method to evaluate the integral representa
tion l4 

M(l,b,w) = (b - l)Lewt(l- t)b- 2 dt, b> 1. (B7) 

The integral in (B5) was numerically calculated to six 
figures by applying Gauss type numerical integration tech
niques. The calculated value for E~) agrees with the exact 
value from (B4). 
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A function of the typef(R )y~(e,<p) around a specific center B is expanded about another center 
A asf(R )y~(e,<p) = ~l~ IMI (l/r)a[(fLM la,r)yrW,ip), where y~(e,<p) and Yf'W,ip) are the 
complex spherical harmonics around the respective centers, which have been assumed to be 
quantized in the direction of A toB. The distances from the respective centers areR and r, and the 
separation between the two centers is a. The expansion coefficient al(jLM la,r), which is usually 
called Lowdin's a-function, can be expressed in a remarkably simple form by using Silverstone 
and Moats' formula. Owing to the simplicity, the properties of the coefficients bKk(LM II) 
appearing in the a-function are manifested, and the recurrence formulas for evaluating 
bKk(LM II) are derived. Furthermore, when r:::;:O, the asymptotic expression for thea-function is 
given in a compact form. 

PACS numbers: 31.15. + q, 71.10. + x, 02.30.Mv, 02.30.Bi 

1. INTRODUCTION 

For calculation on electronic structures of molecules 
and solids, a function of the typef(R )y~(e,<p) is frequently 
used as an atomic orbital. Heref(R ) is a specific radial func
tion, and y~(e,<p) a complex spherical harmonic around a 
center B. Then any tractable expansion formula of the func
tion in terms of spherical harmonics y,(,W,ip ) around a dis
placed center A, if available, will be very useful to compute 
molecular integrals between atomic orbitals about separate 
centers. A number of such formulas have been presented by 
several investigators, I-II though they cannot be said to be 
easy to deal with. However, only one of them seems relative
ly compact and will be able to lead to some simple expression 
for the expansion when both y~(e,<p) and y,(,W,ip) are 
quantized in the direction of center A to center B. This is the 
one derived by Silverstone and Moats.9 

when r:::;:O, the asymptotic expression for the a-function will 
be given in a compact form. Fourth, in Sec. 6 some general 
notes will be stated on computing molecular integrals by the 
use of the present formula. 

In the above special case the expansion coefficient 
al(jLM la,r) is usually called Lowdin's a-function2 [see Eq. 
(2.1)]. Here a is the separation between the two centers A and 
B, and r the distance from A. The expressions for the a
function have been given in the conventional manner by ex
panding a product of two associated Legendre functions 
with power series of r, R, and a, but they are in considerably 
sophisticated forms. 1-4.6.8.10 On the other hand, it was sug
gested by Silvertone and Moats9 that a simpler expression 
for the a-function is derivable from their expansion formula 
obtained by means of the Fourier-transform convolution 
technique.s No explicit expression, however, has been so far 
given. 

The aim of this paper is to actually demonstrate that an 
expression for the a-function which makes its calculation 
remarkably easy can be obtained from Silverstone and 
Moats' formula. In this context, first, in next section the way 
to lead to the expression will be briefly described, and the 
coefficients bKk (LM II) [see Eq. (2.6)] appearing in the 
expression will be defined in a suitable form for their numeri
cal calculation. Second, the property of b Kk (LM II ) will be 
manifested in Sec. 3, and then the recurrence formulas for 
evaluating them will be derived in Sec. 4. Third, in Sec. 5, 

2. DERIVATION OF THE a-FUNCTION WITH A 
TRACTABLE STRUCTURE 

At the outset the a-function atlfLM la,r) is defined by 

f(R )y~(e,<p) = f (~) al(fLM la,r)Yf'W,ip), 
1~IMI r 

(2.1) 

wheref(R ) is the radial part of a specific function to be ex
panded, and y~(e,<p) and Yf'W,ip) are the complex spheri
cal harmonics in the respective polar coordinate systems 
shown in Fig. 1. 

When the center of the function to be expanded is 
placed on the positive z-axis in the Cartesian coordinate sys
tem, Silverstone and Moats' formula9 is reduced to a formula 
expressing al(fLM la,r). It may be written as 

al(fLM la,r) = (- l)M [(2L + 1)(21 + 1)] 1/2 

41T 
L+l 

x2 I C(LU;M -M) 
A~ IL-il 

xC (LU;OO)VIAL (r,a), (2.2) 

x 

R 
=~ 

y 

FIG. 1. Chosen systems of polar coordinates. 
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where C (LU;M -M) are the Clebsch-Gordan coefficients, 12 

and 
(L + I + A )12 (L + I + A )12 - K 

VUL (r,a) = 21T( - 1)1 I I DULKk 
K=O k=O 

(
r)2k-'lr+a (R)2K-L+1 

X - dR - fIR), 
a Ir-al a 

with 

DIALKk = [(2K )!!(2K - 2L - 1) If(2k )!!(2k - 21 - 1) If 
X (L + I + A- - 2K - 2k )!! 

X (L + I - A- - 2K - 2k - 1) If] - 1. 

(2.3) 

(2.4) 

The symbol!! indicates a usual double factorial with a non

negative argument, while If indicates one with a non-nega
tive or negative argument and, to be definite, 

- {(2P - I)!! if P is a non-negative integer. 
(2p - 1)" = 

.. 11[( - 1) - P( - 2p - I)!!] otherwise. 
(2.5) 

Note that ( - 1)!!==:1. 
The coefficients irrespective of r and a in Eq. (2.2) can be 

expressed in a form depending on only two indices K and k 
by changing the order of the summations. Then we denote 
each of the coefficients by the product of two symbols 
y(LM II) and bKk(LM II). Here bKk (LM II) has been defined 
as 

bKdLM II) P (LM II) 
L+I 

X 2 I C (LIA-;M -M)C (LU;OO)DIALKk' 
A=Amin 

(2.6) 

where 

2L + 1 

P(LMI/)-( I)L+'-M ____ _ 
(2L - 1)!!(2/- I)!! 

and 

X [(L - M)!(L + M)!(/- M)!(I + M)!] 1/2 
(2.7) 

A-min = maxI IL -I 1,2(K + k) - (L + l)J. (2.8) 

Then y(LM II) may be written as 

y(LM II) = (- W (2L - 1)!!(2/- I)!! 
2L + I + 1 

[ 
(2L + 1 )(21 + 1) ] 112 

X (L-M)!(L+M)!(/-M)!(/+M)! . 
(2.9) 

Since a/(jLM la,r) has been defined in the same manner as 
a/(NLM la,r) by Sharma,8 the coefficient 
y(LM II )bKk(LM II) is identical with Sharma's bv(sILM)8 (in 
Ref. 8, s and v are used in place of our K and k, respectively). 
Here it should be noted that the coefficient is expressed in a 
remarkably simpler form than Sharma's bv (sILM). It may be 
attributed to the use of Silverstone and Moats' formula. 

In the preceding paragraph the definition of b Kk (LM I I ) 
was made so that y(LM II) may take the same formula as 
Sharma's bo(OILM). Thereby it is assured that necessarily 
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(2.10) 

Owing to this definition of b Kk (LM I I), the properties of 
b Kk (LM I I) can be manifested readily, and furthermore some 
easy recurrence formulas to evaluate b Kk (LM II ) can be de
rived without difficulty. 

The coefficient bKdLM II) is equivalent to cv(NLM lis) 
introduced by Lowdin2 (also in Ref. 2, s and v take the place 
of K and k, respectively). These two are connected by the 
relation 

cdNLMIIK) 

=(_W(2L-l)!!(2/-1)!!b (LMI/). (2.11) 
(L - M)!(I + M)! Kk 

Eventually, by making use of b Kk (LM I I) and r(LM II ), 
we can rewrite Eq. (2.2) in a compact form as 

L+IL+I-K 
a/(jLM la,r) = r(LM II) I I bKdLM II) 

K=O k=O 

(
r)2k-llr+a (R)2K-L+1 

X - dR - fIR). 
a Ir- al a 

(2.12) 

3. PROPERTIES OF bKk(LMII) 

In this section the properties of b Kk (LM II ) will be man
ifested' since they may help us to derive some recurrence 
formulas for evaluating b Kk (LM II): first its symmetry prop
erty is derived; second it is shown that for a few specific 
values of K and k, b Kk (LM II ) take particular values; and 
third it is proved that a few special sums of bKdLM II) van
ish on the respective conditions. 

Since bKk (LM II) has been defined by Eq. (2.6), its sym
metry property can be found from consideration of the sym
metry properties of P (LM II), C (LU;M -M), and D IALKk . 
Those are given by 

P(L -M II) =P(lMIL) =P(LMII), (3.1) 

C (LU; -MM) = C (LIA-;M -M) for L + I - A- even, 13 

(3.2) 
C(ILA-;M -M) = C(LU;M _M),13 (3.3) 

and 

(3.4) 

Introduction of Eqs. (3.1 )-(3.4) into Eq. (2.6) leads immedi
ately to the symmetry property of b Kk (LM II). It may be 
expressed as 

(3.5) 

and 

(3.6) 

Therefore, henceforth only bKk(LM II) with M>O and I>L 
will be taken into account. 

The coefficient b Kk (LM II) may be regarded as the ele
ment on the (K + l)th row and the (k + l)th column in a 
square matrix lb(LM II ) of dimension L + I + 1. Since the ele
ments in which K + k > L + I never appear in the matrix as 
seen in Eq. (2.12), the symbol X will be placed on the sites 
which those elements should occupy. 
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Next we will consider what values the two elements, 
bOL + I (LM II ) and b L + 10 (LM II ), on the right-top and left
bottom of the matrix b(LM II ) take. When the explicit expres
sion14 for C(LIL + I;M -M): 

C(LIL +I;M -M) = (L +/)! 

[ 
(2L )!(21 )! ] 112 

X (2L +2/)!(L-M)!(L +M)!(/-M)!(/+M)! ' 
(3.7) 

and that for C (LIL + 1;(0) which can be obtained by setting 
M = 0 in the above formula, are introduced into Eq. (2.6), it 
is easily found that 

bOL + ,(LM II) = ( - I)L-M (3.8) 

and 

(3.9) 

Therefore, in general, the matrix b(LM II ) may be written as 

b(LMII) =( 1 

( _1)/-M X ... 

(-W-
M

) 

X

X: . (3.10) 

Finally we will take into consideration a few special 
sums of b Kk (LM II). The sum over all the first-row elements 
is expressed by 
L+I 
I bok(LMI/) 
k~O 

= (_l)L+/(2L - 1)!!P(LMII) 

X 2 Li I C (LlJ.;M -M)C (LlJ.;OO) 

A ~ 1- L (L + I + A )!! 

(L + I + A )/2 (L + I + A ) 
X I (- l)k 2 

k~O k 

(21 - 2k - 1) TI 
X---'------'---

(L + I -A - 2k - 1) TI (3.11) 

This is derived by introducing the formula for DIAL Ok [see 
Eq. (2.4)] into Eq. (2.6) and then changing the summation 
order. (Z) denotes the binomial coefficient nt/In - k )!k !. In 
Eq. (3.11), if (L + I + A )12> ( - L + I + A )12, i.e., L > 0, 
then the inner sum vanishes regardless of A. This validity is 
proved generally in Appendix. As a result, it follows that 

L+I 
I bodLM I I) = 0 if L > O. (3.12) 
k~O 

Also, from the same consideration as the above, it can be 
seen that the sum over all the first-column elements vanishes 
if I > 0, i.e., 

4. RECURRENCE FORMULAS FOR EVALUATING bKk(LMII) 

L+I 
I bKO(LM II) = 0 if i> O. (3.13) 
K~O 

When Eq. (2.4) is used for DIALKk in Eq. (2.6) and then 
K + k is replaced by p, b Kk (LM II) may be rewritten as 

bKp_K(LM II) 

( - 1)/-P+K (p) (2K - 2p + 2/- 1)" 
= P(LM II)\K _ .. 

(2p)!! (2K - 2L - I)!! 

L + I C (LlJ.·M -M)C (LlJ. '(0) 
x2 I ' , , 

A ~ Amin (L + I + A - 2p)!!(L + I -A - 2p - 1) !! 

where 
(3.14) 

Amin = max! I - L,2p - (L + I ) J . (3.15) 

Here p indicates that (p + 1 )th, from the left, of L + I + 1 
arrays which consist of the elements aligning obliquely from 
upper-right to lower-left in the matrix lb(LM II). In particu
lar, for p = L + I, by introducing Eq. (3.7) into Eq. (3.14), 
one finds that 

bKL+,_K(LMIl) = (- W- M.( _1)K(L;'). (3.16) 

This is nothing but the product of one of the binomial coeffi
cients in (x - y)L + I with bOL + I (LM II). Thus the products 
with K = 0 to L + I appear in tum on the most right oblique 
array. Needless to say, the sum ofbKL + I_K(LM II) over the 
possible range of K vanishes so long as L + I -# O. In general, 
the sum of b Kp _ K (LM II) over the possible range of K is 
expressed in a form similar to Eq. (3.11): 

= (- 1)/-P P(LM II) 
(2p)!! 

xLii C(LlJ.;M - M)C(LlJ.;OO) _ 

A~Amin (L + I +A - 2p)!!(L + I-A - 2p - I)!! 

X ±(_I)K~)(2K-2P+2/-~)TI. (3.17) 
K ~ 0 (2K - 2L - 1) !! 

Ifp >L + 1-p, i.e.,p > (L + 1)12, then the above sum van
ishes in the same manner as Eqs. (3.12) and (3.13). That is, 

KtO bKp_K(LMI/) =0 if p> L;I. (3.18) 

In conclusion, all the properties of bKk(LM II) derived 
in this section may help us to calculate b Kk (LM II ). At least 
they are useful for us to check for some particular 
b Kk (LM II) whether their calculated values are correct or 
not. 

In this section a few formulas necessary to numerically calculate b Kk (LM II ) repeatedly will be derived. Further some 
result obtained by the use of them will be presented. 

In Eq. (3.14) the factor on the sum depends on bothp andK, while the sum only p. Therefore, the direct use ofEq. (3.14) 
leads to the recurrence formula in K. It may be written as 

1135 J. Math. Phys., Vol. 25, No.4, April 1984 Noboru Suzuki 1135 



                                                                                                                                    

b (LMI/)= (K-p)(2K-2p+2/+1)b (LMI/). 
K+ Ip-K-I (K + 1)(2K _ 2L + 1) Kp-K (4.1) 

It should be noted that the factor on the right-hand side of Eq. (4.1) is independent of M. Accordingly, evaluating the factor 
once is enough for b Kp _ K (LM II) with the same set of L and I. By the iterative use ofEq.(4.1) all the elements in each oblique ar
ray except the one on the first row or column are evaluated without difficulty. Then the problem how to easily find the value of 
the first-row or -column elements arises. Here we will derive a recurrence formula for evaluating the first-row elements. 

Going back to the definition of bKk (LM 11), Eq. (2.6), and then introducing into it the recurrence formula l5 for C (LlA; M 
-M) in M which is expressed by 

C(LlA;M-M) 

= U,1(,1+ 1)-L(L+ 1)-/(/+ 1)+2(M-l)2] 

XC(LlA;M - I-M + 1) 

- [(L -M + 2)(L +M - 1)(/-M + 2)(1 +M _1)]1/2C(LI,1;M - 2 -M + 2))1 

X [(L +M)(L -M + 1)(/ +M)(/-M + Ijp/2, (4.2) 

one obtains an alternative expression for bOk (LM II ): 

bodLM II) = (- W(2L - 1)!!/1(LM 11)1{(2k )!!(2k - 2/- 1) TI[(L + M)(L - M + 1)(1 + M)(/- M + 1)] 1/2} 
L+I 

x2 I U,1(,1+ 1)-L(L+ 1)-/(/+ 1)+2(M-l)2]C(LlA;M-I-M+ 1) 
A ~ Amin 

- [(L - M + 2)(L + M - 1)(/-M + 2)(1 + M - 1)]1/2C(LlA;M - 2 -M + 2))C(LlA;OO)/ 

X [(L + I + ,1- 2k )!!(L + 1- ,1- 2k - 1) TIl. (4.3) 

where 

,1min = max {I - L,2k - (L + I)). (4.4) 

Furthermore, by using the equality 

A (A + 1) = - (L + I + A - 2k )(L + I - A - 2k - 1) 

+ (L + 1- 2k)(L + 1- 2k - 1) (4.5) 

and again returning to Eq. (2.6), Eq. (4.3) can be rewritten as 

bok(LMII) 
= [(L-M+ 1)(/-M+ 1)]-1{2(k+ 1)(2k-2/+ 1) 

X bOk + dLM - 11 I) - 2 [(L - 2k - 1)(1 - 2k - 1) 

-(k+ 1)(2k+ 1)+(M- W] 
X bodLM - 111) - (L + M - 1)(1 + M - 1) 

xbodLM - 211)). 
(4.6) 

When the first term in the braces in the above equation is 
derived, the observation has been used that 
,1min = max { I - L,2k - (L + I)) is substituted by 
,1min = max { I - L,2(k + 1) - (L + I )) because the term 
with A = 2k - (L + I) never arises. Replacing M - 1 by M 
in Eq. (4.6) and then transforming Eq. (4.6), we can obtain 
the recurrence formula for bOk (LM II ) in k: 

b(OOIO) = (1) 

b(OOII) = ( 1 
-1 

1 ) 
X ' 

bIIOII)~( ~ 
0 

-I) bll1ll)~( -~ 2 X, 

-1 X X 
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-2 

-2 

X 

bok+I(LMI/) 
1 

------:-- {(L - M)(/- M) 
2(k + 1 )(2k - 21 + 1) 

X bOk (LM + 1)11) + 2[(L - 2k - 1)(1- 2k - 1) 

- (k + 1)(2k + 1) + M2]bok (LM II) 
+ (L +M)(I +M)bok(LM - 111)). (4.7) 

This is applicable even for M = 0 provided that the symme
try property of b Kk (LM II ) expressed by Eq. (3.5) is taken 
into consideration. Especially, Eq. (4.7) for k = 0 is reduced 
to a strikingly simple formula owing to Eq. (2.10) 

b (LMI/)= _ L(/-I)+/(L-l)+2M
2

. (4.8) 
01 2/- 1 

Thus all the first-row elements bOk (LM II) with M = 0 to L 
are successively evaluated in the increasing order of k by the 
repeated use ofEq. (4.7) with the aid ofEq. (4.8). 

A recurrence formula for evaluating the first-column 
elements b KO (LM II) can be also obtained by introducing 
into Eq. (4.7) the symmetry relation expressed by Eq. (3.6). 
The formula, however, will not be given here since it is not 
necessary for finding the values of those elements. 

Finally, some of bKk(LM II) evaluated in the above 
manner are presented in the matrix form. The matrices 
lb(LM II) with the restriction, O<M<L<1<2, are as follows: 

~} 
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b(OOI2) ~ ( -; 
2 

~} 
~ 

-2 

X 

( I 

-j \ 

-~) ( I 

-1 -1 

~) 
~ 

-1 2 3 -3 -2 -3 
b(1012) = ~ b(1l12) = 3 (4.9) 

-1 -3 X 3 X X ' 

1 X X -1 X X X 

-~ 2 -~ -2 0 2 -1 ~ 

-~ 4 4 -4 X -2 0 -2 4 X 9 ~ 

b(2012) = 2 4 6 X X b(2112) = 0 -2 -6 X X ~ ~ 
, 

-~ -4 X X X 2 4 X X X 

1 X X X X 
-1 X X X X 

1 -4 6 -4 1 

-4 4 4 -4 X 

b(2212) = 6 4 6 X X 

-4 -4 X X X 

X X X X 

5. ASYMPTOTIC EXPRESSION FOR a,( fLMla,,, WHEN 
(;::::0 

smin = maxl0,2n - 2(L + I)J, (5.5) 

In this section, for r;::::O we will derive a more practical 
expression for a/(/LM la,r). 

When r;::::O, the direct integration ofEq. (2.12) is not 
adequate to calculate a/(/LM la,r), because numerically it 
yields an extreme reduction of the significant figures due to 
appearance of a difference between two nearly equal values. 
Therefore, in such a case the formula derived by applying 
Taylor's theorem to the integral in Eq. (2.12) should be used 
instead of Eq. (2.12). It may be written as 

00 (r )2n - 1 + I 

a/(/LM la,r) = 2y(LM II) n~1 -;; 

minIL+I.nl L+I-k 
X I I bKk(LMII) 

k~O K~O 

XE~~ _ 2da), (5.1) 

where 

E~~_2da) 

= _ R2Kg(R) a2n-2IK+kl+L[( d )2n-2k ] 

(2n - 2k + I)! dR R ~ a 

with 

g(R) !(R)lR L-l. 

(5.2) 

(5.3) 

Here it should be noted that the terms with n < I never arise 
in Eq. (5.1) because every inner double sum in those terms 
necessarily vanishes.2 

The inner sum, denoted by a l•2n _/(/LM la), may be ex
pressed as 

2n 
a/.2n _/(/LM la) = I hn.s(LM Il)as+LgISI(a)ls!, (5.4) 

where 
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hn.s(LM II) 

and 

[12n-s)/2J L+ 1- k 

I I !(2K)! 
k~O K~ [12n-s+ 1112J - k 

X [(2n - 2k + 1)(2n - 2k - s)!(2K - 2n 

+ 2k + s)!] \/2JbKk (LM 11), 

glsl(a) = [(-.!!....)Sg(R )] . 
dR R~a 

(5.6) 

(5.7) 

[q12] denotes the quotient of q12. For s = 2n, Eq. (5.6) can be 
reduced to 

1 L+ / 
hn.2n (LM II) = -- I bKO(LM II)· (5.8) 

2n + 1 K~O 

From Eq. (3.13) this sum vanishes so long as I #0. 
When assumed thatg(R ) is expressed by a polynomial of 

R, a l•2n _/(/LM la) becomes a polynomial of a with the same 
order as aLg(a) irrespective of n. Therefore, a l•2n _/(/LM la) 
never increases rapidly in magnitude with the increase of n. 
Thus, it is ensured that if ria is sufficiently near to zero, 
a/(/LM II) converges within a finite value of n. 

6. DISCUSSION 

In this final section we will give some notes on calcula
tion of molecular integrals by using a/(LM la,r). 

At the outset we will consider how, when the spherical 
harmonic in the function to be expanded, denoted by 
Y::(B ',cI> '), is not quantized in the direction of center A to 
center B,f(R )Y::(B ',cI> ') is expressed in terms of Y'!'({},qJ). 
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Then y~(e ',<I> ') may be expressed in terms of y~'(e,<I» 
quantized in the direction of A to B, as below: 

y~(e',<I>') = Rot! y~(e,<I>)j 
IMI 
I y~'(e,<I»D\t£!M(Rot), (6.1) 

M'= -IMI 

where Rot denotes the rotation which brings Y ~(e,<I» into 
y~(e ',<I> '), and D \t£ !M (Rot) the element on the 
(L + M' + 1 )th row and the (L + M + I )th column in the 
2L + I-dimensional irreducible representation matrix for 
Rot. Therefore, it is essential to carry out the expansion of 
fIR )y~'(e,<I» in terms of y~'(tJ,rp) as shown by Eq. (2.1). 
By using Eq. (6.1), the expansion formula for 
fIR )y~(e ',<I> ') is given by 

1M 
f(R)y~(e',<I>')= I D\t£!M(Rot) 

M'=-:MI 

X f (~) a,(jLM'la,r)yn{l,rp)· ,= IM'I r 
(6.2) 

Second we emphasize that, since the products of 
bKdLM Il)with y(LM II ) are irrespective of the form off(R ) 
as seen in Eqs. (2.6), (2.7), and (2.9), those products can be 
utilized even for any fIR ) once they have been evaluated. 

Finally we will give a note on the computation ofmolec
ular integrals between atomic orbitals around separate 
centers. In such computation, integration over r must be 
carried out. Then the integration region is divided into three 
subregions, i.e., r>a, a> r>E, and E> r>O, where a definite 
value of E must be determined from the result of examination 
of the convergence ofEq, (S.I). Thus for each subregion each 
integrand is necessary. Any explicit form of those inte
grands, however, cannot be obtained as far as a definite form 
off(R ) is not determined. How those integrands are ex
pressed whenf(R ) takes a special form such as Slater-type 
orbital and further how the coefficients appearing there can 
be evaluated will be presented in a separate paper. 
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APPENDIX 

In general, the sum Sn expressed by 

Sn ±(_1)k(n)(2p-2k-l)~ 
k=O k (2q-2k-I)!! 

(AI) 

can be rewritten as 
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Sn = ktO( - l)kC) 
X [rb-q + (1 - Op,q) ~t: r~-q 

X ",:(I, (2k- 2f.l+ 2)]. (A2) 

where 

(A3) 

Here it has been assumed that p>q. It should be noted that 
the equality of Eq. (A2) holds valid even if p - k and/or 
q - k are negative. The repeated use of the relation 

(n -f.l) (n -f.l- I ) 
k - f.l (k - f.l) = (n - f.l) k - f.l - I (A4) 

leads to 

(AS) 

As easily seen from the above equation, if and only if i = n, 
the inner sum remains nonzero. Otherwise it vanishes. Thus 
it follows that 

Sn = {~-lt(2n)!!r~-q 
if n>p-q. 

otherwise. 
(A6) 
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Exact invariants quadratic in the momentum for a particle in a three
dimensional electromagnetic field 

H. Ralph Lewis 
Los Alamos National Laboratory, Los Alamos, New Mexico 87575 

(Received 3 June 1982; accepted for publication 9 November 1983) 

For a Hamiltonian of the form H =!( p - A(r,1 W + V(r,I), the conditions on the scalar and 
vector potentials V (r,1 ) and A(r,1 ) have been found such that there exists an exact invariant that is 
quadratic in each component of the canonical momentum p. The invariant is written in the form 
I (r,p,l) = ! (f2(r,t ).p - fl(r,1 W + lo(r,I), where f2 is a nonsingular symmetric real dyad, fl is a real 
vector, andlo is a real scalar. For the cases in which f2 is proportional to the unit dyad, or the 
vector potential is identically zero and f2 commutes with the time derivative off2, all of the 
potentials that satisfy the conditions for such invariants to exist have been found explicitly and the 
invariants have been found in terms of the potentials. The derivation is a generalization of a 
method reported by Lewis and Leach for the corresponding one-dimensional problem. For the 
case in which the vector potential vanishes identically, the result is a generalization of a result 
found in three dimensions by Chandrasekhar. The results presented are applicable in plasma 
physics and stellar dynamics. 

PACS numbers: 41.70. + t, 02.30.Th 

I. INTRODUCTION 

Lewis and Leachl have reported a method with which 
they found all one-dimensional potentials for which there 
exists an exact invariant that is quadratic in the momentum; 
for those potentials, they found the invariants. In this paper a 
generalization to three dimensions is given for the Hamilton
ian 

H = !(p - A(r,1 W + V(r,I), (1) 

where V(r,t) and A(r,l) are scalar and vector potentials, re
spectively, as functions of position vector r and time I, and p 
is the canonical momentum vector. For this Hamiltonian, 
the conditions on the scalar and vector potentials are derived 
such that there exists an exact invariant that is quadratic in 
each component of the canonical momentum vector. 

The invariant is written in the form 

(2) 

where f2 is a nonsingular symmetric real dyad, fl is a real 
vector, andlo is a real scalar. It is shown at the beginning of 
the derivation that f2 must depend on I only. For the cases in 
which f2 is proportional to the unit dyad, or the vector poten
tial vanishes identically and f2 commutes with the time deri
vative Off2' all of the potentials that satisfy the conditions for 
such invariants to exist have been found explicitly and the 
invariants have been found in terms of the potentials. For the 
case in which the vector potential vanishes identically, the 
result is a generalization of a result found in three dimen
sions by Chandrasekhar,2 who considered the problem of 
what scalar potentials in three dimensions admit a certain 
class of invariants quadratic in the momentum. Although he 
did not completely solve the problem of satisfying all of the 
compatability conditions that arose in his analysis, he dis
cussed various cases within the context of stellar dynamics. 
The results presented are applicable in plasma physics and 

stellar dynamics. The one-dimensional result of Lewis and 
Leach has been used to derive exact time-dependent solu
tions of the Vlasov-Poisson equations.3 The three-dimen
sional result presented here can be used to derive exact time
dependent solutions of the Vlasov-Maxwell equations. 

In order to avoid confusion about the notation used in 
the derivation, we begin with some explanatory remarks. 
The vector p is the canonical momentum vector, which 
means that the velocity v of a particle whose motion is gov
erned by the Hamiltonian (1) is 

v = p - A(r,1 ). (3) 

The scalar canonical momenta conjugate to the coordinates 
of a curvilinear coordinate system, as usually defined in Ha
miltonian dynamics, are proportional to, but not generally 
equal to, the components ofp in that coordinate system. The 
scalar canonical momenta are neither used in the derivation 
in this paper nor in the statement of results. Nevertheless, 
confusion may arise because the symbols that usually denote 
the scalar canonical momenta are the same as those that are 
normally used to denote the components of a vector p. As an 
illustrative example, consider a cylindrical coordinate sys
tem with radial, angular, and axial coordinates (r,O,z). The r
and z-components ofp are r + A,(r,t) and z + Az(r,t), re
spectively, where' denotes differentiation with respect to t. 
These are also the canonical momenta conjugate to the co
ordinates rand z. However, the O-component of p is 
rO + Ae(r,I), which is 1/r times the canonical momentum 
conjugate to the coordinate O. 

The symbol V is used to denote the usual gradient oper
tor with respect to the vector r. However, when there are two 
vector arguments of a function, then V is used with a sub
script to denote the vector with respect to which the differen
tiation is to occur. For example, letf(r,p) be an arbitrary 
differentiable function of the vectors rand p. The definition 
of the operators V r and V p is 
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of= or.V.! + op·vJ, (4) 

where of is the differential change off associated with differ
ential changes Or and op ofr and p. V. is the gradient opera
tor with respect to r holding the vector p fixed; V p is the 
gradient operator with respect to p holding the vector r fixed. 
Hamilton's equations can be expressed in the following equi
valent vector form that is valid for an arbitrary curvilinear 
coordinate system: 

p= -V,H. 

(5a) 

(5b) 

A detailed expository discussion of the canonical momen
tum vector, the general meaning of these gradient operators, 
and the vector form of Hamilton's equations can be found in 
Sec. II and Appendix A of Ref. 4. 

The derivation of invariants of the form (2) for the Ha
miltonian (1) is presented in Sec. II. 

II. THE DERIVATION 

The definition of an invariant I (r,p,t) is that the total 
time derivative of I vanish; for the Hamiltonian given by ( 1), 
we have 

dl = al [IH] 
dt at + , 

aI 
= at + (VpH)·V.J - (V,H).VpI 

aI 
= at + (p - A)·VJ - (VV)·VpI + (VpI)-(VA).(p - A) 

=0. (6) 

The most general real invariant quadratic in each compo
nent of the canonical momentum p can be written in the form 
given by (2), 

I(r,p,t) = ~(fl(r,t ).p - fl(r,t W + fo(r,t), (7) 

where fz is a nonsingular symmetric real dyad, fl is a real 
vector, andfo is a real scalar, which may depend on rand t. 
By using this form in (6), we obtain 

+ (p - A)'{HVfn:pp - [V(fl·f2)]·p + V(Ui + fo)} 

- (VV).f2·(f2·p - ftl + (p.f2 - ftl·f2·(VA)·(p - A) 

=0, (8) 

where f~ == f2·f2, fi =fj·fj, and a dot over a symbol denotes 
partial differentiation with respect to t. Because dlldt must 
equal zero for all values ofp, the coefficients ofppp, pp, and p 
must vanish and the part of dlldt independent ofp must 
vanish also. This implies the following conditions that are 
equivalent to (8): 

vn =0, (9a) 
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1 a f2 1 A V 2 2 - -a 2 - - • f 2 + f 2 ·(V A) - V(f2·ftl = 0, 
2 t 2 

(9b) 

~ (f2·ftl - A·V(fz·ftl - V( ~ fi + fo) 
at 2 

+ n.v(v + fA 2) + (fl·ftl·(VA) = 0, (9c) 

:t ( ~ fi + fo) - A.V( + fi + fo) 

+ (fz.fd.V(V + +A 2) = O. (9d) 

The solution of (9a) is that fz be independent of r, 

f2 = fz(t). (10) 

Taking the curl of (9b), we find 

VX(f~·VA) = 0, (11) 

which implies that f~ ·VA is the gradient of a vector, as is 
readily apparent if A be written in Cartesian coordinates. 
Certain restrictions must be placed on A in order to satisfy 
this condition. We now determine those restrictions and cal
culate the vector S(r,t) whose gradient is n ·VA, 

n·VA=VS. (12) 

Let alr,t) be a scalar function such that f~ ,VO" is the 
gradient of a scalar T(r,t ), 

f~.VO"= VT. ( 13) 

In the present context, alr,t) can be any Cartesian compo
nent of A(r,t). Later, when we consider the special case in 
which A(r,t) vanishes identically and f2 commutes with the 
time derivative Offl' we shall also take alr,t) to be V(r,t). 
Because n is real and symmetric, its representation in a Car
tesian coordinate system can be diagonalized by a similarity 
transformation. Because n is only a function of t, such a 
similarity transformation can be viewed as a linear transfor
mation, parametrized by t, between two Cartesian represen
tations. If the new Cartesian coordinates are denoted by (1]j' 
1]2' 1]3), then (13) is equivalent to 

~(Aio"-T)=O, i=I,2,3, (14) 
J1], 

whereA,(t) is the ith eigenvalue off~. For (14) to be satisfied, 
there must exist functions g, (1]j' 1] k), where (iJ,k ) is a cyclic 
permutation of(I,2,3), such that 

Alo" - T = gj(1]1,1]3)' 

AzO" - T = gz(1]3,l1tl, (15) 

Ap - T = g3(1]j,1]1)' 

The function g, cannot depend on 1],; however, it may de
pend on t. In order that these three equations can be satisfied, 
a condition among the eigenvalues Ai and the functions g, 
must be satisfied. The condition, obtained by eliminating T 

and 0" from (15), is 

(Aj - Al )g3(1].,1]2) + (A3 - A.)gZ(1]3,1]j) 

+ (Al - A3)gj(1]1,1]3) = o. (16) 

In some cases, (16) leads to a restriction on the functional 
form of 0". Because 0" can be any Cartesian component of 
A(r,t ), the restrictions on 0" are also restrictions on the func-
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tional form of A(r,t). There are three cases. 
(i) All of the eigenvalues of f~ are equal: 

AI =..12 =..13 =..1. Then (16) is satisfied identically and, from 
(15), all of the functionsg;('r/j,1h) are equal. Becauseg; does 
not depend on 1];, the functions can be equal only if they do 
not depend on any of the variables (1]1' 1]2' 1]3):g; = c, wherec 
may only depend on t. Then Eqs. (15) are all solved by taking 

7 =Al7- C, (17) 

where l7 is arbitrary. No restriction is imposed by (13) on (J or 
A(r,t). The vector S(r,t) is 

S(r,t) = f~.A = A (t )A(r,t). (18) 

(ii) Two of the eigenvalues off~ are equal to one another 
but unequal to the third: A; = Aj = A #Ak, where (iJ,k) is a 
cyclic permutation of(1,2,3). Then, from (16), 
g;(1]j,1]k) = gj(1]k ,1];), which is possible only if 
g; (1]j' 1] k) = gj (1]k' 1];) = g(1] d· The solution of (15) is 

g(1]k) -gd1];,1]j) Akg(1]k) -Agk(1]i>1]j) 
l7 = 7 = ~..:...:..;:....:...:...---=.;,:..:...:...:~..:... 

A -Ak ' A -Ak 
(19) 

whereg(1]k) andgd1];,1]j) are arbitrary. This restriction on (J 

means that A(r,t) must have the form 

A(r,t) = A(I)(1]k ,t) + A(2)(1]i>1]j,t) (20) 

when A; = Aj = A #Ak. The vector S(r,t) is 

S(r,t) = Ak(t )A(I)(1]k,t) + A (t )A(2)(1]i>1]j,t). (21) 

(iii) All of the eigenvalues off~ are unequal: 
A I #..12 #..13' By differentiating (16) with respect to 1]k we 
obtain 

agj ag; 
(Ak -..1;)- =(Ak -Aj )-, (22) 

a1]k a1]k 
where (iJ,k ) is a cyclic permutationof(1,2,3). Becausegj does 
not depend on 1]j' andg; does not depend on 1];, this is possi
ble only if the expression on each side of (22) is only a func
tion of 1] k (and possibly t ), 

agj a 
(Ak -..1;)- = -hd1]k)' (23a) 

a1]k a1]k 
ag; a 

(Ak -Aj )- = -hd1]k)' (23b) 
a1]k a1]k 

where hd1]k) is arbitrary. The solution of (23a) must agree 
with the solution of (23b). The common solution is 

(Ak -A;)gj(1]k,1];)=hk(1]k)-h;(1];). (24) 

The solution of (15) is 

(J = (..12 - A3)hl + (..13 - AI)h2 + (AI - A2)h3 
(..12 - A d(A3 - A d(A3 - ..12) 

7= 

(25) 

..1 1(..12 - A3)hl + ..12(..1 3 - Adh2 + ..13(..11 - A2)h3 

(..12 -Ad(A3 -..11)(..13 -..12) 
where the functions h; (1] ; ) are arbitrary. This restriction on (J 

means that A(r,t ) must have the form 

A(r,t) = A(i)(1]I,t) + A(2)(1]2,t) + A(3)(1]3,t) (26) 

when A 1#..12 #..13' The vector S(r,t ) is 

S(r,t) = A I(t WI)(1]I,t) + A2(t W2)(1]2,t) + A3(t )A(3)(1]3,t). 
(27) 
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To continue with the solution of (9b)-(9d), it is conven-
ient to define functions f, y, and Z by 

f= f2·fl , 

Y = Vi +/0' (28) 

Z= V+!A2, 

and to write (9b)-(9d) in terms of them, 

~.:{ f~ + f~ .(VA) - Vf = 0, (29a) 
2 dt 

at _ A.Vf _ Vy + f~ ·VZ + f·VA = 0, (29b) 
at 

ay _ A.Vy + f.VZ = 0. (29c) 
at 

We change variables from (r,t) to (x,t), where x and rare 
related by 

X= [r-a(t)).p-I(t), r=x'p(t)+a(t). (30) 

pIt ) is a nonsingular time-dependent dyad and a(t ) is a time
dependent vector; they will be chosen to facilitate the solu
tion of (29a)-(29c). The variables (x,t) are appropriate for 
generalizing the one-dimensional result of Lewis and 
Leach. I With this change of variables, derivatives transform 
according to 

The identity 

dp-I 

dt 
-I' -I - P 'p.p 

(31a) 

(31b) 

(32) 

was used to obtain this formula. Henceforth, all functions 
will be regarded as functions of (x,t ) instead of (r,t ) and a I at 
will denote the partial derivative with respect to t holding x 
fixed. 

Equations (29a)-(29c) written in terms of (x,t) are 

1 d f2 2 I I 2 dt 2 +f2·p- ,(VxA)-p- ,Vxf=O, (33a) 

at (. . A) - I V f - I V at - x·p + a + .p . x - P . xY 

+ f~.p-I.VxZ + f·p-I.VxA = 0, (33b) 

Z -(x.p + u + A)'p-I.VxY + f.p-I.VxZ = 0. (33c) 

We can obtain a convenient equation for aylat by eliminat
ing VxY from (33c) by using (33b) and then eliminating VxA 
by using (33a). The equation can be written in the form 

ay _ (x.p + u + A).( at _ ~ f.f- 2 . .:{ f) 
at at 2 2 dt 2 

+ (x.p + u + A).{[(x.p + u + A).f~ - f]-f2- 2·P-I.Vx f} 

- [(x.p+u+A).f~ -f]'p-I.VxZ=O. (34) 

By virtue of (12) and (31a), the general solution of (33a) is 

f = S + 21 x.p . .:{ f~ + const, (35) 
dt 
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where S is defined by (18), (21), and (27). Iff2 is proportional 
to the unit dyad, so that (18) applies, or if A vanishes identi
cally and the time derivative off2 commutes with f2' then the 
coefficients of V x f and V xZ in (34) can be made to vanish by 
suitable choice of p; in that case, (34) can be solved easily. 
There may be other cases in which (34) can be solved, but, if 
so, they have not been found. Henceforth, we shall assume 
that either f2 is proportional to the unit dyad, or that A van
ishes identically and the time derivative Off2 commutes with 
f2' or both. f2 and its time derivative will commute if f2 is 
diagonal. They will also commute if f2 can be diagonalized 
by a time-independent similarity transformation. We choose 

p = f2' (36) 

and choose the arbitrary constant in (35) so that the coeffi
cients ofVxfand VxZ in (34) vanish, 

f = (X'{2 + it + A)·f~. (37) 

Then (34) can be written in the form 

ay = ~ ~ (f.f- 2.f) 
at 2 at 2 , 

with the solution 

y = U(x) + ! f.f;- 2.f, 

where U(x) is an arbitrary function ofx. 

(38) 

(39) 

The result of substituting (37) and (39) into (33b) can be 
written as 

f 2 a ( [ 2 a [ 1 d f~ . ]] 2' - f2·A) = V y - x·f 2' - - -- ·x + f ·a 
at x at 4 dt Z 

(40) 

This is a condition on Vand A; when it is satisfied and f and y 
are given by (37) and (39), then (33a)-(33c) are satisfied. We 
consider our two cases separately. 

(i) fz is proportional to the unit dyad: f2 = pit )1, where 
p(t) is an arbitrary scalar function. Then (40) has the form 

p2 ~ (pA) = Vx {U(X) + ~p2lpx + it + AI Z 

at 2 

_ pZx. ~ [~dPZ x +Pit] _pz(v + ~A z)}. (41) 
at 4 dt 2 

The solution is 

pA = V x ¢(x,t) + Pix), (42) 

where ¢(x,t ) and Pix) are arbitrary, and 

p2(V + fA z) = U(x) + ~p2lpx + it + AI2 

Z a [ 1 d pZ . ] - p x·- ---x+pa 
at 4 dt 

_ p2 ~~ + G(t), (43) 

where U(x),p(t),a(t),andG(t) are arbitrary. When A and V 
are given by(42) and (43)andfz = pit )1, thenI(r,p,t ) given by 
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(2) is an invariant. According to (28), (30), (37), and (39), fl 
andlo are given by 

fl = p(px + it + A), (44) 

10 = U(x), (45) 

where 

r- a(t) 
X= . 

pit) 
(46) 

(ii) A vanishes identically and fz commutes with the 
time derivative offz. Then (40) has the form 

0= V x { U (x) + + (xo{z + it)of~ o({2°X + it) 

z a [ 1 d f~ ]} z -xofzo- ---ox+fz°it -f oV V. (47) 
at 4 dt 2 x 

The last term must be the gradient with respect to x of some 
function, 

f~ oVx V = Vx W. (48) 

Because of (31a) and (36), this is equivalent to 

f~oVr V= Vr W, (49) 

which is of the same form as (13). Thus, the discussion fol
lowing (13) is applicable here. The restrictions on V are the 
followingo 

(a) If all of the eigenvalues off~ are equal, 
A I = Az = ..13 = A, then there is no restriction on V and 

W(x,t) = A (t) V(r,t)o (50) 

(b) If two of the eigenvalues of n are equal to one an
other but unequal to the third, Ai = Aj = A #Ak, where 
(iJ,k ) is a cyclic permutation of (1,2,3), then Vand W must be 
of the form 

V(r,t) = V(1)(77k,t) + V(Z)('1/o'1/j,t), (51) 

W(x,t) = Ak(t )V(1)('1/k,t) + A (t )V(Z)('1/o'1/j,t). (52) 

(c) If all of the eigenvalues off~ are unequal, 
A 1#..12 #..13' then Vand W must be of the form 

V(r,t) = V(1)('1/I,t) + V(2)('1/z,t) + V O )('1/3,t), (53) 

W(x,t) = AI(t )V(1)('1/I,t) + Az(t )V(Z)('1/2,t) + A3(t )V(3)('1/3,t). 
(54) 

The solution of (47) is 

W (x,t ) = U (x) + ~ (xo{z + it)of~ o({2°X + it) 
2 

2 a [ 1 d f~ ] -xofz·- ---- ·x+fzoit +G(t), 
at 4 dt 

(55) 

where fz(t ) is an arbitrary dyad that commutes with its time 
derivative, where a(t ) and G (t ) are arbitrary and where U (x) 
must be consistent with the form of W(x,t). Ifwe denote by 
(51,5z,53) the Cartesian coordinates ofx that are associated 
with ('1/I,'1/Z,'1/3)' which are the coordinates ofr in the Carte
sian representation in which f~ is diagonal, then the restric
tions on U(x) are the following. 

(a) If Al = Az = ..13 = A, then there is no restriction on 
U(x). 

(b) If Ai = Aj = A #Ak, then U(x) must be of the form 

U(x) = U(l)(5k) + U(2)(505j)' (56) 
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(c) If ,.1.1 #,.1.2#,.1.3' then U(x) must be of the form 

U(x) = U(i)(sIl + U(2)(S2) + U(3)(S3)' (57) 

When A vanishes identically, f2 commutes with the 
time derivative off2, and Vand Ware given by (SOH 57), then 
I (r,p,l ) given by (2) is an invariant. According to (28), (30), 
(37), and (39), fl andfo are given by 

fl = (x.f2 + a)·f2, 

10= U(x), 

where 
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(58) 

(59) 

x = f 2-
1(l).[r - u(t)]. (60) 

The derivation is now complete. 

tH. R. Lewis and P. G. L. Leach, J. Math. Phys. 23, 2371 (1982). 
2S. Chandrasekhar, Principles of Stellar Dynamics (Dover, New York, 
1960), Chaps. 3 and 4. 

3H. R. Lewis and K. R. Symon, Phys. Fluids. 27, 192 (1984). 
4H. R. Lewis and K. R. Symon, J. Math. Phys. 20, 413 (1979); also, Erra
tum in J. Math. Phys. 20, 2372 (1979). 
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Fradkin-type propagator representations are written for solutions to Navier-Stokes and related 
equations, for arbitrary dimension D and arbitrary source geometry. In the limit of very small 
viscosity, velocity/vorticity solutions are given in terms of Cauchy position coordinates q of a 
particle advected by the velocity flow v, using a set of coupled equations for q and v. For localized 
point vortices in two dimensions, the vectors q become the time-dependent position coordinates of 
interacting vortices, and our equations reduce to those of the familiar, coupled vortex problem. 
The formalism is, however, able to discuss three-dimensional vortex motion, discrete or 
continuous, including the effects of vortex stretching. The mathematical structure of vortex 
stretching in a D-dimensional fluid without boundaries is conveniently described in terms of an 
SU(D) representation of these equations. Several simple examples are given in two dimensions, to 
anchor the method in the context of previously known, exact solutions. In three dimensions, 
vortex stretching effects are approximated using a previous "strong coupling" technique of 
particle physics, enabling one to build a crude model of the intermittent growth of enstrophy, 
which may signal the onset of turbulence. For isotropic turbulence, the possibility of a singularity 
in the inviscid enstrophy at a finite time is related to the behavior of a single function 
characterizing the intermittency. 

PACS numbers: 47.30. + s, 47.lO. + g, 03.40.Gc 

I. INTRODUCTION 

Motivated by recent work suggesting chaotic behavior 
of a particle advected by the velocity flow due to three or 
more interacting vortices, I we would like to present a for
malism based directly on the coupled velocity/vorticity 
equations of Navier-Stokes (NS) theory, which should be 
capable of describing situations involving specified, exter
nally produced vortices as well as the possibility of spontane
ous vortex generation at low viscosity. Based on this formal
ism, in this paper we offer an alternate way of characterizing 
known, two-dimensional flows, and a somewhat crude pic
ture of the onset of turbulence in an infinite, three-dimen
sional, in viscid fluid without rigid boundaries. 

To the best of our knowledge, the representations de
rived here are new; they are based upon a Green's function 
method invented by Fradkin2 in the context of scattering 
problems in potential theory and quantum field theory. 
Fradkin's original functional differential forms may readily 
be converted to an equivalent functional integral formalism, 
and when applied to the NS problem it turns out that a great 
simplification can be made in the limit of small viscosity. 
There, the necessary functional integral can be well repre
sented by an extremum method, analogous to the small Ii or 
large N expansions of quantum field theory, with corrections 
given in ascending powers of viscosity. We expect the spon
taneous generation of vortices to be associated with such 
corrections; however, the general structure for arbitrary spa
tial dimension D and arbitrary source geometry and time 
dependence is most simply discussed in the limit of zero vis
cosity. 

HI Supported in part by the U.S. Department of Energy under Contract DE
AC02-76ER03130.AOO9-Task A. 

In this formalism, solutions to the inviscid NS problem 
are given in terms of a time-dependent position vector of a 
fictitious particle, or of a passive marker, whose position and 
velocity are codetermined by the exact velocity flow, in a 
construction which emerges from the extremum calculation 
appropriate to the small viscosity limit. For a system of dis
tinct, point vortices, these marker coordinates represent the 
time- and position-dependent coordinates of the vortices 
themselves. An interesting feature of this method, which ex
plicitly couples velocity and vorticity flow of the NS system 
in D dimensions, is the natural appearance of what may be an 
underlying SU(D) symmetry, associated in a nontrivial way 
with the presence of vortex stretching. 

In this paper we present an alternative way of charac
terizing known, two-dimensional velocity/vortex flows, 
along with some simple generalizations, and a somewhat 
crude picture of what may be the onset of turbulence in an 
infinite, three-dimensional, inviscid fluid without rigid 
boundaries. This is easiest to see for the case of isotropic 
turbulence, where there is but one length scale characteriz
ing the spatial scale of vortex motion. In the nonisotropic 
case where (at least) two length scales enter, there is another 
function which must be determined, and which acts to damp 
the intermittent growth, and the possibility of a finite-time 
singularity. These results, special to three dimensions, fol
low from a representation of vortex stretching effects in 
terms of the growth ofa nonunitary SU(3) matrix, whose 
components are related to time integrals of velocity gradi
ents. With the aid of a "strong-coupling" technique pre
viously used in particle physics, one can obtain approximate 
forms valid for large velocity gradients. The nonlinearities of 
the problem are still formidable; but, in a crude, dimensional 
way, it is easy to watch the growth of vorticity, and, in an 
intermittent way, as a function which essentially controls the 
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increase of enstrophy becomes large, not smoothly but in 
spurts. 

The output of our method is closely related to solutions 
for vorticity suggested more than a century ago by Cauchy, 3 

ro (t) = lUj(to)a/aajX(a,t), X(a,to) = a, in terms of the posi
tion coordinates X(a,t ) of the moving, material fluid; our 
"Marker" coordinates q are in essence Cauchy's X, general
ized to arbitrary vorticity source distributions. 

II. THE FORMALISM 

We begin with the standard NS equation 

at v + (v'V )v - vV2v = - v p + f(r,t), ( 1) 

where p denotes the fluid pressure, v is the kinematic viscos
ity, and f represents a divergenceless velocity source. Taking 
the curl of (1) generates 

atro + (v·V)ro - vV2ro - (ro·V)v = g(r,t), (2) 

where ro = V X v is the vorticity and g denotes a correspond
ing divergenceless vorticity source, g = VXf. For a specified 
velocity field v(r,t), (2) is linear in ro, and can be solved in 
terms of an appropriate, if formal, functional representation, 
ro = ro I v]. That solution must then be combined with the 
relation ro = Vxv, or its inverse v = Vo - V- 2VXro, where 
Vo is some specified, initial velocity field in the absence of g 
and ro, satisfying Vxvo = 0. Other methods of resolution of 
(2) are possible, but this is the simplest for our purposes; in 
fact, we shall further simplify matters by supposing that Vo 
denotes a constant, not-too-Iarge velocity flow. A vorticity 
source of arbitrary strength g(r,t) is then turned on at t = 0, 
and we ask for the subsequent velocity/vorticity flow. 

The corresponding solution to (2), for specified v(r,t) 
and under the assumption that ro vanishes for all t < 0, is 
given by 

lUa(r,t) = fdDyfdYoGab(r,y;t,Yolv)gb(y,yO), (3) 

where G [v] denotes that casual Green's function which satis
fies4 

D 

L ([at +(V·V)-VV2 ]Oab -abVa]Gbc(r,y;t,Yolv) 
b=l 

(4) 

in D spatial dimensions. Using an obvious shorthand, one 
can write the formal equivalent of (4) 

([at + (v·V) - VV2] - (av))G [v] = 1, 

and a corresponding formal representation 

(5) 

G[v] = i=dsexpl-S([at + (v'V)-vV2
] -(av))]. 

(6) 

It will become clear, subsequently, that (6) does indeed define 
a retarded Green's function. The symbol v in (5) and (6) now 
denotes an operator with matrix elements diagonal in config
uration space and time, (x,xolvly,yo) 
= v(X,XO)OD(X - y)o(xo - Yo), while a+ and V retain their 

customary operator meanings. 
It is convenient to rewrite the square bracket of (6) as 

[at - v(V - V/2V)2 + v2/4v], 
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since it is assumed that v is divergenceless, La [aa ,va] = 0; 
all the complications of the representation that follow arise 
because a general component ofv(x,xo) does not commute 
with V, or with V2. With this step, one has 

G [v] = 1"0 ds 

xexp{-~[at-iV- 2:Y+ :]-(&))}. 
(7) 

The essence of the Fradkin method is to introduce an 
auxiliary, s-dependent field whose fluctuations reproduce 
the effects ofnoncommutivity of (at , V) and v. Thus, the inte
grand of (7) is replaced by 

U(s) = (exp { - IdS' ([at - v(v - 2
vv r 

+ :: - VU(S'){ V - 2
vv)] - (av))}) + ' (8) 

where u(s') denotes a D-dimensional vector whose parame
tric dependence gives meaning to the s' -ordered exponential 
of(8); that is, in the expansion of(exp [ - S~ds' A (s')] )+, the 
noncommuting terms A (s t!· .. A (sn) are to be arranged in an 
ordered fashion, with those bearing the larger values of Sj 
standing to the left.s In terms of(8), (7) may be rewritten as 

G [v] = 1''' ds U(s)lu=o' (9) 

The advantage of this procedure is that differential 
equations can now be written for U (s), as a function of s and a 
functional of u: 

_ au = ([at -v(v- ~)2+ ~ 
as 2v 4v 

- VU(S).(v - 2
vv)] - (av))u(s), 

and 

oU ( v) 
outs) = v V - 2; U, 

under the boundary condition U (s = 0) = 1. The solution to 
this pair of equations can be written in the form 

[ 
1 is

-' 8
2

] U(s) = exp - ds' -- ·V(s), 
v 0 ou2(s') 

(10) 

where 

VIs) = (exp { - IdS' 

X ([ at + ¢ (x,xo;s') - vu(s')oV] - (Jv)) 1) + , 

with € a small, positive parameter subsequently set equal to 
zero, and ¢ (x,xo;s') = v2(x,xo)/4v + !u(s').v(x,xo). Strictly 
speaking, one cannot display (x,xo) dependence before taking 
matrix elements of G [v], and at this stage it should be under
stood that we are calculating (x,xo I G [v], with the V (s) of (10) 
replaced by (x,xol VIs). 

To find a representation for VIs), one may set 

VIs) = exp { - fdS' [at - VU(S')'V] },W(S), (11) 

so that W(s) satisfies the equation 
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aw {r } --;;; = exp - Jo ds' [at - vo(s')·V] 

x {<p (x,xo;s) - [av(x,xo)]} 

x exp{ + Ids' [at - vo(s')oV] }.w, 
or 

aa~ = [rP ( x - v Ids' u(s'),Xo + s;s) 

- (av(X - v Ids' u(s'),xo +S)) ].w. (12) 

Because of the particular sequence of translational operators 
written in (12), the (x,xo) dependence inside W (s) is the same 
on both sides of (12); and hence (12) represents a differential 
equation that can be solved in terms of actual functions rath
er than formal operators. 

Consider now the tensor quantity abva(x,XO)' written in 
matrix notation as Qab (x,xo). Because v is assumed divergen
celess, l:a Qaa = 0, and this D XD matrix is traceless. But 
any such matrix can be written in terms of the fundamental, 
or defining representation of SUrD ), 

Dl_l 

Qab = abVa = I (A;)ab¢;(X,Xo), ( 13) 
i= 1 

where the ¢; are a set of appropriate, complex, coefficient 
functions, forming a "vector" in the space of D 2 - 1 dimen
sions. For example, for D = 3, theA; may be represented by 
the eight, traceless, Gell-Mann matrices. 6 Writing out all 
matrix indices, (12) takes the form 

a:
c 

_ (8ab <P (x - v IdS' u(s'),Xo + s;s) 

- 5;(A;)ab¢;( x - v IdS' u(s'),Xo + s)] Wbc ' 

and, with the boundary condition Wab [s = 0] = 8 ab' has the 
solution 

W(s) = exp( - IdS' <P (x - v I'dS"U(S"),xo + s';s)) 

-( exp [ 5; A; IdS ¢;( x - viS ds" u(s"),Xo +s)]) + ' 

(14) 

If the vortex stretching term was missing from the origi
nal Eq. (2), (W'V)v---+O, this would be equivalent to ¢; = 0, 
and G [v] would be diagonal in SU(D) space. This is precisely 
the case for D = 2, where the non singlet terms can always be 
"gauged away," and possibly for those situations in three 
dimensions where the vorticity source geometry may be suf
ficiently symmetric to enforce this "singlet" property. In 
general, however, the specification of vorticity in terms of a 
given velocity field is a nonabelian problem of the same order 
of difficulty as that of calculating a particle propagator in the 
presence of a specified field containing isotopic or color de
grees offreedom. There is no known way of finding an exact 
solution to either problem. 

For the moment, we designate the s' ordered bracket of 
(14) by the matrix symbol U[vo], and postpone a discussion 
of its properties until the three-dimensional analysis of Sec. 
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IV. All the effects of vortex stretching are contained in U. 
For the two-dimensional examples of Sec. III, one may set 
U = 1, and study the properties of a singlet G [v], 

[at + (v·V) - VV2]G [v] = 1. (5') 

Grouping together the results of Eqs. (9)-( 11) and (14), 
we have the representation 

l= [ 1 is , 82 
] G [v] = ds·exp - ds -2-, 

o V 0 8u (s) 

.exp [ - IdS' <P (x + v IdS" u(s"),xo - S + s';s)] 

·u [vo] .exp { - IdS' [at - vo(s}V] } I u ~ 0' 

or 
G (x,y;xo,Yolv) 

= (x,xoIG [v] Iy,yo) 

.8(xo - Yo - s) I u ~ 0' (15) 

where the (x,xo) arguments of U may be replaced by (y,Yo)' 
From the temporal 8 function of (15), and the positive range 
of integration of the variable s, it is clear that this is a retard
ed Green's function, nonzero only for xo>Yo' 

Equation (15) is an example of the Fradkin representa
tion, given in terms of the action of a functional differential 
operator, 

( 
1 lS 8

2
] exp - ds' -2--' , 

V 0 8 u(s) 
a la Schwinger. For some purposes, however, it is more con
venient to recast (15) into the form offunctional integration, 
and effectively into a path integral, ala Feynman. Imagine 
the continuum range of integration broken up into a summa
tion over a set of discrete points So and for each S; replace 

[
It? ] exp ----
v 8u2(s;) 

by its Gaussian equivalent. Then take the limit of arbitrarily 
dense So to define the functional integral replacement 

exp [ ~ f
S

ds' ~]= N(s).Jd [X (s)].exp[-~ rds'x(s'f v Jo 8u (s ) 4 Jo 

+ f'ds' xIs} _8_], 
Jo 8u(s') 

where 

N -1(S) = J d [xIs) 1 exp[ - ; IdS' X2(S')]. 

With (16), any operation ofform 

[liS 8
2

] exp - dS'-2- .F{uJlu~o 
v 0 8u (s') 

(16) 

becomes N (s)·S d [X] exp [ - (v/4)S~ ds' X2(s')].F {X J, and 
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(15) may be rewritten as 

G(x,y;xo,Yolv) = 8(xo - Yo)-N(S)J d [X] 8D
( x - Y + V fdS/U(S/)}V [vxJ 

.exp [ - ~ ('ds' XZ(s/) - ('ds',p (x + vi~ ds" X(s"),xo - s + s/;s/)] I _ _ ' 
4 Jo Jo s s ~ Xo Yo 

where rp is the same function as that of (10), with X(s/) replacing u(s/). A final rescaling, X(s/) = s(s')Iv, puts this into the more 
useful, and indeed more compelling, form 

G(x,y;xo,Yolv) = 8(xo - Yo).NJd [S ].8D
( x - y + IdS/s(s/)}V [s] 

.exp [ - _1 ('ds' (s(s/) + v(y _ ("ds"s(s"),yo + s/))Z] I _ ' 
4v Jo Jo s - Xo - Yo 

(17) 

where 

[N'] -I = f d [S] exp [ - L IdS' s(s/)z], 

and8 (x) denotes the unit positive step function, 8 (x) = + l,x > 0, 8 (x) = O,x < O. The V of(17) is now given by its form in (14), 
with the (x, xo) arguments of tPi replaced by (y,Yo)' So far, this is an exact resolution of Eq. (5). 

Even a cursory glance at (17) leaves no doubt about the next, appropriate step to be taken in the limit of small viscosity. As 
v-+O, the only appreciable contribution to the functional integral will come from vectors s(s/) chosen to minimize the effective 
action 

S [S] = 4~ f dS' [s(s/) + v(y - f'dS" s(s"),Yo + S') r 
which vectors must then satisfy the Euler condition 8S los = 0 at some S(OI(stl, S;;;'SI;;;'O, given by 

0= IdS'[ Oab 8(S' - SI) - aaVb(Y - f'dS" s(s"),Yo + S}8 (s/ - stl ]'[Sb(S/) + Vb(Y - f'dS"s(s")'Yo + SI) ]. 

The appropriate solution to this equation is, clearly, that 
given by the vector s(O)(s/) satisfying 

S~I(S/) + Vb(Y - I' ds" SIO)(S"),yo + S/) = 0, (18) 

since it is only the solution to (18) which can provide a non
vanishing contribution to the functional integral of (17), as 
v-+O. Because of the (Y,Yo) dependence of the v of(18), SIO) is 
then an implicit function of these variables. 

In the limit ofsmall v, we approximately evaluate (17) 
by expanding s(s/) about S(oI(S/;y,yo), and retaining only qua
dratic (S - S 1(1) dependence in S. The resulting functional 
integral is then Gaussian, and can be evaluated without diffi
culty; taking into account the normalization factor N /, and 
dropping the superscript of S (0), one obtains 

G(x,y;xo,Yolv)l" .0 

= 8 (xo - Yo)·exp( - (1/2) Tr In[ 1 + Q ]).V [S] 

.OD(X_ Y + IdS/s(S';y,Yo))ls~x,,_y,: (19) 

where the determinantal factor is defined by 

Trln[I+Q] = tdJ. ('dsII(sl,aIQ Jo Jo a 

.[1 +J.Q]-'lsl,a) 

= f'dJ. (' ds, (' dsz I(s"aIQ ISz,b) Jo Jo Jo a.b 

,(s2,bl[I+J.Q]-lls"a), (20) 
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I 
with 

(sl,aIQ IS2,b) 

- 8 (SI - sz) abVa(Y - I'dS' s(s/;y,Yo),Yo + SI) 

- 8 (sz - SI) aaVb(Y - I'dS' s(s/;Y,Yo),Yo + sz) + IdS' 

.e(s'-sl)8(s'-S2) aaVc(Y- f'ds" s(S";YJ'o)J'o+s') 

.abvc(Y - f'dS" s(s";Y,Yo),Yo + s} 
Corrections to (19) and (20), expressed in ascending powers 
of v, can be generated in the standard way. 

One very great simplification of these equations, the 
replacement of the determinantal factor of(19) by unity, can 
be seen from the following argument. Defining an operator 
R by its matrix elements 

(a,sIIR Ib,sz) 

= - 8(sl - S2) abVa(Y - I'dS' s(s';y,Yo),Yo + SI). 

it is then possible to replace the operator 1 + Q by 
(1 + R T)(1 + R) = (1 + R )T(1 + R), where the superscript 
T denotes "transposed" in both spatial (y) and S variables. It 
follows that Tr In(l + Q) = Tr 1n(1 + R)T + Tr In(l + R) 
= 2 Tr In( 1 + R ), and one may now examine the latter, 

simpler quantity, 

00 ( 1)1 + I 
2 I - Tr[R I). 
I~ I I 
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But because R is a "retarded" operator [all matrix elements 
(asa IR Ibs/3) proportional to factors (} (sa - s/3 )], the trace 
operation vanishes for /";;;.2; and because V·v = 0, the trace 
operation also vanishes for I = 1. Hence this term vanishes, 
and exp [ - ! Tr In( 1 + Q )] may be replaced by unity. 
However, the properties of the matrix elements of Q, or of R, 
are of considerable importance when one asks for small-v 
corrections to (19). 

The special properties of the extremum vector ~(s,;y,yo) 
are central to the solutions that follow. If, in terms of a speci
fied v(x,xo), the velocity vector ~ is to satisfy (18), it is easy to 
see that 

(21) 

v = v(y - Sbds'~,yo + s'), so that variation of the parameter 
s' corresponds to the full, nonlinear, "hydrodynamic" vari
ation of v with respect to space and time. The rhs of (21) is not 
zero, as it would be for the motion of a simple shock,7 but is 
given by whatever is forced upon ~ by the form of the speci
fied velocity field v(x,t ), via (18). We interpret ~(s' ;y,Yo) as the 
velocity vector of a fictitious particle, or passive marker, ad
vected by v according to (18). Ifv is sufficiently smooth, Scan 
always be developed in a power series in s', 

~(s';y'Yo)~ - v(y,Yo) + s,.[ ~ + (v.V)v]. + ... ; 
Jyo \' - 0 

but, because s = Xo - Yo can be arbitrarily large, this will not 
in general be a practical way to construct ~. 

It will turn out to be useful to integrate (18) once and 
consider the position vector of this passive marker. Setting 
Sa (s';y,Yo) -(dxa/ds') (s';y,Yo) and Sb' ds' ~(s';y,Yo) 

= x(sl;Y'Yo) - x(O;y,yo)-.dx(sl;Y,yo), we define the quantity 
q(sl;Y'Yo)-Y - .dx(sl;Y,yo) as the marker's position vector, 
thereby replacing ( 18) by 

q(sl;Y'Yo) = y + i"dS' v(q(s';y,yo),yo + s'). (22) 

For a problem dealing with discrete, pointlike vortices, the q 
vectors turn out to represent the time-dependent position 
vectors of the vortices themselves. 

With (3), (19), and (22), we are now in a position to calcu
late vorticity and its corresponding velocity in the v_O lim
it: 

and 

v(r,t) = Vo + f d DX Go(r - xlV X w(x,t), (23b) 

where Go(Q ) denotes the appropriate, D-dimensional 
Green's function, Go = - V~2. For simplicity and clarity, 
we henceforth use the three-dimensional form, Go(Q) 
= [41TIQI]~ I, except when reference is made to D = 2. We 

shall assume the vorticity is of finite spatial extent, and freely 
drop surface terms, replacing (23b), for example, by 

v(r,t) = Vo + -1-fd 3
X [V r • _1_] Xw(x,t). (23c) 

41T Ir-xl 
Note that there is a zero contribution to the integrand of 
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(23c) when x sweeps over the point r, for, while apparently 
singular, that contribution vanishes by symmetry, as in the 
relation Sd 3p p(p2)~2 exp[ip·(r - x)] Ilx _ rl-~o===>O. 

Combining (23) and (18), we obtain 

va(r,t) = v~) + ta/3Y fd 3yf' dYOg8(Y,YO) 
41T ~ = 

[r - q(s;Y,Yo)]/3 -
X I ( )13 .Uy8 [q(s,;y,yo)], (24) 

r - qs;y,Yo 

where s = t - Yo and UY8 [q(sl;y,yo)] denotes 
(exp [~i AJb ds' ¢i(q(S';y,yo),yo + s')] )+. Equations (22) 
and (24) represent our resolution ofthe inviscid NS problem. 

With the aid of (24), one can rewrite (22) in the form 

qa(s';Y'YO)=Ya +V~)SI 

+ ta/3y fdY (" ds' fYo

+
s

' dy~ 
41T Jo ~ 00 

,UY8·g8(Y"y~) 
[q/3(s';y,yo) - q/3(s';y',y~)] 

Iq(s';y,yo) - q(s';y',y~W 

where the U of (25) denotes 

(exp[ ~i AJ~ds" ¢i(q(S";y',y~),y~ + s")] )+. 

(25) 

It is perhaps not an easy equation to solve exactly, but there 
are, perhaps, reasonably simple vorticity source distribu
tions where exact or reasonably simple approximations to 
(25) may be devised. Once one has solved, or approximated 
(25), knowledge of q(s;y,yo) can then be used to construct the 
desired v(r,t ). Equation (25) provides, in essence, a determin
ing equation for the Cauchy Lagrangian-position coordi
nates, generalized to arbitrary source distributions g(y,yo)' 

III. EXAMPLES 

For simplicity we henceforth consider a "one-shot" 
vorticity source, turning on and otfrapidly at f=O, and mo
deled by g(y,yo) = g(y)·8(yo); that is, at t = ° a specified vorti
city distribution is inserted into the fluid, and we watch the 
resulting fluid flow develop in time. Generalizations corre
spond to a continuous input of vorticity are easily written 
down for every example, but will not be considered in this 
paper. The examples of this section will deal with two-di
mensional flows, for which we set U = 1 and use the D = 2 
form of Go = - V~2. In this way (24) and (25) become 

and 

() (} (t) fd 2y g(y)X [r - q(t;y)~ 
v r,t = Vo + . 

21T Ir - q(t;y)l-

q(SI;Y) = Y + VOSI + _1_ f"ds'fd"y' g(y') 
21T Jo 

(26) 

X [q(s';y) - q(s';y')] (27) 
Iq(s';y) - q(s';y'W ' 

where the Yo = ° coordinate of q has been suppressed. The 
radius vector is here given by r = IX I + jx2, with the source 
g(y) pointing in the k direction; the vector y is understood to 
lie in the (X I ,X2) plane. We discuss the solution of this pair of 
equations for the following three situations. 
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(A) One very thin vortex tube, of radius much less than 
any other length dimension, modeled by 

g(y) = gory) = gO(y)/21TY· 

Here, both the y and y' variables of (26) and (27) are to be set 
equal to zero. Remembering the comment following (23c), 
which is also true in two dimensions, one has, directly, 
q(s 1 ;0) = VcrS 1 as the solution of (27). There then follows 

8(t) [r-votl 
v(r,t) = Vo + -2- gX I 12 ' 

1T r - vot 
(28a) 

ro(r,t) = 8 (t )go(r - vot). (28b) 

Equations (28) should be exact; that is, they should simulta
neously satisfy the Euler equation (a, + (v·V))ro = go(r)o(t), 
together with ro = VXv. This is easily verified. 

(B) A circular vortex sheet, modeled by a dense collec
tion of very thin vortex tubes, all of equal strength, all point
ing in the k direction, and arranged in a ring of radius ro in 
the (x I' x 2 ) plane. In the limit of a continuous number of such 
thin tubes, we write g(y) = (G/ro)o(y - ro), and for simplicity 
set Vo = 0. In the (x., x 2 ) plane, we set IYI = Iy'l = ro, and 
q (sl;y) ~ q (s.;8) = fq. (s.;8) + }q2 (s.;8). Substituting these 
into the two-dimensional form of (27) yields the pair of equa
tions 

i
s i21r d8' ql(s;8) = ro cos 8 - G ds' --

a a 21T 
[q2(s';8) - q2(s';8 ')] 

X Iq(s';8) - q(s';8'W ' 

i
s i27T d8' 

q2(s;8) = ra sin 8 + G ds' --
a a 21T 

X [~.(~~:/ ~ ~~~:~~)p , 
where y = ira cos 8 + Jra sin 8. 

(29a) 

(29b) 

Equations (29) can be solved with the aid of the ansatz 

ql = tPa(sd cos 8 - tPb(S) sin 8, 
(30) 

q2 = tPa(s) sin 8 + tPb(S) cos 8, 
which, when substituted into (29), leads to the pair of equa
tions 

G f', tPb(S') 
<Pa(s)=ro - 2 J/s [tP~(s')+tP~(s')] , 

(31a) 

G is tPa (s') 
tPb(S) = + - ds'------

2 0 [tP ~(s') + tP ~(s')] 
(3Ib) 

Equations (31) may be solved most simply by rewriting them 
as differential equations parametrized in the form 

tPa(s) =p(s) cos ¢(s), tPb(S) =p(s) sin ¢(s). 

One immediately finds thatp(sl) = const = ro, while 
¢(s) = (G /2ro)s. Regrouping and substituting into (30), one 
has the solutions 

q I = r 0 cos [ 8 + (G /2ro)s ], q2 = rosin [8 + (G /2ro)s] . 
(32) 

Inserting (32) into (26), one finds 

v(r,t) = 8(t) (
Z1T

d8 GX [r - q(t;8)] 
21T Jo Ir-q(t;8 W (33) 
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The quadrature of (33) can be performed, and yields 

v(r,t) = GXrtP (r), ro(r,t) = 8 (t )(G/ra)o(r - ro), (34) 

where<p (r) = r-I,r> ro, <P (r) = (2ro)-',r = ro,and<p (r) = 0, 
r < roo Again, (33) represents an exact solution to the inviscid 
Euler equation. It will be noted that the special angular sym
metry of the vorticity source distribution effectively removes 
all the time dependence of the qi of (32), resulting in the 
relatively simple form of(34), which indeed could have more 
easily been guessed from an inspection of the original Euler 
equation. However, in other situations where such symme
try is lacking, our method may turn out to be useful. 

(C) Two thin vortices of arbitrary strength generate a 
soluble problem without the overwhelming symmetry of the 
previous example. We take g(y) = glo (y - yd + g20 (y - Yz), 
and write the pair of equations corresponding to (27), 

q (s) = Y + VaS + _1_ rds' g X [ql(s') - q2(S')] (35a) 
I 1 21T Jo Z Iq.(s') - q2(S'W ' 

q (s) = Y + VaS + _1_ (Sds'g X [q2(S') - ql(s')]. (35b) 
2 2 21T Jo I Iq2(S') - ql(s'W 

Writing q(s) = ql(s) - q2(S), Y = Y I - Yz, G = gl + g2' the 
difference of Eqs. (35) becomes 

q(s) = Y + GX f'ds' q(s') 2 ' (36) 
Jo Iq(s')I 

which has a strong resemblance to the equations of example 
(B). Since Y is a vector in the (x I' x 2 ) plane, perpendicular to 
G, we can use y, G and y X G as three orthogonal directions, 
writing q(s) = yFI(s) + (YXG )F2(S). Substitution into (36) 
then generates the pair of equations 

F (s) - Y - G (S ds' F2(S') 
,- Jo [Fi(s') +F;(s')] , 

(37a) 

F (s) = + G r ds' FI(s') , 
2 Jo [Fi(s') + F~(s')] 

(37b) 

with solution [by comparison with Eqs. (31)] 

FI(s) = y coS(GS/y2), F2(S) = y sin(Gs/yz). 

Now that q(s) is known, one returns to the original Eqs. (35) 
to construct, by simple quadrature, the individual ql(s), q2(S); 
for example, 

ql(s)=YI+vaS+ L gz 
G 

X {y sin( ~: ) + (YXG)[ 1 - cos( ~: )]}, 

and similarly for q2(S). These qi(t) are then inserted into the 
expression corresponding to (26) to obtain 

8(t) 2 [r-q/(t)] 
v(r,t) = Vo + - Ig/x (38) 

21T /~I Ir-q/(tJ!Z' 

From (38) one calculates 
z 

ro(r,t) = 8 (t) I g/o(r - q/(t )), (39) 
/~. 

showing that these vortices, inserted into the fluid at posi
tions y/ at t = 0, subsequently move relative to the fixed co-
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ordinate system, or to each other, as specified by the time 
dependence of the q/(t). Again, in this problem of very thin 
vortices, the "marker" coordinates have become those of the 
vortices; and, again, it is easy to show that (38) and (39) form 
an exact solution to the inviscid Euler equation. Of course, 
these solutions are well known; their usual differential equa
tion, given in terms of complex position coordinates, 8 can be 
read off from the time derivative of Eqs. (35). 

Generalizations to the case of N point vortices may be 
handled in the same manner. The complexity of the analysis, 
of course, increases rapidly with N, while for N = 4 there is 
evidence for a chaotic behavior of the solutions. 1 

IV. VORTEX STRETCHING 

In this section we discuss some properties of the nonun
itary matrix U relevant in three dimensions. For simplicity, 
the analysis continues to assume that gLY,yo) = gLY)'DLYo), us
ing the source to insert an arbitrary vortex distribution into 
the fluid at t = O. We suppress the Yo = 0 coordinate of q(s; y, 
Yo) = q(s; y), and first inspect the y dependence of q, as ex
pressed by (22). 

Under the variation y-y + Dy, 

q(s;y + Dy) = y + Dy + IdS' v(q(s/;y + DY),S/), 

or to first order in Dy, 

(Dy·V)qe(s;y) = DYe + I ds' [(DY'V)qa(S';y)] 

.[ aavc(q(s/;y),s/)]. 

If Dy has a nonzero component only in the b direction, this 
becomes 

abqc(s;y) = Deb + I ds' abqa (s/;y)·aa vc(q(s/;y),s/). (40) 

But (40) is just an expression of the integral equation whose 
solution is the U of (25), since the quantity 
Qea(s)=aavc(q(s;y),s) = ~i(Adea tPi(q(S;y),s) is precisely the in
teraction term of the differential equation built from (40), 

aUcb -
-- = Qca(S)'Uab(s), 

as 
(41) 

where we have written Ueb(S)=abqc(s;y), in anticipation of 
this result. Thus, the exact solution to (41) is 

(42) 

which is precisely the LYo = 0) quantity U of (25). 
Knowing that the vortex stretching term Ueb is nothing 

other than the spatial gradient of the vortex source, or mark
er, coordinate abqc (s;y) is interesting3 and may even turn out 
to be of some practical use in finding an approximate solu
tion to (25). For the qualitative purpose of this paper, how
ever, we will examine the behavior ofU in terms of its SU(3) 
coordinates.9 The first task is to define the tPi> which follow 
from the definition of Q and the properties of the Hermitian 

Ai' 
For convenience, these properties-taken from Ref. 

4--are grouped together in the Appendix, and will be used as 
needed. 
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From the definition, a b Va = (Ai Jab tPi' application of the 
trace property Tr [ A iA)] = 215 ij leads to tPi = !~a,b (A i )ba 
abva. From the explicit forms of the Appendix, one then 
constructs the components 

I/J I = Ha lV1 + a2VI ], 1/J2 = ~i[ - a lU2 + azul], 

I/Jl = Halul + aZU2], 1/J4 = Ha1v, + a1UI ], 

I/J, = F[ - alV, + a3VI ], I/Jo = Hazv, + a,Vz], (43) 

tP7 = !i[ - a2U3 + a3v2 1, 

I/Jx = (lIV3)[a lvl + azuz - 2 a3v3 1. 
Since each Qab must be real, the three components tP2' tP5' tP7 
are imaginary because the corresponding ,.1,2' ,.1,5' ,.1,7 have 
purely imaginary components. It is interesting to note that 
these three I/Ji are just proportional to the three components 
of vorticity, Wa; while the remaining tPi are given by real 
symmetric velocity gradients. It will be useful to divide this 
collection of real and imaginary terms into two sets: 
AitPi iAawa +Aa<pa,wheretheAa run over the imaginary 
matrices, a = (2, 5, 7), and the Aa run over the real matrices, 
a = (I, 3, 4, 6, 8), with the <Pa corresponding to the real, 
symmetric, velocity gradient components of tP. It should be 
emphasized that all of these Aa.Aa are Hermitian. 

Equation (41) can then be rewritten in the form 

au - -
- =(iA,w+A'<P)U, U(s=O)= 1, 
as 

(44) 

and the non unitary nature of the vortex stretching becomes 
clear upon writing the Hermitian conjugate of (44), and add
ing the two equations to obtain 

(45) 

showing that it is the symmetric components <Pa which gov
ern the increase of U tU. The s dependence of <p, as of w, is 
contained in the space-time (q(s;y),s) arguments of these 
functions. 

In order to construct solutions to (44), it is useful to 
extract the manifestly Hermitian part of U by setting 
U(s) = V(s).W(s), withV(s) = (exp[iS~ds' A'w(s')])+, where 
the ordering symbol refers to the s/ variable, as in (8). The 
matrix VIs) is then unitary, vt = V-I, and all the nonuni
tary behavior of U can be transferred to W, which satisfies 

aw --
- =A4)(s)W(s), W(O) = 1, 
as 

(46) 

wherd 4) = vt(s)A..<p (sW (s). The real components, !/>i (s) are 
given by 

(47) 

and it is also true that the magnitudes of!/>i and <p" are equal, 

From (46), it follows that 

~(wtW) = 2WtWtA'<PV)W, 
as 

which is consistent with (45) and the unitarity of V, 
WtW= UtU. 
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The way in which these properties shall be used is as 
follows. We begin with the "vectors" ¢!a andwa , and assume 
that all velocity gradients are increasing in magnitude with 
time (s-t when Yo = 0), while their "angular" variations are 
relatively slowly varying. That is, we take w = (;)W, (;)2=:= I, 
and assume that 

I ~~ I <W, f dt' w(t 'I> 1. (49) 

A corresponding relation for the angular behavior of the 
symmetric components ~ = ¢>¢! will not be necessary, al
though we continue to assume that the time integral of the 
magnitude of ¢! increases in a reasonably steady way, 
S'dt' ¢! (t 'I> 1, while ¢> does not change too rapidly in time. 
These assumptions will be justified, in a crude way, a poster
iori. 

Under these conditions we are interested in finding an 
approximate solution 9 for W (t ), and begin by considering an 
explicit representation for V(t), which satisfies the differen
tial equation 

av --
- = i(A·w(t ))V(t), VIOl = 1. 
at 

Because V(t) is unitary, it may be written in the form 

(50) 

V(t) = exp[iFo(t) + iA·F(t)], where F is, in general, a vector 
with eight real components. The initial condition VIOl = I 
then becomes Fo(O) = Fi(O) = 0. Substituting this form of 
V (t) into (50), with the aid of the general formula 

(51) 

useful when [T, dT Idt] #0, one immediately learns that 
Fo(t )=0, as one builds a differential equation for F(t), 

A.w(t) = t dp ei/1A.F(, I'(A' dF ).e - i/1A·F(, I, 
Jo dt 

or 

wi(t) = + fdP Tr[Aieil'A-F( A' ~~ )e -- i/1A-F]. (52) 

It follows from (52), by multiplication by 'L/Fi , and the 
trace properties of the Aj , that 

A A dF dF 
F·w=F·- =-, 

dt dt 

where F = ~ = ('L,F;)I/2. Further, ifF is written as E F, 
(52) can be rewritten as 

1 A 

wi(t) = Pi ~ + ~ 1 P Tr[ ,i;ei/1A-F( A' ~ )e - il,A-F J. 
(53) 

An alternate representation for (53) is obtained by expanding 
the exponentials of the second term, using the basic commu
tation relation of this Lie algebra, [Ai,Aj] = 2ifjkAk' where 
the/;jk structure constants are real, completely antisymme
tric numbers as written in the Appendix. Introducing the 
adjoint representation, Hermitian matrices, (A i)jk =ifjk' (59) 
may be rewritten as 

I A 

w(t) = E dF + F ( dp dF1 (e2i/1A-F) 
I I dt Ja dt ]I , 
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or 
A 

A dF i (dE) A ~ 
wi(t)=FiTt +2" d: [(A'F)-1(1_e2iA-FF)]ji' 

(54) 

Assumingthat(A.F)-1 exists, that is, det(A.F)#O, Eq. (54) is 
exact. It may be used to infer the form of F in the special 
circumstance that F> 1 and IdP Idt I <ldF Idt lor w, for the 
second rhs term of (54) may be discarded in comparison to 
the first; because all the components of F, or E, are real 
numbers, and the A are Hermitian, the exponential of (54) 
simply oscillates rapidly as F increases. In this limit, (54) 
reduces to 

A dF 
wi",Fi -, 

dt 

which in comparison with (52), yields the approximate 
"strong-coupling" solution, 

i' A A 

Fi(t)=Wi, F(t)= 0 dt'w(t'). 

(55) 

(56) 

The conditions for the validity of this approximate solution, 

V (t )=exp (iA.(;)(t ) fdt ' w(t ')], (57) 

are those of (49). 
One can now see in a clear way, from (47) and (48), the 

effect of such a unitary V under the supposed conditions (49). 
Writing the components cJJi as cJJ~i' where cJJ = ('LicJJ 1)112, it 
followsthatthemagnitudecJJ (t) = ¢! (t ) is unchanged by the V 

"'-
unitary transformation, while the unit vector cJJ (t ) is given a 
rapidly oscillating time dependence, with a frequency pro
portional to (lit )¢~dt' w(t 'I. That is, if one writes an alter
nate expression for (57), in terms of the vector 
Q = (;)S~dt' w(t 'I, 

VItI = exp[iQ'A] fo + i'i}Ja + LAaga, 
G a 

wherelo = j Tr [exp(iQ'A)],fa = -!i Tr[ Aa exp(iQ.A}], 
ga = ~ Tr [Aa exp(iQ·A)]. The quantity 10 can be calculated 
directly from the three eigenvalues of the matrix Q'A, which 
satisfy the relations 'L! ~ 1 Sn = 0, 'L! ~ 1 S ~ = 2Qz, and 
'L!~I {! = -3D=2'LijkdijkQiQjQk.Fortheabovechoice 
of the Qa, it can be seen that D = 0, following from the ex
plicit dabc of the Appendix, so that 

SI = - S3 = + Q iN, Sz = 0, generatelo and 
fa = - ~ (alaQa )10' But the functions ga are not directly 
calculable in this way, although they may be inferred in an 
indirect way from the requirement ofunitarity. 

A more elegant way of calculating both/a and ga at the 
same time is to write exp[iQ'A] =/0 + i'L~~ IA); and ima
gine that Q has projections in all eight directions, although 
its extension in the a directions is very small. Then ID I <Q 2, 

and the cubic equation for the S n is easily approximated to 
yield 

SI=Q-DI2Q2, S2=+DIQ2, S3=-Q-D 2/2Q2, 

so that/a(Q )=j[1 + 2 cos Q] + !i(D IQ 2)[1 - cos Q], and 
the/; = - ~(alaQi lta can be evaluated in the D-O limit as 
la = Qa sin QJu/'..= iV,,(l - cos Q)= - iga, where _ 
Va ='Labadaba Qa Qb' Note that all the matrix elements of V 
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are real, 

V(t)=j[1 +2cosQ] +iA·wsinQ- LAaVa(1-cOSQ). 
a 

(58) 

Using the property v2
- ~a v~ = j, also found via the Appen

dix, it is easy to verify unitarity; e.g., 1 =16 + ~~a 1~ 
+~~a.fa. 

The effect of such a Vunitary transformation, as in (47), 
is to make the unit vectors ;Pi rotate with frequency propor
tional to (1/t )fbdt' w(t '), here assumed to be a reasonably 
large number, while leaving the magnitude unchanged, 
<P = ¢. One then tries to solve (46) under these conditions, 
and in a more explicit and useful form than that given by the 
formal solution, 

Wit) = (exp[fbdt' A·q,(t ')])+. 

If one adopts the ansatz lO W(t) = exp[Go(t) + A·G(t )], and 
forms the differential equation for (Go,G) using (51), one im
mediately obtains Go=O, and in a manner analogous to (54), 

A dG i! dG ~ <P = G - + G df1--J (e2I'A'GG). (59) 
I I dt 0 dt jl 

For large G, which we also assume and which turns out 
to be a more stringent assumption than f'dt 1 ¢ (t '» 1, the 
exponent of the second rhs term of (59) cannot be treated as 
oscillatory, as in the analysis of (54), for the eigenvalues of 
A'G are real numbers, of both signs. It is still true, however, 
without approximation that 

or 

dG A 

- = G·q, = 5 (t )¢ (t ), 
dt 

G(t) = L dt ' 5(t ')¢ (t '), (60) 

where t (t) = G (t ).;P (t). Rewriting (59) in the form 

(61) 

and, multiplying both sides of (61) by (A.G Ju, one forms 

1 dGj 2A.GG A (62) 2dt(e -1)jI =¢<Pi(A·G)i/, 

with the quantity proportional to Gi(A·G); vanishing by 
symmetry. Just as one performed the analysis expressing the 
approximate form ofVin terms ,i?fthe eigenvalues of A'Q, as 
in (58), so the eigenvalues of (A·G) can be invoked to rewrite 
(62). For large G, only the largest positive eigenvalue, 1Jrnax' 

will be important, e2IA.GIG _/G'1max.o (1), and there follows 
from (62) the qualitative expression 

i?; -e - 2G'1max.¢;p (A,?;), 
dt 

showing that, for large G, dG /dt is damped exponenti~ly, 
i.e., after a certain time has been reached for which G> 1, G (t) 
is essentially constant. The unit vector;P (t ), however, contin
ues to oscillate wildly; and the result is that 5 (t ) = G J! ).$ (0 
oscillates to zero for sufficiently large t. For small t, G and <P 
are in phase, leading to t (t ) - 1; but as time increases, they 
fall out of phase, and then in phase again, etc. Because G is 
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supposed large and positive, ¢ (t)t (t) is more often positive 
than negative, of qualitative form given in Fig. 1. If this pic
ture is correct, then G (t ) does not grow smoothly, but only in 
spurts, when 5 (t ) is reasonably positive. Since the onset of 
turbulence will be associated with G> 1, the behavior of 5 (t ) 
provides a possible mechanism for the fact of intermit
tency.!! A detailed analysis depends upon a systematic reso
lution of (59). Finally, since W = exp(A.GG), an eigenvalue 
analysis of A·G will generate W - eG 11 1.0 (1), which is the 
only part of this discussion to be used below. In particular, 
for the nonunitary matrix W, 

wtw _e2G ('1·0 (1). (63) 

To see how these SU(3) forms can be useful, we now 
insert them into a crude, dimensional model which examines 
the growth of enstrophy, n (t) = !fd 3X ro2(x,t). With (23a) 
and (19), n can be put into the form 

n = !fd 3y fd Y 
X8 (q(t;y) - q(t;y/))gt(y/) 

. wt(q(t;y/),t) W(q(t;y),t )g(y), 

using an obvious matrix notation. It is simplest to change 
variables from (y,y/) to (q,q/), observing that the determinant 
of each transformation is unity, d 3q = det(Jq)·d 3y ; and with 
(42), det(Jq) = exp(tr In U)=>1. Then, (64) can be written as 

n = ! f d 3q gt(y(q)). wt W.g(y(q)), 

or with (63) 

(64) 

We now invoke a crude, dimensional argument to de
termine the possible significance of the above assumptions, 
by transferring them to the behavior of a time-dependent 
length scale, I (t). If only a single length scale is used, we 
assume we are studying the growth of "isotropic" turbu
lence, as represented by the growth of enstrophy.!2 What is 
fixed in the fluid is assumed to be its energy/density, K = E / 
p = !fd 3X v2

, and we write the dimensional relationK-f3v2
, 

or v_Kl/ 2·1- 3/2• Then, n = !fd 3x ro2_f3(v/l)2_K/12. 
Comparing with the rhs of (64), the dimensions of fd 3q gtg 
are also - L -2, but these coordinates must refer to the initial 
configuration of the velocity/vortex fields, since the latter 
are introduced by the source gat t = O. Hence we write 
fd 3q gtg-K/16, where 10 refers to a typical length scale at a 

~ (tl 
1 

-I 

FIG. 1. Expected, qualitative form of {; It j, expressing the feature of intermit· 
tency. 
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pre-growth-of-turbulence time to, which for simplicity is set 
equal to zero, to = O. Finally, we estimate 
G (t) = S~dt' 5 (t ')1,6 (t '), using 1,6 (t )-(vll )_K1I2 115/2(t). In 
this way, a crude model of I (t) can be extracted from (64), 

(KI12(t)) - (KII ~ ).exp [ 2K1I2 L dt' 5 (t ')/- 5/2(t')], 

or 

I(t)-/oexp[ -K1I2Ldt'5(t').1-5/2(t')]' (65) 

The decrease of I (t ) as t increases presumably corresponds to 
the transfer of the original input energy into vortices of 
smaller and smaller spatial scale. To solve (65), it is only 
necessary to differentiate once and form the differential 
equation 

dl __ KI/25 (t )./-3/2(!), 
dt 

which can be integrated immediately, 

I(t) = [/gl2 - ~K1/2 L dt'5(t,)r
s
, 

generating 

n (t)- [I gl2 - ~K1I2 L dt' 5 (t ')] -4/S. (66) 

It is clear that the type of growth of n, as t increases, now 
depends upon the falloff of 5 (t ), which we crudely model 
according to the following possibilities: 

(i) If 5(t)- + t - (I-pi, O';;;p< 1, then n has a finite
time singularity, n (t) -It * - t)- 4

/5. 

(ii) if5 (t)- + t -(I +pl, p>O,nmayormaynothavea 
finite-time singularity, depending on the specific constants 
involved. The singularity 13 of possibility (i) is less severe than 
that previously found in the quasinormal approximation 14 

n - (t * - t) -2, but it may well be that possibility (ii) is more 
accurate. 

If it is initially assumed that there are two relevant 
length scales, rather than one, e.g., L (t ) corresponding to the 
length of typical vortex, and I (t ) corresponding to its radial 
dimension, an analysis similar to that leading to (66) yields 

12(t ),.....,.,1 ~ - 2KI/2 f'dt' 5 (t ')L -1I2(t '), 
1ro 

and possibilities similar to (i) and (ii) can be developed. In any 
case, nonzero viscosity will smooth out an inviscid finite
time singularity. 

V.SUMMARY 

In this paper a formalism to study the properties of an 
in viscid NS fluid without rigid boundaries has been devel
oped and applied to two classes of problems-relatively sim
ple, exact examples in two dimensions-and to the extrac
tion ofacrude, dimensional model from an SU(3) analysis of 
vortex stretching in three dimensions. That the basic method 
is correct can be verified from these initial examples, but 
whether it will be useful in more complicated two- or three
dimensional problems is a different matter, which remains to 
be seen. 
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To the best of the author's knowledge the application of 
Fradkin's generic Green's function representation, and the 
use of an SU(3) description for the ensuing vortex stretching, 
have not previously appeared in the (voluminous!) NS litera
ture; and it is hoped that these techniques will provide tools 
for calculations less crude than those presented in Sec. IV. 
One interesting feature of the SU(3) analysis of strong vortex 
stretching has been the automatic appearance of a certain 
degree of intermittency , characterized by the function 5 (t ) of 
(60), which may turn out to be a useful way of describing the 
properties of experimental, intermittent turbulence. This 
tentative identification of 5' (t) with intermittency is here only 
suggested, rather than claimed; but it is, perhaps, a sugges
tion which may turn out to be at least partially true. 

The formalism itself suggests various other calcula
tional attempts, such as the approximate solution of (25) 
when vortex stretching is represented by aaqh' or the behav
ior of these estimates when vortices are continually fed into 
the fluid, with the aid of a source g(y,yo) more general than 
the G(y)·8(yo) used above. Perhaps the most interesting modi
fication would be the inclusion of viscosity corrections to all 
the calculations of this paper. A somewhat different resolu
tion of Fradkin's original representation, not tied to the ex
tremum calculation of Sec. II and valid for v¥O, will be 
presented separately. 

I t should be mentioned that hardly any methods exist to 
treat the nonabelian, vortex-stretching problem, when per
turbation in (wV)v is improper, other than the strong-cou
pling approach of Sec. IV. Other possibilities are to treat the 
dimension D as very large, and search for simplifications in 
the large-D limit, in analogy with current work on the large
N limit of certain 15 quantum field theories; or for fixed D to 
replace the matrices Ai' of the defining representation of 
SUrD ), by semiclassical coordinates corresponding to high
er-dimensional representation of SUrD ). For example, for 
SU(3), the hypercharge and isospin quantum numbers pres
ent in this formalism could be treated as if they were contin
uous coordinates, following an approximation technique 
long known in nuclear and particle physics. But these are 
just stop-gap measures, which really do not get to the heart 
of the problem of how to find a useful, nonformal representa
tion for the ordered bracket of(14). 

The appearance of such SUrD ) coordinates suggests 
that there may be an underlying SU(D) symmetry of the basic 
velocity Ivorticity NS equations. Clearly, an analogy exists 
between certain aspects of hydrodynamics and nonabelian 
field theory; perhaps an analogy may also be drawn between 
the topological structure of bent, closed, or knotted hydro
dynamical vortex tubes, in a semiturbulent situation, and the 
Copenhagen ("spaghetti") vacuum of interwoven flux tubes 
ofQCD. 16 We do not know the answer to this, but point out 
that, among others, it is an interesting question to ask. 
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APPENDIX 

All the material of this appendix has been taken from 
Ref. 4. The eight, traceless SU(3) matrices A; satisfy the rela
tions 

and 

Tr[A;Aj] =2D;j, 

[A;,Aj] = 2i/;jkAk' 

[A;,Aj 1 = ~Dlj + 2d;jk Ak' 

An explicit representation of the A; may be written as 

G ~} A,~;G 
-I 

~) ,1,= 0 0 

0 0 

G 
0 

~) G 
0 

~) ,13= - 1 ,14= 0 

0 0 

A'~;G 
0 -I) 

G 
0 

!} 0 o , ,16= 0 

0 0 1 

A,~;G 
0 -!) A, ~ (t 0 0 

0 I/v] o ) 
1 0 - 2!v] 

Nonzero elements of/ijk and dijk are given below. The 
/ijk are odd under permutation of any two indices, while the 
dijk are even. 

ijk hjk ijk dijk 

123 1 118 I/v] 
147 1/2 146 1/2 
156 -1/2 157 1/2 

246 1/2 228 I/v] 
257 1/2 247 -1/2 
345 1/2 256 1/2 

367 -1/2 338 I/v] 
458 v]/2 344 1/2 

678 v]/2 355 1/2 
366 -1/2 
377 -1/2 
448 - 1/(2v]) 
558 - 1/(2v]) 
668 - 1/(2v]) 
778 - 1/(2v]) 
888 - I/v] 

IH. Arefand N. Pomphrey, Phys. Lett. A 78, 297 (1980), and other papers 
quoted therein. 

2E. S. Fradkin, Nucl. Phys. 76, 588 (1966); E. S. Fradkin, U. Esposito, and 
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S. Termini, Nuovo Cimento, Ser. I, 2, 498 (1970). 
3See, for example, G. K. Batchelor, An Introduction to Fluid Dynamics 
(Cambridge U. P., Cambridge, 1967), Chap. 5. 

4It should be noted that only the symmetric part of JbVa can enter into (4), 
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